Lubrication Layer Perturbations in Chemical-Mechanical Polishing

Dr. Len Borucki
CTO, Araca, Inc.

Outline

- A quick tutorial on chemical-mechanical polishing (CMP).
- Elastohydrodynamic lubrication with a pure lubricant.
- Questions posed by the presence of slurry particles.

Quick CMP Tutorial

Wafer Planarization in Integrated Circuit Fabrication

-Integrated circuits are made by deposition and modification of numerous material layers.
-Photolithography, the main method of creating patterns, works best on flat surfaces.
-Chemical-Mechanical Polishing (CMP) is currently the leading method for planarizing surfaces.

Schematic of an integrated circuit produced without CMP

Schematic of an integrated circuit produced with CMP

Generic Rotary Polishing Tool

A rotating tool with a diamond-covered face maintains pad surface roughness, counteracting abrasive wear, removing debris, exposing new

The wafer is held upside down by a rotating carrier. The wafer surface reacts with chemicals in the slurry and is abraded by slurry particles. The pad also experiences abrasive wear.

LJB - MPI 2005

Polishing Pads

The most commonly used pad, IC-1000 ${ }^{\text {TM }}$, (Rohm and Haas) is a closed cell polyurethane foam with a mean void diameter of about 30 microns. Voids occupy about 35% of the volume and are not interconnected except at the surface.

The pad is shown here next to a scaled drawing of a $100 \mu \mathrm{~m}$ wide, $2 \mu \mathrm{~m}$ deep trench. The pad surface roughness is large compared with typical wafer features.

LJB - MPI 2005

Measured CMP Pad Properties
C.Elmufdi et al., 2004 CAMP Symposium.

Material	Young's Modulus, E (MPa)
IC1000	285 ± 5
PSA	765 ± 45
SUBA IV (x direction)	80 ± 8
SUBA IV (y direction)	232 ± 20
Ungrooved IC1000 Stack (50 mil)	230 ± 10

$\boldsymbol{\varepsilon}$, Engineering Strain, \%
Polishing pads are soft compared with most of the materials they polish.
Copper: 110 GPa Silicon Dioxide: 43-77 GPa
The pad elastic modulus generally decreases with increasing temperature and water content. A wide range is possible: $\sim 100-550 \mathrm{MPa}$.

Polishing Pad Surfaces

The pad surface is not static, but evolves under conditioning and abrasive wear.

After polishing without conditioning

Slurry Particles

Slurry particles are very much smaller than pad asperities. Typical mean diameters for spherical colloidal particles range from a few tens to a few hundreds of nanometers.
Solid loadings vary from $\sim 0.3 \%$ to $\sim 30 \%$ by weight. Slurry viscosity is similar to water.
We'll assume spherical colloidal particles

S. Lawing, ECS 2003

LJB - MPI 2005

Polishing Mechanisms $\left(\mathbf{S i O}_{\mathbf{2}}\right)$

Pressure p

Chemical reaction/softening and mechanical removal.

Chemically-softened layer with surface charge.

Reactive fluid and charged slurry particles
(Particle size greatly exaggerated)
Polishing pad
Relative sliding velocity V
Hypothesized mechanism for SiO_{2} removal by ceria. Most removed silica is found on the slurry particles and in colloidal suspension. (W. America, CAMP 2003).

Particle surface chemistry matters

Summary of Scales and Numerical Values

Slurry particles tens-hundreds of $\mathbf{n m}$.

Pad asperities and fluid thickness tens of microns

Elastohydrodynamic Lubrication (EHL)

Dry Contact

Hertzian Theory

o Undeformed asperity tips are spherical.
o Contact area is circular.

$$
A=\pi a^{2}=\pi R \delta
$$

o Pressure is elliptic.

$$
\begin{aligned}
& p=p_{0}\left(1-(r / a)^{2}\right)^{1 / 2} \\
& p_{0}=\frac{2 E}{(1-v) \pi R^{1 / 2}} \delta^{1 / 2}
\end{aligned}
$$

Lubricated Contact

EHL Theory

o A thin lubrication layer forms.
o Hydrodynamic pressures deform asperity tips.
o Positive hydrodynamic pressures in
 the lubrication layer support the load.

EHL Theories

Elastohydrodynamic lubrication has been studied for almost a century. Some early citations from Szeri, Fluid Film Lubrication, Theory and Design, Cambridge (1998) Ch. 8:

1916 H.M. Martin
1936 W. Peppler
1945 Gatcombe
1949 A.N. Grubin

Assumed rigid bodies. Predicted thinner lubrication layer than observed.
Allowed contacts to deform elastically.
Generalized to pressure-dependent viscosity, $\mu=\mu(\mathrm{p})$
First satisfactory solution accounting for elastic deformation and $\mu=\mu(\mathrm{p})$.

http://www.lsbu.ac.uk/water/explan2.html

EHL Theory Example (Roller)

Fluid pressures are approximately the same as Hertzian pressures except for a pressure spike near the trailing edge. Disagreement becomes more pronounced at lower loads.

The lubrication layer is nearly uniform in thickness except for a constriction at the trailing edge that produces the pressure spike.

Asperity deformation
(a) $G=5000$.

$$
W=3 \times 10^{-4} .
$$

From Szeri, Fluid Film Lubrication, Cambridge University Press, 1998

EHL Compact Formulas

Simple formulas are often available for estimating the average lubrication layer thickness. Some fitting to more complex solutions is involved.

$$
\begin{aligned}
& h_{c}=1.5(\mu V)^{0.64} R^{0.8} E^{-0.42} p_{a v g}^{-0.22} \\
& p_{a v g}=p / N_{c} \\
& N_{c}=\eta_{s} \int_{d}^{\infty} \phi_{s}(z) d z \\
& \quad \eta_{s}=\text { summit area density } \\
& \phi_{s}=\text { summit height PDF } .
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{s}=2 \times 10^{8} / \mathrm{m}^{2} \\
& \phi_{s} \text { Gaussian with } \sigma=6 \mu \mathrm{~m} \\
& R=50 \mu \mathrm{~m} \\
& p=1 \mathrm{kPa} \\
& V=1 \mathrm{~m} / \mathrm{sec} \\
& \mu=2.5 \times 10^{-3} \mathrm{~Pa}-\mathrm{sec}
\end{aligned}
$$

about the same as the mean diameter of some types of slurry particles.

Slurry Particles

Active Particles

Polish rates are generally low for slurries that do not contain particles. When particles are added, some are evidently trapped between the wafer and pad asperities and increase the removal rate by mechanical or chemical means. These are active particles. Experimental estimates of slurry residence time and utilization suggest that most particles never become active.

Some active particles also abrade the pad.

Removal Rate and Solids Loading

Removal rate increases with weight fraction for particles of a given size.

Removal Rate and Particle Size

At a fixed weight fraction, the removal rate has a peak at a size comparable to a possible lubrication layer thickness.

In this figure, the number of abrasive particles decreases as the size increases.

Questions

Which portion of the particle distribution becomes active?

If we start out with no particles in the lubrication layer, then how fast do they accumulate?

How much does the accumulation of a few particles affect the probability of capture of additional particles?

Slurry particle diameter

Questions

These are the main questions that I would like to address.
What happens to the thickness and shape of the lubrication layer as the solids loading increases from zero to typical upper weight fraction limits?

Are hydrodynamic pressures the main determinant of the layer geometry or is there a point at which particle size and loading are the main factors?

Can the compact models of lubrication layer thickness be generalized to include slurry particles?

I have with me ...

1. A 2D finite element Reynolds equation solver.
2. A $2 \mathrm{D} / 3 \mathrm{D}$ linear elasticity solver.
3. Some literature.

