Lubrication Layer Perturbations in Chemical-Mechanical Polishing

Dr. Len Borucki CTO, Araca, Inc.

Outline

- A quick tutorial on chemical-mechanical polishing (CMP).
- Elastohydrodynamic lubrication with a pure lubricant.
- Questions posed by the presence of slurry particles.

Quick CMP Tutorial

Wafer Planarization in Integrated Circuit Fabrication

Integrated circuits are made by deposition and modification of numerous material layers.
Photolithography, the main method of creating patterns, works best on flat surfaces.
Chemical-Mechanical Polishing (CMP) is currently the leading method for planarizing surfaces.

Schematic of an integrated circuit produced without CMP

Schematic of an integrated circuit produced with CMP

Generic Rotary Polishing Tool

abraded by slurry particles. The pad also experiences abrasive wear.

Polishing Pads

The most commonly used pad, IC-1000TM, (Rohm and Haas) is a closed cell polyurethane foam with a mean void diameter of about 30 microns. Voids occupy about 35% of the volume and are not interconnected except at the surface.

The pad is shown here next to a scaled drawing of a 100 µm wide, 2 µm deep trench. The pad surface roughness is large compared with typical wafer features.

Letitia Molina, Motorola

Measured CMP Pad Properties

C.Elmufdi et al., 2004 CAMP Symposium.

Material	Young's Modulus, <i>E</i> (MPa)
IC1000	285 ± 5
PSA	765 ± 45
SUBA IV (x direction)	80 ± 8
SUBA IV (y direction)	232 ± 20
Ungrooved IC1000 Stack (50 mil)	230 ± 10

Polishing pads are soft compared with most of the materials they polish.

Copper: 110 GPa Silicon Dioxide: 43-77 GPa

The pad elastic modulus generally decreases with increasing temperature and water content. A wide range is possible: ~100-550 MPa.

Polishing Pad Surfaces

The pad surface is not static, but evolves under conditioning and abrasive wear.

After polishing without conditioning

Freshly conditioned

Slurry Particles

Slurry particles are very much smaller than pad asperities. Typical mean diameters for spherical colloidal particles range from a few tens to a few hundreds of nanometers. Solid loadings vary from $\sim 0.3\%$ to $\sim 30\%$ by weight. Slurry viscosity is similar to water.

We'll assume spherical colloidal particles

S. Lawing, ECS 2003

Polishing Mechanisms (SiO₂)

Summary of Scales and Numerical Values

Elastohydrodynamic Lubrication (EHL)

Dry Contact

Hertzian Theory

- o Undeformed asperity tips are spherical.
- o Contact area is circular. $A = \pi a^2 = \pi R \delta$
- o Pressure is elliptic.

$$p = p_0 (1 - (r/a)^2)^{1/2}$$
$$p_0 = \frac{2E}{(1 - \nu)\pi R^{1/2}} \delta^{1/2}$$

K.L. Johnson, Contact Mechanics

Lubricated Contact

EHL Theory

- o A thin lubrication layer forms.
- o Hydrodynamic pressures deform asperity tips.
- o Positive hydrodynamic pressures in the lubrication layer support the load.

EHL Theories

Elastohydrodynamic lubrication has been studied for almost a century. Some early citations from Szeri, *Fluid Film Lubrication, Theory and Design,* Cambridge (1998) Ch. 8:

- 1916 H.M. Martin
- Assumed rigid bodies. Predicted thinner lubrication layer than observed.
- 1936 W. Peppler Allowed contacts to deform elastically.
- 1945 Gatcombe Generalized to pressure-dependent viscosity, $\mu = \mu(p)$
- 1949 A.N. Grubin
- First satisfactory solution accounting for elastic deformation and $\mu = \mu(p)$.

http://www.lsbu.ac.uk/water/explan2.html

EHL Theory Example (Roller)

From Szeri, *Fluid Film Lubrication*, Cambridge University Press, 1998

EHL Compact Formulas

Simple formulas are often available for estimating the average lubrication layer thickness. Some fitting to more complex solutions is involved.

Slurry Particles

Active Particles

Polish rates are generally low for slurries that do not contain particles. When particles are added, some are evidently trapped between the wafer and pad asperities and increase the removal rate by mechanical or chemical means. These are **active** particles. Experimental estimates of slurry residence time and utilization suggest that most particles never become active.

Removal Rate and Solids Loading

Removal rate increases with weight fraction for particles of a given size.

Concentration (wt.%)

Removal Rate and Particle Size

At a fixed weight fraction, the removal rate has a peak at a size comparable to a possible lubrication layer thickness.

Questions

Which portion of the particle distribution becomes active?

If we start out with no particles in the lubrication layer, then how fast do they accumulate?

How much does the accumulation of a few particles affect the probability of capture of additional particles?

Questions

These are the main questions that I would like to address.

What happens to the thickness and shape of the lubrication layer as the solids loading increases from zero to typical upper weight fraction limits?

Are hydrodynamic pressures the main determinant of the layer geometry or is there a point at which particle size and loading are the main factors?

Can the compact models of lubrication layer thickness be generalized to include slurry particles?

I have with me ...

- 1. A 2D finite element Reynolds equation solver.
- 2. A 2D/3D linear elasticity solver.
- 3. Some literature.

