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1 Introduction

The manufacture of optical fibers typically involves taking a solid glass cylinder (a blank or preform),
heating it up to melting temperature by feeding it through a cylindrical furnace (the drawing tower),
and drawing the molten blank from the other end of the furnace at high speed (tens of meters per
second). Since the drawing speed is much faster than the feeding speed (by a factor of at least
ten), along with the temperature dependence of the fiber viscosity, the molten preform stretches
out, and a thin viscous fiber is formed, which rapidly cools and solidifies on exiting the drawing
tower.

The basic geometry is sketched in Figure 1. The temperature of the furnace surrounding the fiber
is known (prescribed) as a function of distance along the axis of the furnace, a typical temperature
profile is shown in the figure. If one assumes that within the tower the fiber is sufficiently thin
that its temperature is everywhere equal to the external furnace temperature, then the viscosity of
the molten glass is known as a function of axial position (since the viscosity of the molten glass is
known empirically as a function of temperature).

The solid preforms may contain gas bubbles, either through accident (defects in the manufac-
tured preform) or intent (deliberate inclusion of bubbles in the preform could allow manufacture of
sections of fiber with holes, which are desirable for many applications [1, 2]; as the fibre is stretched
the bubble can elongate enormously). Scientists and engineers at Corning wish to gain a better
understanding of how such bubbles would evolve during the draw-down process. In particular, they
are interested in finding answers to the following questions:

• Given an initial bubble shape, what shape is the final bubble in the drawn fiber? For example,
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Figure 1: Schematic diagram of an optical fiber drawing process. Left: the glass blank with radius
r = R(z, t) and gas bubble with radius r = h(z, t) for z` ≤ z ≤ zr. Right: temperature profile T (z)
of the furnace.

– Is the final bubble fore-and-aft symmetric?

– Is the final bubble the same as it would be in a fiber undergoing uniform stretching?

– Can the bubble pinch off into two or more bubbles during its evolution?

• What factors control the final bubble shape? Contributing factors, among others, may be

– the temperature profile of the drawing tower,

– the viscosity of the glass,

– the surface tension of the glass,

– the internal pressure of the gas in the bubble,

– the initial shape of the bubble.

• Are previous analyses of bubbles in shear flow applicable?

The fiber-drawing process outlined above is many decades old, and there is a substantial math-
ematical literature to which we cannot do justice in this report. What follows is therefore a highly
selective overview of the historically significant papers, and recent work most pertinent to our mod-
eling approach. Some of the earliest papers of relevance were motivated by fiber-spinning processes
from the textile industry in which molten threads are extruded from a bath through an orifice (see,
for example, work by Pearson and co-workers [3, 4, 5, 6]). Similar models were developed indepen-
dently, or adapted from such work on textiles, for the steady drawing of optical fibers; for example
[7, 8, 9]. There was other activity in this field throughout the 1970s, and Denn [10] provides a
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useful review of this work through 1980. We also note a more recent review of extensional flows by
Petrie [11], which includes very many references to fiber-drawing applications.

Systematic asymptotic models of the type that we shall use, exploiting the slenderness of the
drawn fiber (its radius is much less than its length) were developed in the late 1980s and sub-
sequently. Dewynne et al. [12] derived the equations governing the extensional evolution of solid
isothermal viscous fibers of circular cross-section. This model was extended in [13] to include the
effects of gravity and axial inertia, and provided equations for the extensional fiber velocity, the
flow in the cross-section, the translation and rotation of the cross-section, and the evolution of the
fiber cross-sectional area. Howell and Cummings [14, 15] extended these ideas to non-axisymmetric
solid fibers, incorporating surface tension, gravity, and axial inertia to derive a model predicting
the detailed cross-sectional evolution (in particular, the shape of the cross-section is predicted as
a function of time) of a fiber in extensional flow. The effects of heating on an extending fiber,
in particular, its impact on the viscosity, were considered by Howell et al. [16], who modeled the
manufacture of axisymmetric glass microelectrodes (made by a similar industrial process). Wylie
and Huang [17] investigated a model with both heating and axial inertia, finding that while the
hotter (less viscous) regions of the fiber tend to thin and may be prone to necking and possible
pinch-off, the axial inertia can be crucial in preventing pinch-off.

Drawn hollow fibers, which are more relevant to this study, were considered using similar sys-
tematic asymptotic methods by Fitt, Voyce, Monro and co-workers [1, 2, 18], and more recently
by Huang et al. [19] and Griffiths and Howell [20, 21, 22]. Fitt et al. [2, 18] focussed on axisym-
metric hollow fibers, taking account of variable viscosity due to the heating, and using internal
hole pressurization and rotation of the input preform as process control parameters; while Huang
et al. [19] were concerned with how the force applied to draw out the fiber can be used to control
the process. The applicability of such modeling to fibers with multiple holes was considered briefly
by Voyce et al. [18, 23]. These studies were restricted to axisymmetric geometries; however Grif-
fiths and Howell [20, 21, 22] were concerned primarily with how to control the cross-sectional shape
evolution of non-axisymmetric hollow fibers for applications such as square bottle manufacture.
The proposed process control parameters here were internal hole pressurization and initial fiber
cross-sectional shape.

The modeling of this report is based on that of Fitt et al. [1], who wrote down equations
governing the evolution of an axisymmetric fiber containing a single central hole. The Navier-
Stokes and heat transfer equations, with viscosity a function of temperature, are asymptotically
reduced to yield a one-dimensional model in which the fiber radius, the internal hole radius, and
the axial fluid velocity of the glass fiber are functions only of axial distance along the fiber, and of
time t. Throughout our analysis the fiber and bubble will be assumed to remain axisymmetric; for
future more comprehensive investigations we note that the evolution of slender non-axisymmetric
bubbles in extensional flow was considered in work by Howell and Siegel [24], which might usefully
be adapted for our problem when the assumption of axial symmetry is removed.

The remainder of the report is organized as follows. In Section 2, we describe the physical set
up of the problem and corresponding mathematical model, and a reduction of the full equations
is made following the work discussed in [1]. Section 3 discusses a special case of the problem in
which the mass of the gas inside the bubble is fixed. This section includes a description of the
governing equations of the model as well as an analysis of bubble pinch-off. The section concludes
with a discussion of a numerical approach to the equations and numerical results showing the
evolution of bubbles for two representative initial bubble shapes. Section 4 provides a description
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of an extension of the model for the case when the gas in the bubble is allowed to diffuse into or
out of the surrounding glass fiber. Governing equations of this leaky-mass model are given and a
suggested numerical approach to the equations is discussed. Conclusions of the work are given in
Section 5.

2 Mathematical model

A fiber is drawn in the vertical direction through a furnace whose temperature varies in the pulling
direction as shown in Figure 1. The fiber is assumed to be concentric with the furnace, and the
gas between the fiber and the furnace is assumed to be passive. As shown in the figure, z denote
axial distance from the blank entrance region, and r is radial distance from the axis of symmetry.
The two fluids, the molten glass fiber and the air surrounding it, are assumed to be immiscible,
separated by an interface located at r = R(z, t), where t is time. The molten glass is assumed to
be a viscous, incompressible fluid whose density is independent of temperature, but whose viscosity
varies significantly with temperature. A third region, defined by r ≤ h(z, t) for z`(t) ≤ z ≤ zr(t),
contains a gas bubble. The gas is assumed to be ideal and compressible. Further, it is assumed
that the pressure of the gas in the bubble is spatially uniform since the time scale associated with
acoustic signals is much shorter than the time it takes for the bubble to be advected with the
surrounding glass through the drawing tower. In what follows, we assume that the temperature,
T (z), is a known quantity throughout the regions of interest, and that energy is automatically
conserved.

From these assumptions, the glass region is governed by continuity and conservation of momen-
tum, i.e.

∇ · u = 0, (1)

ρ0
Du
Dt

= ∇ · τ + ρ0gez, (2)

where u is the velocity of the glass, ρ0 is the glass density, τ is the stress tensor, g is the acceleration
due to gravity, and ez is the unit vector in the axial direction. The stress tensor is given by

τ = −pI + µ(T )
(
∇u +∇uT

)
, (3)

where p is pressure, I is the identity tensor, and µ(T ) is the temperature-dependent viscosity of
the molton glass. For the gas bubble, we assume that its density ρg and pressure Pg obey the ideal
gas law

Pg = ρgRmT, (4)

where Rm is the mass-based universal gas constant. Further equations for the gas depend on
whether the mass in the bubble is assumed to be fixed or not. These equations will be discussed
later in Sections 3 and 4 for the fixed-mass and leaky-mass models, respectively.

Equations at the interfaces between the bubble and the glass and between the glass and the
surrounding air are needed to complete the description. At the interface, r = h(z, t), between the
bubble and the glass we assume that tangential component of stress is continuous and that the
normal component of stress is balanced by capillary forces, i.e.

t1 · τ · n1 = 0, (5)
n1 · τ · n1 = −Pg + γκ, (6)
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where t1 and n1 denote the tangential and normal components of the surface of the bubble, respec-
tively, γ is the surface tension between the gas in the bubble and the surrounding glass, and κ is the
curvature of the free surface of the bubble. (Generally, surface tension is function of temperature T ,
but we take it to be constant for simplicity.) Similar condition apply at the interface, r = R(z, t),
between the glass and the ambient gas outside the fiber, namely,

t2 · τ · n2 = 0, (7)
n2 · τ · n2 = −Pa + γaκa, (8)

where t2 and n2 denote the tangential and normal components of the surface of the glass fiber,
respectively, Pa is the ambient pressure of the gas outside of the fiber, γa is the surface tension
between the glass and the ambient gas surrounding it, and κa is the curvature of the free surface
of the glass fiber. We assume that Pa does not depend significantly on temperature, and thus take
it to be constant.

Quantity Range
axial length 1 m
glass radius 10−1 – 10−4 m

bubble radius 10−5 – 10−8 m
glass viscosity 105 – 106 Pa s
axial velocity 10−3 – 101 m s−1

Table 1: Ranges for various dimensional quantities of the system.

Ranges for various quantities of the system are listed in Table 1. The axial length of the system
is determined by the length of the drawing tower which is approximately one meter, while the
thickness of the fiber varies from centimeters as the glass blank enters the tower to hundreds of
microns at the end of the fiber draw. This observation suggests that a thin-layer approach can be
used to reduce the full system of equations to a simpler set of coupled equations. This reduction
has been used in a number of previous papers. In particular, Fitt et al. [1] employ this approach
for an axisymmetric fiber with a co-axial gas hole. They assume that the radius of the fiber and
the hole are of similar order, and arrive at the following reduced equations

ρ0

(
R2 − h2

)
(wt + wwz − g) =

[
3µ
(
R2 − h2

)
wz + γ (R+ h)

]
z
, (9)(

h2
)
t
+
(
h2w

)
z

=
(Pg − Pa)R2h2 − γRh (R+ h)

µ (R2 − h2)
, (10)

(
R2
)
t
+
(
R2w

)
z

=
(Pg − Pa)R2h2 − γRh (R+ h)

µ (R2 − h2)
, (11)

where w is the axial component of velocity in the glass fiber. These equations may be employed for
the present problem by treating the gas hole as our gas bubble. We then make a further reduction
based on the observation that the radius of the gas bubble is much smaller than the radius of the
glass fiber, and these equations form the building blocks of the fixed-mass and leaky-mass models
considered in the next two sections.
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3 Fixed-mass model

In this section, we consider a model for the behavior of a bubble in which the mass of gas inside the
bubble is assumed to be fixed with time. We begin by discussing the governing equations for the
model, and then perform an analysis of pinch-off. The section ends with a discussion of a numerical
treatment of the equations and results for two different initial bubble configurations.

3.1 Governing equations

The governing equations for the model may be obtained from (9), (10) and (11) in the following
manner. For the glass, we subtract (10) from (11) to obtain(

R2 − h2
)
t
+
(
(R2 − h2)w

)
z

= 0.

Assuming that the flow of molten glass is steady and that h� R gives

(Aw)z = 0, (12)

where A(z) = R2 is the “area” of the glass fiber. Applying the same two assumptions to (9) gives

ρ0A (wwz − g) =
[
3µAwz + γ

√
A
]
z
.

A further assumption that the Reynolds number is small gives

−ρ0gA =
[
3µAwz + γ

√
A
]
z
. (13)

The steady equations in (12) and (13) for the glass are considered for the interval z ≥ z0 with
boundary conditions taken to be

A = A0, w = w0 at z = z0 and A = A∞ as z →∞.

It is clear from (12) and the boundary conditions that

Aw = A0w0,

and this may be used to eliminate A or w in (13) which is done later.
A gas bubble is assumed to exist on the interval z`(t) ≤ z ≤ zr(t) and have radius given by

h(z, t) as discussed previously and shown in Figure 1. The two ends of the bubble advect with the
flow of glass so that

d

dt
zk(t) = w(zk(t)), k = ` or r.

An equation for the radius of the bubble may be obtained from (10). As before, we assume h� R
which gives

qt + (wq)z =
1
µ

(Pq − γ√q) , (14)

where q(z, t) = h2 is the “area” of the bubble and P = Pg − Pa is the “gauge” pressure of the gas
in the bubble. The assumption of fixed mass implies∫

Vb

ρg dV =
∫
Vb

Pg
RmT

dV =Mg,
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where Vb is the volume of the bubble andMg is the mass of the gas in the bubble. In terms of the
geometry of the bubble and using the assumption that the gas pressure is spatially uniform gives

(P (t) + Pa)
∫ zr(t)

z`(t)

q(z, t)
T (z)

dz = M, (15)

where M = RmMg/π. It is assumed that z` and zr are known at t = 0, with z0 ≤ z`(0) < zr(0),
and that

q(z, 0) =

{
q0(z), for z`(0) ≤ z ≤ zr(0),

0, otherwise,

where q0(z) specifies the initial shape of the bubble. The boundary condition is q(z0, t) = 0, and
P (0) is assumed to be known so that M is given by

M = (P (0) + Pa)
∫ zr(0)

z`(0)

q0(z)
T (z)

dz.

For later purposes, we find it convenient to introduce an area-weighted coordinate

x =
∫ z

z0

A(ζ)
A0

dζ, so that
dx

dz
=

A

A0
=
w0

w
.

In terms of the new variable x, (13) becomes

−ρ0gA0 =
[
−3w0µAx + γ

√
A
]
x
, (16)

which may be integrated once to give

Ax = −K − ρ0gA0x− γ
√
A

3w0µ(T (z))
, x ≥ 0, (17)

where K > 0 is a constant of integration. Equation (17) together with

zx =
A0

A
, x ≥ 0, (18)

may be solved numerically subject to the conditions z(0) = z0, A(0) = A0 and limx→∞ = A∞ to
determine z(x), A(x) and K. The axial velocity of the glass fiber is then given by

w(x) =
w0A0

A(x)
.

In terms of the variables (x, t), the bubble equations in (14) and (15) become

yt + w0yx =
1
µ

(Py − γ√wy) , (19)

(P (t) + Pa)
∫ xr(t)

x`(t)

y(x, t)
T (z(x))

dx = M̃, (20)
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where y(x, t) = wq, µ = µ(T (z(x))) and M̃ = w0M . The positions of the left and right ends of the
bubble are xk(t) = xk(0) +w0t, k = ` or r, where z(xk(0)) = zk(0). The equation in (19) for y(x, t)
is hyperbolic and may be solved along characteristics x − w0t = constant which are now straight
lines.

In view of the differential operator on the left-hand-side of (19), it is convenient to switch to
(ξ, t), where ξ = x− w0t, to get

yt =
1
µ

(Py − γ√wy) , ξ` < ξ < ξr, t > 0, (21)

(P (t) + Pa)
∫ ξr

ξ`

y(ξ, t)
T (z(ξ + w0t))

dξ = M̃, t > 0, (22)

where w = w0A0/A(ξ + w0t) and µ = µ(T (z(ξ + w0t))). The variable ξ essentially marks the
particular characteristic on which (21) is to be integrated in time t. The form of the equations in
(21) and (22) is particularly convenient for a numerical integration as is discussed in Section 3.3.

3.2 Pinch-off analysis

One of the questions of interest to researchers at Corning is whether the bubble evolves as a single
entity with rounded ends, or whether “pinch-off” can occur, acting either to “zip up” the bubble
from its ends, or to close the bubble at an interior point for bubbles of non-convex initial shape,
giving rise to two (or more) disconnected bubbles. In order to understand the process by which
such pinch-off might occur we perform an analysis of two simple local models.

3.2.1 Constant-coefficient model

The behavior of the bubble radius is governed by (21), where y = wh2, with the pressure determined
by (22). In view of the right-hand-side of (21), it is clear that the first term involving pressure acts
to increase the bubble radius while the second term involving surface tension acts to decrease it.
These two terms are in competition, and if the second one wins, then the bubble may pinch-off. To
model this behavior approximately, a simple approach is to treat the coefficients in the equation as
constant so that (22) decouples and (21) may be solved exactly. In this approach, (21) becomes

yt = Ay −B√y, y(t0) = y0, (23)

where

A =
P

µ
, B =

γ
√
w

µ
,

are assumed to be known positive constants, and y0 is some known value of y at a time t = t0. A
straightforward analysis of (23) shows that if

√
y0 > B/A = γ

√
w/P , then the solution grows in

time, whereas if
√
y0 < γ

√
w/P , then the solution decreases and ultimately pinches off when y = 0

and thus h = 0. Since y = wh2, the condition for pinch-off is simply

h0 < γ/P,

and pinch-off occurs at

t = t0 +
2µ
P

ln
(

γ/P

γ/P − h0

)
.
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3.2.2 Vanishing-radius model

A second approach is to perform a straightforward local analysis of the equations as h → 0. At
leading order (14) takes the form

ht + whz = − γ

2µ
, (24)

hence h = −γt/(2µ) +H, where H satisfies the hyperbolic PDE

Ht + wHz = 0.

Thus, H is constant along characteristics dz/dt = w moving with the axial velocity, so that for a
material point of the glass-bubble interface with initial bubble radius h0, the radius at subsequent
times t satisfies

h = h0 −
γt

2µ
along characteristics

dz

dt
= w.

In the absence of surface tension, γ = 0, the bubble would simply be stretched out by the extensional
flow, with the end points where h = 0 being advected by the flow with speed w. The above shows
that surface tension acts to make the bubble shorter than this, so that in Lagrangian coordinates
traveling with the flow the bubble retracts from its ends. If Z denotes the initial position of the
point z(t) traveling with the flow, such that

dz

dt
= w(z), with z(0) = Z,

then (at points where h is small, so that our approximate analysis applies) the bubble radius
h(z(t), t) satisfies

h(z(t), t) = h0(Z)− γt

2µ
.

Thus, if the right-hand end of the bubble is initially marked by point Z0, with h0(Z0) = 0, and if
Z1 < Z0 is some initial point within the bubble support, with h0(Z1) = h1 > 0, then the bubble
will pinch-off to the material point in the flow marked by Z1 at time t1 = 2µh1/γ. This is indicated
in Figure 2.

3.3 Numerical method and results

A numerical treatment of the governing equations for the glass fiber and for the gas bubble proceeds
in two steps. In the first step, the equations in (17) and (18) are solved to determine the behavior
of the fiber. This result then provides input for the numerical integration of equations (21) and
(22) to determine the behavior of the bubble in the second step.

For the first step, we require a temperature profile. We use

T (z) =


T0(z) for z0 ≤ z ≤ z1,

T0(z)
(
z2 − z
z2 − z1

)
+ T1(z)

(
z − z1
z2 − z1

)
for z1 < z < z2,

T1(z) for z ≥ z2,

(25)

where
z0 = 0.4 m, z1 = 0.9 m, z2 = 1.2 m.
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Figure 2: Sketch showing the characteristic curves of the model equation in (24), together with
the curves on which h = 0 for a typical extensional flow. Case (a) indicates that for γ = 0 the
curves on which h = 0 coincide with characteristics and are simply advected with the flow. Case
(b) shows that curves on which h = 0 may cross characteristics leading to the bubble being shorter
than would be expected due to pure advective stretching.

The temperature profile given by T0(z) is a polynomial fit to artificial “model” data constructed
by Corning for the workshop. It is given in degrees Kelvin by

T0(z) = 273 + 2200
8∑

n=0

anz
n,

where z is given in meters, and

a0 = 0.6335, a1 = 0.2856, a2 = 8.9977, a3 = −38.5190, a4 = 68.9370,

a5 = −62.6802, a6 = 26.6232, a7 = −2.6393, a8 = −0.8689.

The temperature profile given by T1(z) provides an exponential decay to an ambient temperature,
and is given by

T1(z) = 273 + d0 exp(−d1z), d0 = 3687.1, d1 = 0.7833.

In addition to an assumed temperature profile, we require a formula for the viscosity of molten
glass as a function of temperature. As suggested by Corning for workshop purposes, we use the
artificial formula

µ(T ) =
1
10

exp
(
b0 +

b1
T

)
, b0 = −9.81, b1 = 55038. (26)

Here T is given in degrees Kelvin and µ is given in pascal-seconds. (All quantities in this report
are taken in SI units unless noted otherwise.) Figure 3 shows the temperature profile given by (25)
on the left and the corresponding behavior of the viscosity on the right.

Having specified a temperature profile and formula for the viscosity, we are now in a position
to integrate (17) and (18) numerically to determine A(z) and w(z) for the glass fiber. The initial
conditions for these ODEs at x = 0 are taken to be

z(0) = z0 = 0.4 m, A(0) = A0 = 1.296× 10−5 m2 (R0 = 3.6 mm),
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Figure 3: Temperature profile T (z) and corresponding viscosity µ(T (z)).

and the remaining parameters in the equations are

ρ0 = 2.2× 103 kg/m3, Pa = 101325 Pa,

g = 9.8 m/s2, γ = 0.28 N/m, w0 = 0.003 m/s.

A provisional choice for the constant K in (17) is made and the two ODEs are integrated numerically
using a second-order Runge-Kutta method for 0 ≤ x ≤ x∞, where x∞ = 0.0359 (which corresponds
to z∞ ≈ 1 m). The value for K is adjusted until

A(x∞) = A∞ = 3.9062× 10−9 m2 (R∞ = 0.0625 mm).

It is found that K = 0.225036503, and plots for R =
√
A and w versus z are shown in Figure 4.

In the plots, we include artificial model data provided by Corning, which we also list in Table 2.
We note that the curves given by a numerical integration of the equations and the marks given
by the model data are in good agreement (i.e., the numerical integration generating the artificial
data agrees with the current model, as it should). It should also be noted that the contribution
of gravity in (17) was found to play a negligible role, and thus the term could have been left out
without significant loss of accuracy.

The second step of the numerical scheme involves an integration of the equations in (21) and (22)
for the bubble. The interval [ξ`, ξr] is represented by a uniform grid, ξj = ξ` + j∆ξ, j = 0, 1, . . . , N ,
where ∆ξ = (ξr − ξ`)/N . We define ynj to be an approximation for y at ξj and at a time tn = n∆t,
where ∆ξ = w0∆t so that the characteristics are aligned with the grid in space-time. Likewise, we
define Pn to be an approximation for P at tn. From the integration of the equations for the glass
fiber, we assume that z(x), w(x) and A(x) are known, and thus T (z(x)) and µ(T (z(x))) are known
as well. Initially, we set

y0
j = w(ξj)q0(z(ξj)), P 0 =

γ
∑

j

√
q0(z(ξj))∑

j q0(z(ξj))
.

The former condition specifies the initial shape of the bubble while the latter condition assumes the
initial pressure is determined by an average balance of pressure and surface tension for the bubble.
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Figure 4: Outer radius R =
√
A and axial velocity w versus z. Solid curves are from a numerical

integration and marks are from data provided by Corning.

z (m) R =
√
A (mm) w (m/s)

0.4 3.600 0.003
0.5 0.8000 0.060
0.6 0.2325 0.700
0.7 0.1070 3.50
0.8 0.07350 7.20
0.9 0.06465 9.35
1.0 0.06280 9.90

Table 2: Data for outer radius R =
√
A and axial velocity w versus z.

12



As with the integration of the equations for the glass fiber, we choose an explicit, second-
order, Runge-Kutta-type scheme involving a two-stage, midpoint-type procedure. In the first stage,
assuming that ynj and Pn are known, we compute y∗j and P ∗ from the equations

y∗j = ynj +
∆t

2µj+n

(
Pnynj − γ

√
wj+n ynj

)
, j = 0, 1, . . . , N,

(P ∗ + Pa)
N∑
j=1

(
y∗j−1

Tj+n−1/2
+

y∗j
Tj+n+1/2

)
∆ξ
2

= M̃,

where wk, Tk and µk are defined by w(k∆ξ), T (z(k∆ξ)) and µ(Tk), respectively. The mass constant,
M̃ , is determined initially by

M̃ =
(
P 0 + Pa

) N∑
j=1

(
y0
j−1

Tj−1
+
y0
j

Tj

)
∆ξ
2
.

In the second stage, we compute yn+1
j and Pn+1 from the equations

yn+1
j = ynj +

∆t
µj+n+1/2

(
P ∗y∗j − γ

√
wj+n+1/2 y

∗
j

)
, j = 0, 1, . . . , N,

(
Pn+1 + Pa

) N∑
j=1

(
yn+1
j−1

Tj+n
+

yn+1
j

Tj+n+1

)
∆ξ
2

= M̃.

The first stage represents a forward-Euler half-step, while the second stage provides the second-
order correction.

It should be noted that if ynj becomes negative for some j = J say, then we assume that the
bubble has pinched off at that location and set ynJ = 0. If the pinch-off occurs on either end of the
bubble, then there is no essential difficulty with the calculation of pressure for the remainder of
the evolution. If, on the other hand, the pinch-off occurs in the interior of the bubble, as it might
for a non-convex bubble shape (see Section 3.3.2), then a separate uniform pressure is computed
for each part of the bubble on either side of the pinch-off. The formulas above still apply, but for
a restricted range of j, e.g., j = 0, 1, . . . , J for the left-part of the bubble and j = J, J + 1, . . . , N
for the right-part of the bubble.

3.3.1 Example: convex bubble

Let us first consider an example in which the initial bubble shape is convex. We take

q0(z) = 4h2
maxζ(1− ζ), ζ =

z − z`(0)
zr(0)− z`(0)

,

where
hmax = 5× 10−7 m, z`(0) = .4 m, zr(0) = .4001 m,

which corresponds to a bubble in the shape of an ellipsoid with a length equal to 100 µm and a
maximum radius equal to 0.1 µm. The initial pressure for this bubble shape is P 0 = 659.5 kPa.
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For this calculation, we use N = 200 and integrate the equations for the bubble until the left end
of the bubble has passed z = 1.1 m.

The plots in Figure 5(a–h) show the evolution of the bubble from its initial shape. As the glass
accelerates through the drawdown process, the bubble is stretched and elongates. The ratio of the
bubble radius to its axial length is 10−3 initially, but this ratio decreases dramatically by the end
of the fiber draw. For this initial shape, the bubble elongates to an axial distance of 0.3180 m
and a maximum radius of 7.767 × 10−9 m by the end of the draw, so that the ratio decreases
to 2.443 × 10−8. The initial shape has fore-aft symmetry, but loses this symmetry during the
elongation. However, once the drawdown is complete, fore-aft appears to be recovered. It is also
noted that the ends of the bubbles shown in the figure have pinched off slightly, even as early as
the plot shown in Figure 5(b). The amount of bubble pinch-off increases very slowly during the
evolution.

Figure 6(a) shows the behavior of the bubble pressure. The color of the marks in the figure
correspond to the eight bubble shapes shown in Figure 5. As the bubble elongates, the pressure
increases due to the initial decrease in the volume of the bubble. (Recall that the mass of the gas in
the bubble is assumed to be fixed.) Later during the evolution, the pressure decreases which is due
to the effect of the decrease in temperature of the glass surrounding the bubble. In Figure 6(b), we
provide a quantitative measure of fore-aft symmetry of the bubble. At each time t, we compute

∆h(t) =

{∫ zm

z`
(h(z, t)− h(zr − z, t))2 dz∫ zm

z`
h(z, t)2 dz

}1/2

, zm(t) =
1
2

(z`(t) + zr(t)) ,

which measures the L2 deviation from symmetry about the midpoint, zm, of the bubble. A bubble
with fore-aft symmetry has ∆h = 0, while ∆h > 0 for a bubble without symmetry. The plot in
the figure shows ∆h(t) versus z`(t) and confirms that the bubble is symmetric initially, loses the
symmetry during the elongation, but then regains this symmetry (within numerical approximation)
by the end of the fiber draw.

3.3.2 Example: non-convex bubble

As a second example, we consider the case of a non-convex initial bubble shape. We set

q0(z) = h2
min +Q1ζ̂

2 +Q2ζ̂
4, ζ̂ =

2z − z`(0)− zr(0)
zr(0)− z`(0)

, (27)

where
Q1 = 2(h2

max − h2
min) + 2hmax

√
h2

max − h2
min, Q2 = −h2

min −Q1.

The shape given by (27) resembles a dumbbell. It has fore-aft symmetry about zm(0) = (z`(0) +
zr(0))/2 with a minimum radius given by hmin at z = zm and a maximum radius given by hmax

at two points on either size of the midpoint. We use the same values for hmax, z`(0) and zr(0) as
in the previous example in addition to setting hmin = hmax/5. The initial pressure for this bubble
shape is P 0 = 705.1 kPa, and we use N = 200 as before.

The plots in Figure 7(a–h) show the evolution of the bubble from its initial non-convex shape.
For this case, pinch-off occurs relatively soon during the fiber draw so that the bubble evolves into
two separate bubbles, each with its own uniform pressure. As before, the bubble elongates severely.
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Figure 5: Evolution of a convex bubble. Left-end positions at (a) 0.4 m, (b) 0.5 m, (c) 0.6 m, (d)
0.7 m, (e) 0.8 m, (f) 0.9 m, (g) 1.0 m and (h) 1.1 m. Axial distance is given relative to the left-end
positions.
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Figure 6: (a) Bubble pressure and (b) L2 deviation from symmetry about the midpoint of the
bubble. Color marks correspond to bubble shapes given in Figure 5.

The initial bubble shape has fore-aft symmetry, and the two bubbles that appear in the final plot
appear to be mirror images of one another. However, the two bubbles are not quite symmetric.
The left bubble has an axial distance of 0.1531 m and a maximum radius of 7.887× 10−9 m while
the right bubble has an axial distance of 0.1532 m and a maximum radius of 7.893× 10−9 m. The
pressure for each bubble is also different as may be seen in the plots of pressure in Figure 8. In this
figure, we note that the pressure for the left bubble after pinch-off is generally larger than that for
the right bubble.

4 Leaky-mass model

In this section, we consider an extension of the model considered previously in which the mass of
the gas in the bubble is allowed to diffuse into the surrounding glass. The governing equations for
the glass are unchanged in this “leaky-mass” model, but the equations for the bubble are modified
to take into account mass flow into or out of the bubble. The first part of the section describes the
governing equations of the model, while the second part discusses a suggested numerical method
of solution of the equations.

4.1 Governing equations

The first step in the derivation of the extended model is to obtain an equation governing mass
diffusion in the glass surrounding the bubble. Let C(r, z, t) be the mass concentration of gas in the
glass at a radial position r, axial position z and time t. In the vicinity of the bubble r = h(z, t) we
assume that C solves the convection-diffusion equation

(rC)t + (rwC)z + (ruC)r = (DrCr)r, (28)
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Figure 7: Evolution of a non-convex bubble. Left-end positions at (a) 0.4 m, (b) 0.5 m, (c) 0.6 m,
(d) 0.7 m, (e) 0.8 m, (f) 0.9 m, (g) 1.0 m and (h) 1.1 m. Axial distance is given relative to the
left-end positions.
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Figure 8: Bubble pressure for a non-convex bubble shape. The black curve corresponds to the
bubble pressure prior to pinch-off and to the left-most bubble after pinch-off, while the blue curve
corresponds to the pressure of the right-most bubble after pinch-off. Color marks correspond to
bubble shapes given in Figure 7.

where (u,w) is the velocity of the glass and D = D(T ) is the diffusion coefficient (which depends
on the glass temperature). According to Fitt et al. [1], we have

ru = −r
2

2
wz +

1
2µ

(Pq − γ√q) , q = h2.

As before, we consider the change of variables (r, z, t)→ (r̂, x, t̂), where

r̂ = r, x =
∫ z

z0

A(ζ)
A0

dζ, t̂ = t,

so that
∂

∂r
=

∂

∂r̂
,

∂

∂z
=

A

A0

∂

∂x
=
w0

w

∂

∂x
,

∂

∂t
=

∂

∂t̂
.

In terms of the new variables, (28) becomes (without hats)

Ct +
w0

w
(wC)x +

1
r

(ruC)r =
D

r
(rCr)r , (29)

where

ru = −r
2

2
w0

w
wx +

1
2µ

(Pq − γ√q) . (30)

Using (30) in (29) gives

Ct + w0Cx + uCr =
D

r
(rCr)r , u = −r

2
w0

w
wx +

1
2rµ

(Pq − γ√q) . (31)
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For later purposes, it is convenient to consider the change of variables (r, x, t)→ (η, x̂, t̂), where

η =
r

h(x, t)
, x̂ = x, t̂ = t,

so that
∂

∂r
=

1
h

∂

∂η
,

∂

∂x
=

∂

∂x̂
− ηhx

h

∂

∂η
,

∂

∂t
=

∂

∂t̂
− ηht

h

∂

∂η
.

In terms of the new variables, the equations in (31) become (without hats)

Ct + w0Cx − η
(
ht + w0hx

h

)
Cη +

u

h
Cη =

D

ηh2
(ηCη)η , u = −ηh

2
w0

w
wx +

1
2ηhµ

(Pq − γ√q) .

(32)
Recall that y = wq = wh2 so that

ht + w0hx
h

=
qt + w0qx

2q
=
yt + w0yx

2wq
− w0

2w
wx .

Then, using the bubble equation in (19), we have

ht + w0hx
h

=
1

2qµ
(Pq − γ√q)− w0

2w
wx . (33)

So, using (33) the equations in (32) reduce to

Ct + w0Cx −
Pq − γ√q

2µq

(
η − 1

η

)
Cη =

D

ηq
(ηCη)η .

Finally, we can switch to (η, ξ, t), where ξ = x− w0t, to get

Ct −
Pq − γ√q

2µq

(
η − 1

η

)
Cη =

D

ηq
(ηCη)η , η > 1, ξ` < ξ < ξr, t > 0. (34)

The initial condition for the convection-diffusion equation in (34) is

C(η, ξ, 0) = C0, for η > 1 and ξ` < ξ < ξr,

where C0 is an equilibrium concentration of gas in the glass. The boundary conditions are

C(1, ξ, t) = Λρg(ξ, t) = Λ
[

P (t) + Pa
RmT (z(ξ + w0t))

]
, for ξ` < ξ < ξr and t > 0 (35)

where Λ is a saturation constant, and

C = C0, as η →∞ for ξ` < ξ < ξr and t > 0 (36)

Having derived a PDE for the mass concentration of gas along with initial conditions and
boundary conditions, the next step in the description of the extended model is to link the behavior
of C to that of the bubble. The shape of the bubble determined by y(ξ, t) solves (21) as before, but
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the pressure P (t) in the equation is no longer described by the fixed-mass integral in (22). Instead,
the now time-dependent mass of the gas in the bubble is given by

Mg(t) =
π (P (t) + Pa))

w0Rm

∫ ξr

ξ`

y(ξ, t)
T (z(ξ + w0t))

dξ. (37)

The evolution of the mass is determined by the flux of gas into or out of the glass, i.e.

d

dt
Mg(t) = −

∫
Sb

(Jb · nb) dS,

where Sb is the surface area of the bubble, Jb = −D∇C|Sb
is the flux of gas into the glass at the

bubble surface, and nb is the unit outward normal on the surface of the bubble. Assuming that
|hz| � 1, we find

d

dt
Mg(t) = 2πA0

∫ ξr

ξ`

D(T (z(ξ + w0t)))Cη(1, ξ, t)
A(ξ + w0t)

dξ . (38)

The initial condition for (38) is that Mg(0) is given, and then (37) may be applied at t = 0 to
determine P (0). This completes the description of the governing equations for the leaky-mass
model.

4.2 Suggested numerical approach

The governing equations for the leaky-mass model are given by (21), (34), (37) and (38) for the
unknowns y(ξ, t), C(η, ξ, t), P (t) andMg(t). As before, the equations require a known temperature
distribution given by T (z). The equations also require the area A(z) and axial velocity w(z) of the
glass fiber as input, and these two quantities can be determined from a numerical integration of
(17) and (18) as described previously in Section 3.3. The purpose of the present discussion is to
outline a numerical approach which may be used to determine the remaining four quantities of the
model.

The simplest numerical approach would involve an explicit time integration of the equations.
Let us assume that y, C, P and Mg are known at a time t on a uniform grid

ξj = ξ` + j∆ξ, j = 0, 1, . . . , N, ∆ξ = (ξr − ξ`)/N,

and
ηk = 1 + k∆η, k = 0, 1, . . . ,K, ∆η = (η∞ − 1)/K,

where N and K are chosen positive integers and η∞ is taken to be large. Standard centered finite
differences may be used to approximate the η-derivatives in (34) and (38) so that (21), (34) and
(38) become ODEs for y(ξj , t), C(ηk, ξj , t) and Mg(t). An explicit time-integration of these three
equations would give y, C and Mg at a time t + ∆t. The integral equation in (37) could then be
evaluated numerically to obtain P at t + ∆t, which completes the time step. The time-stepping
procedure would begin by applying initial conditions to all four of the variables, and then the time
integration step would be repeated iteratively until a chosen time is reached corresponding to the
time needed for the bubble to travel the axial distance of the drawing tower.
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5 Conclusions

Mathematical models that describe the dynamical behavior of a thin gas bubble embedded in a
glass fiber during a fiber drawing process have been discussed and analyzed. The aim of the analysis
was to address the questions posed by the representative from Corning, which were listed previously
in Section 1. The starting point for the mathematical modeling was the equations presented in [1]
for a glass fiber with a hole undergoing extensional flow. These equations were reconsidered here
with the additional reduction that the hole, i.e. the gas bubble, was thin as compared to the radius
of the fiber and of finite extent. The primary model considered was one in which the mass of the
gas inside the bubble was fixed. This fixed-mass model involved equations for the axial velocity and
fiber radius, and equations for the radius of the bubble and the gas pressure inside the bubble. The
model equations assumed that the temperature of the furnace of the drawing tower was known,
and this input was provided by Corning.

The governing equations of the bubble are hyperbolic and predict that the bubble cannot extend
beyond the limiting characteristics specified by the ends of the initial bubble shape. An analysis
of pinch-off was performed, and it was found that pinch-off can occur, depending the parameters
of the model, due to surface tension when the bubble radius is small. In order to determine the
evolution of a bubble, a numerical method of solution was presented. The method was used to
study the evolution of two different initial bubble shapes, one convex and the other non-convex.
Both initial bubble shapes had fore-aft symmetry, and it was found that the bubbles stretched and
elongated severely during the drawing process. For the convex shape, fore-aft symmetry was lost
in the middle of the drawing process, but the symmetry was re-gained by the end of the drawing
tower. A small amount of pinch-off was observed at each end for this case, so that the final bubble
length was slightly shorter than its theoretical maximum length. For the non-convex initial shape,
pinch-off occurred in the middle of the bubble resulting in two bubbles by the end of the fiber draw.
The two bubbles had different final pressures and did not have fore-aft symmetry. We recognize
that a further numerical investigation is needed to investigate other possible phenomena under
different drawing conditions and with different parameter values.

An extension of the fixed-mass model was considered in which the gas in the bubble was allowed
to diffuse into the surrounding glass. The governing equations for this leaky-mass model were
developed and manipulated into a form suitable for a numerical treatment. A numerical method
of solution was suggested but no numerical solutions were found. This is an aspect of the problem
that may be considered in future work.
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