The oil-air interface problem of fluid dynamic bearings in hard disk drives

Ferdi Hendriks

Presented at MPI 2005, WPI, Worcester, MA June 13-17, 2005

Introduction to FDBs for HDDs

- Fluid bearings have several advantages over ball bearings in spindles for modern hard disk drives.
 - Quietness

Inspire the Next

- Very low non-repeatable runout
- Shock resistance

Well known issues are:

- Oil-air interface instability (Asada et al.)
- Bubble ingestion (Asada et al.)
- Leakage (Muijderman, Bootsma, Tielemans)
 - They used a homogenized Reynolds eqn (8 = infinity)
- Numerical simulation of free boundary problem

FDB of "stationary shaft design"

N.V. Philips:

Evert Muijderman

Jan Bootsma

Ultracentrifuges 60 krpm, Later HDDs

J. Tielemans

Stefan Risse

The Art of the Millstones, How They Work by Theodore R. Hazen

HITACHI Inspire the Next

FDB's

Pressure distribution in Hitachi's microdrive

Copyright © 2003 Hitachi Global Storage Technologies

HITACHI

Last year's problem – MPI 2004

Capillary Couette flow with constant gap – is it stable?

HITACHI

Inspire the Next

Reynolds no:
$$Re = \frac{\rho V h}{\mu} <<1$$

Capillary no: $Ca = \mu V / \sigma$ O(1)
Wetting angle: γ < 90⁰
neglect gravity (Bond number)
 R_1

neglect flow field in the air ($\mu_{oil} >> \mu_{air}$)

$$\frac{\partial \rho h}{\partial t} + \frac{1}{2} \frac{\partial \rho h U}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\rho h^3}{12 \mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\rho h^3}{12 \mu} \frac{\partial p}{\partial z} \right)$$

BC:
$$p_{\Gamma} = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \text{ and tangential stress condition}$$

Average OAI deflection in a landgroove geometry with symmetry

State of the problem after 1 yr

- We know that capillary interfaces in land-groove geometries tend to form <u>fingers</u> in the grooves. The oil film rises over land regions.
- We know that the <u>number of grooves</u> plays a crucial role in oil-air interface deflection (analytical result)
- We do not know the stability as a function of Ca, Re and groove parameters: land/groove ratio and groove depth/clearance ratio.
- We know that <u>averaging</u> of the capillary interface across the fluid film is <u>not</u> (really) <u>allowed</u>. This is especially true in the grooves. I.e. There is no such thing as "the interface deflection."

Copyright © 2003 Hitachi Global Storage Technologies

HITACHI Inspire the Next

MPI 2005 questions

- Describe the capillary interface in a land-groove flow field. Relax (or drop) the averaging assumption.
- Investigate the stability of capillary Taylor-Couette flow
 - Use average interface;

- Eccentric, if the centric case is trivial.
- Does one need to know the flow near the capillary interface to predict when bubble ingestion occurs?
- Does one need to know the detailed flow near the capillary interface to compute loads and torque of the bearing with "engineering precision"

Intermag presentation

Main observation

- Current HDDs use self-acting spiral groove and herringbone fluid dynamic bearings (FDBs) to achieve precise rotation of a disk pack.
- In some FDB ("self-sealing") designs oil-air interfaces occur.
- Oil-air interfaces become unstable under certain high stress conditions, expressed by

—	The Capillary number	viscous stress	/	capillary pressure
_	The Reynolds number	inertial stress	/	viscous stress
—	The fractional eccentricity	eccentricity	/	clearance

- Reynolds eqn with Half-Sommerfeld (Gümbel) or Reynolds BCs is not satisfactory to describe the oil / interface dynamics: Oil is not conserved.
- Modified "true cavitation" approaches are also problematic.

HITACHI

Bootsma and Tielemans' work

 In 1977 Bootsma and Tielemans already suggested that the stability of the oil-air interface involves the Capillary number and the Weber Number. Because

We = Ca Re (we care!)

this is equivalent to involvement of the Reynolds number

Fluid bearing with stationary shaft

Copyright © 2003 Hitachi Global Storage Technologies

HITACHI

HITACH

Inspire the Next

Lower spool of the bearing of stationary shaft design

The oil-air interface (OAI) is located among the rotating herringbone grooves.

We wish to determine its evolution

 $Z(\theta,t)$

Groove-fixed (rotating) coordinate system

 $\begin{aligned} r_i & : inner (shaft) radius \\ d & : clearance \\ r = r_i^{+} d f(\theta, z) & f(\theta, z) : groove profile \end{aligned}$

we do not consider eccentricity, rather, we are focused on the details of a single land/groove pair

Continuity / Navier-Stokes / Interface

$$\nabla \mathbf{.} \mathbf{u}^* = \mathbf{0} \tag{1}$$

$$\rho \, \frac{D \, \mathbf{u}^*}{D t} = -\nabla p^* \, + \, \mu \, \nabla^2 \, \mathbf{u}^* \, - \, 2\rho \, \Omega \, \, \hat{\mathbf{k}} \times \mathbf{u}^* \, - \, \rho \, \Omega^2 \, r \, \hat{\mathbf{r}} \, . \tag{2}$$

$$\frac{\partial Z^*}{\partial t} - \mathbf{u}^* \cdot \mathbf{n} = 0 \tag{3}$$

$$\sigma \kappa^* = p^* - \hat{\mathbf{n}} \cdot \mathbf{T}^* \cdot \hat{\mathbf{n}}$$
 (4)

$$\left[\hat{\mathbf{n}} \cdot \mathbf{T}^*\right] \times \hat{\mathbf{n}} = \mathbf{0}.$$
 (5)

Reynolds' eqn / compact OAI

$$\frac{\partial}{\partial\theta} \left\{ f^3 \frac{\partial p}{\partial\theta} + 6 f \right\} + \frac{\partial}{\partial z} \left\{ f^3 \frac{\partial p}{\partial z} \right\} = 0$$
(6)

<u>Averaging</u> the flow velocity at the interface, we obtain the evolution equation of the interface:

$$\frac{\partial Z}{\partial t} + \overline{u}_{\theta} \frac{\partial Z}{\partial \theta} - \overline{u}_{z} = 0$$
(7)

This relies on the existence of a single, compact oil-air interface. The average velocity at the OAI is

$$\overline{\mathbf{u}} = -\frac{1}{12} f^2 \nabla p - \frac{1}{2} \hat{\theta}$$
(8)

Copyright © 2003 Hitachi Global Storage Technologies

Oil-air interface evolution eqn.

$$\frac{\partial Z}{\partial t} - \left[\frac{1}{2} + \frac{f^2}{12}\frac{\partial p}{\partial \theta}\right] \frac{\partial Z}{\partial \theta} + \frac{f^2}{12}\frac{\partial p}{\partial z} = 0 \qquad (9)$$

BC's:

$$p = 0$$
 along $z = Z(\theta, t)$ and
 p and Z are 2π periodic in θ

Simplify further by considering shallow grooves $(\theta, z) = 1 + \delta \sin(n[\theta - kz])$ (10)

HITACHI

Shallow sine groove OAI evolution, result of linearized theory

$$Z_{0}(\theta,t) = Z_{in}\left(\theta + \frac{t}{2}\right) - \frac{1}{n(1+k^{2})\cosh n}\left\{\sinh n\sin\left[n(\theta-k)\right] + k\cosh n\cos\left[n(\theta-k)\right] - k\cos n\theta\right\}$$
(11)

Linearized pressure distribution in a shallow, sinusoidally grooved herringbone

Herringbone with sinusoidal groove

pressure

axial flow

$$f(\theta, z) = 1 + \delta \sin[n(\theta - kz)]$$

$$k = 2, \ n = 5, \ \delta = .1$$

HITACHI Inspire the Next

OAI evolution for a "tanh" groove profile

HITACHI Inspire the Next

BEM problem setup: step groove

HITACHI Inspire the Next

"Fingering" in a step groove profile BEM solution

Conclusions

- In fluid dynamic bearings of hard disk drives the oil-air interface deforms largely in response to the flow in the bearing interior. Surface tension has a regularizing effect.
- The OAI is drawn down into the grooves and squeezed upward in lands.
- Interfacial fingering develops, possibly leading to tip streaming. The step groove has the strongest fingering tendency.
- According to shallow groove theory the forced interfacial deflections are reduced <u>exponentially</u> as the <u>number of grooves</u> increases while they are reduced <u>algebraically</u> as the <u>groove angle</u> decreases. This agrees with experiments by Asada.

