Modeling *Li*⁺ Ion Battery Electrode Properties

June 20, 2008

Students

Annalinda Arroyo: Rensselaer Polytechnic Institute Thomas Bellsky: Michigan State University Anh Bui: SUNY at Buffalo Haoyan Chi: SUNY at Buffalo Ioana Cipcigan: University of Maryland, Baltimore County Michael Franklin: Claremont Graduate University Luyen Nguyen: University of Delaware Javed Siddiqeu: George Mason University Sumanth Swaminathan: Northwestern University Olga Trichtchenko: McGill University Chen Zhang: SUNY at Buffalo

Contributing Faculty and TIAX Team

Contributing Faculty

Daniel M. Anderson: George Mason University Sean Bohun: Ontario Institute of Technology Chris Breward: University of Oxford, UK Joseph D. Fehribach: Worcester Polytechnic Institute Luis Melara: University of Colorado, Boulder Colin P. Please: Southampton, UK Giles Richardson: Nottingham, UK Bogdan Vernescu: Worcester Polytechnic Institute

TIAX

Jacqueline Ashmore David Clatterbuck

Outline

- 1 Introduction and Motivation
- 2 Mathematical Model
- **3** Computational and Geometric Results
- **4** Conclusion
- **5** References

The Big Picture

The Little Picture

Figure: Cathode schematic. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle = - 2 \circ \langle \Box \rangle$

6/39

The Really Little Picture

Figure: Cathode particles with different geometric properties.

イロト イロト イヨト イヨト 一座

Project Goals

TIAX would benefit from algorithms, methods, models, scaling relations, or frameworks to analyze the effect of different particle characteristics on electrode properties.

Microscale Homogenization Homogenization v.2

Conservation Laws

Conservation of concentrations:

$$\frac{\partial c_1}{\partial t} + \nabla \cdot q_1 = 0$$
$$\frac{\partial c_2}{\partial t} + \nabla \cdot q_2 = 0$$
$$c_1 = c_2$$

where $c_1 = [Li^+]$ and $c_2 = [PF_6^-]$, and the flux is given by:

$$q_1 = -D_1(\nabla c_1 + \frac{F}{RT}c_1\nabla\Phi_e)$$
$$q_2 = -D_2(\nabla c_2 - \frac{F}{RT}c_2\nabla\Phi_e)$$

・ロト・日本・日本・日本・今日・

9/39

Microscale Homogenization Homogenization v.2

Butler-Volmer Kinetics

At the electrolyte/solid interface, reaction rate *R*:

$$R = q_1 \cdot \hat{n}|_{\partial\Omega} = -q_s \cdot \hat{n}|_{\partial\Omega} =$$

$$k_1 c_s \exp\left(\frac{F}{2RT}(\phi_s - \phi_e - u(c_s))\right) - k_2 c \exp\left(-\frac{F}{2RT}(\phi_s - \phi_e - u(c_s))\right)$$

This is the reaction governing the departure of Li^+ ions from the solid into the electrolyte.

Microscale Homogenization Homogenization v.2

Dimensionless Equations

Dimensionless conservation:

$$\frac{\partial \overline{c}}{\partial \overline{t}} + \frac{\alpha}{\lambda} \overline{\nabla} \cdot \left[-\overline{\nabla} \overline{c} - \lambda \overline{c} \overline{\nabla} \phi_e \right] = 0$$
$$\frac{\partial \overline{c}}{\partial \overline{t}} + \frac{D_2 \alpha}{\lambda} \overline{\nabla} \cdot \left[-\overline{\nabla} \overline{c} + \lambda \overline{c} \overline{\nabla} \phi_e \right] = 0$$

where α/λ dimensionless diffusivity of Li^+

$$\lambda = \frac{F\phi_0}{RT} >> 1$$

Dimensionless Butler-Volmer reaction:

$$R = \frac{k_1 \overline{c}_s}{\lambda} \exp\left(\frac{\lambda}{2} (\overline{\phi}_s - \overline{\phi}_e - \overline{u}(\overline{c}_s))\right) - \frac{k_2 \overline{c}}{\lambda} \exp\left(-\frac{\lambda}{2} (\overline{\phi}_s - \overline{\phi}_e - \overline{u}(\overline{c}_s))\right)$$

◆ロト < 畳 > < 直 > < 直 > 三 のQで 11/39

Microscale Homogenization Homogenization v.2

Electrode Equations

*c*_s: Concentration of *Li* in solid electrode particles.

Diffusion equation for c_s coupled to Laplace's equation $\nabla^2 \psi = 0$ for potential in particles.

Various conditions on interface relating

 ψ , c_s in electrode particles, ϕ , c in electrolyte

to reaction rate R.

Microscale Homogenization Homogenization v.2

Model Problem

Microscale Homogenization Homogenization v.2

Nondimensional Equations

$$\begin{split} \chi &\sim O(1), \qquad \Sigma \sim O(1) \\ \lambda &\sim O(100), \qquad \frac{\alpha}{\lambda} = O(1), \qquad \beta = O(1) \end{split}$$

Electrolyte

$$\begin{split} \frac{\partial c}{\partial t} &= \frac{\alpha}{\lambda} \left(\frac{1+D_2}{D_2} \right) \nabla^2 c \\ \nabla (c \nabla \phi) &= -\frac{1}{\lambda} \left(\frac{1-D_2}{1+D_2} \right) \nabla^2 c \end{split}$$

Electrode

$$\frac{\partial c_s}{\partial t} = \beta \nabla^2 c_s$$

$$\nabla^2 \psi = 0$$

Microscale Homogenization Homogenization v.2

Nondimensional Equations

Boundary Conditions

$$c\frac{\partial\phi}{\partial n}|_{\partial\Omega} = -\frac{R}{2}, \qquad \frac{\partial c}{\partial n}|_{\partial\Omega} = -\frac{\lambda R}{2}$$
$$\frac{\partial\psi}{\partial n}|_{\partial\Omega} = \frac{R}{\Sigma}, \qquad \frac{\partial c_s}{\partial n}|_{\partial\Omega} = -\frac{R}{\chi}$$

$$R = \frac{k_1 \overline{c}_s}{\lambda} \exp\left(\frac{\lambda}{2} (\overline{\phi}_s - \overline{\phi}_e - \overline{u}(\overline{c}_s))\right) - \frac{k_2 \overline{c}}{\lambda} \exp\left(-\frac{\lambda}{2} (\overline{\phi}_s - \overline{\phi}_e - \overline{u}(\overline{c}_s))\right)$$

・ロト・日本・日本・日本 田本 のへの

15/39

Microscale Homogenization Homogenization v.2

Expanding in powers of $1/\lambda$

Since $1/\lambda \ll 1$, expand dependent variables as:

$$c(z,t) = c_0(z,t) + \frac{1}{\lambda}c_1(z,t) + \cdots$$
$$c_s(z,t) = c_{s0}(z,t) + \frac{1}{\lambda}c_{s1}(z,t) + \cdots$$
$$\phi(z,t) = \phi_0(t) + \frac{1}{\lambda}\phi_1(z,t) + \cdots$$
$$\Phi(z,t) = \Phi_0(t) + \frac{1}{\lambda}\Phi_1(z,t) + \cdots$$

etc.

◆□ ▶ ◆ □ ▶ ● ■ ▶ ◆ □ ▶ ● ■ ▶ ◆ □ ▶ ↓ ■ ▶ ◆ □ ▶ ↓ ■ ▶ ↓

Microscale Homogenization Homogenization v.2

Qualitative Results

- At O(1) we find Φ_0 determined by Butler-Volman conditions is constant. By proceeding to $O(1/\lambda)$ can find evolution of Φ_1 , the correction to the potential drop across electrode.
- Show timescale analysis would yield evolution of $\Phi_0(t/\lambda)$ over long times as $c_{s0}(t/\lambda)$.

Microscale Homogenization Homogenization v.2

Unsystematically averaged macroscale model

Some wild assumptions

- transport of ions occurs in spaces between spheres (which form a porous medium).
- spheres provide source of ions. Rate given by solving the microscale problem and is proportional to surface area per sphere and number of spheres per control-layer volume

Microscale Homogenization Homogenization v.2

Unsystematically averaged macroscale model

Some wild assumptions

- transport of ions occurs in spaces between spheres (which form a porous medium).
- spheres provide source of ions. Rate given by solving the microscale problem and is proportional to surface area per sphere and number of spheres per control-layer volume

Microscale Homogenization Homogenization v.2

The Model

Notation:

- *C* is the concentration of lithium ions (also counterions) in the electrolyte at a certain height
- Φ is the electric field at a certain height
- C_s is the concentration of lithium atoms at a certain height
- θ is the liquid volume fraction = $1 4/3\pi a^3 N/V$

Microscale Homogenization Homogenization v.2

The Model

Notation:

- *C* is the concentration of lithium ions (also counterions) in the electrolyte at a certain height
- Φ is the electric field at a certain height
- C_s is the concentration of lithium atoms at a certain height
- θ is the liquid volume fraction = $1 4/3\pi a^3 N/V$

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(\lambda_1 \theta \frac{\partial C}{\partial z} \right) + \frac{2\pi a^2 N}{V} R \tag{1}$$

$$\frac{\partial}{\partial z} \left(-\lambda_2 \theta \frac{\partial C}{\partial z} - \lambda_3 \theta C \frac{\partial \Phi}{\partial z} \right) = \frac{4\pi a^2 N}{V} R \tag{2}$$

$$\frac{dC_s}{dt} = -\frac{4\pi a^2 N}{V} R \tag{3}$$

< □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト 三 の Q () 21/39

Microscale Homogenization Homogenization v.2

Initial conditions

$$C_s = C^* H(m_1 - z), \qquad C = C_0,$$
 (4)

Boundary conditions

$$\frac{\partial C}{\partial z} = 0, \qquad \Phi = 0, \qquad \frac{\partial \Phi}{\partial z} = -J \qquad \text{at} \qquad z = 0$$
 (5)

$$\frac{\partial C}{\partial z} = 0, \quad \text{at} \quad z = L$$
 (6)

Microscale Homogenization Homogenization v.2

Numerical Solution of the Model

Microscale Homogenization Homogenization v.2

Flux stuff

Simple model says that

- reaction at surface has Butler-Volmer form
- particles small enough that diffusion ensures that *c*_s is constant in each sphere, i.e. *C*_s is constant at each level (NB not what TIAX wants!).

Microscale Homogenization Homogenization v.2

Flux stuff

Simple model says that

- reaction at surface has Butler-Volmer form
- particles small enough that diffusion ensures that *c*_s is constant in each sphere, i.e. *C*_s is constant at each level (NB not what TIAX wants!).

$$R = k_1 \frac{C_s}{N} e^{\Phi - U(C_s/N)} - k_2 C e^{-(\Phi - U(C_s/N))}$$
cathode (7)

$$R = 0$$
in between (8)

$$R = -k_3 \frac{C_s}{N} e^{\Phi - V(C_s/N)} + k_4 C e^{-(\Phi - V(C_s/N))}$$
anode (9)

Microscale Homogenization Homogenization v.2

Flux stuff

Simple model says that

- reaction at surface has Butler-Volmer form
- particles small enough that diffusion ensures that *c*_s is constant in each sphere, i.e. *C*_s is constant at each level (NB not what TIAX wants!).

$$R = k_1 \frac{C_s}{N} e^{\Phi - U(C_s/N)} - k_2 C e^{-(\Phi - U(C_s/N))} \text{ cathode } (7)$$

$$R = 0 \text{ in between } (8)$$

$$R = -k_3 \frac{C_s}{N} e^{\Phi - V(C_s/N)} + k_4 C e^{-(\Phi - V(C_s/N))} \text{ anode } (9)$$

- Better plan: solve microscale problem and relate what's going on in each sphere to the reaction on the surface
- Can get *c*_s as an infinite sum of exponentials and will (probably) get Abel-esque equation for *c*_s on the surface.

Microscale Homogenization Homogenization v.2

What can we do with model?

- Vary surface area while keeping volume fraction constant.
- Vary volume fraction while keeping surface area constant.
- Consider populations of spheres the surface area will become average surface area and formula for θ will change.

Nondimensional Steady-State Potential Equations

PDE:
$$\begin{cases} \Delta u_{+} = 0 \quad x \in \Omega_{e} \\ \nabla \cdot (\epsilon \nabla u_{s}) = g \quad x \in \Omega_{s} \end{cases}$$

BC:
$$-\partial_n u_+ = \epsilon \,\partial_n u_s = i_0 \sinh(u_s - u_+) \quad x \in \Gamma$$

where

- *u_s* : Li atom potential in the solid particles
- *u*₊: Li ion potential in the electrolyte

•
$$\epsilon := \kappa_s / \kappa_+$$

Microscale Homogenization Homogenization v.2

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

29/39

Bounds on Effective Cathode Conductivity

u: Homogenized Li potential throughout the cathode

•
$$\nabla \cdot (\kappa \nabla u) = \theta_p g \quad \forall x \in \text{Cathode}$$

Microscale Homogenization Homogenization v.2

Bounds on Effective Cathode Conductivity

u: Homogenized Li potential throughout the cathode

•
$$\nabla \cdot (\kappa \nabla u) = \theta_p g \quad \forall x \in \text{Cathode}$$

•
$$1 - \left(\frac{1}{1 - m_0} + \frac{1}{\theta_p c}\right)^{-1} \le \kappa$$

◆ロト
◆日ト
◆日ト
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Microscale Homogenization Homogenization v.2

Bounds on Effective Cathode Conductivity

u: Homogenized Li potential throughout the cathode

•
$$\nabla \cdot (\kappa \nabla u) = \theta_p g \quad \forall x \in \text{Cathode}$$

•
$$1 - \left(\frac{1}{1 - m_0} + \frac{1}{\theta_p c}\right)^{-1} \le \kappa$$

• $\kappa \le \left(\frac{1}{\epsilon} + \frac{\theta_e i_0 + \theta_p \lambda + \frac{2}{3}\epsilon}{i_0 \lambda + \frac{2}{3} \theta_e \lambda \epsilon + \frac{2}{3} \theta_p \epsilon i_0}\right)^{-1}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Kinetic Monte Carlo Method

Model of circular lithium metal oxide particles:

Initial battery setup allows for variable particle size and packing.

32/39

Kinetic Monte Carlo Method

Based on KMC models of Schulze (2002, 2006) and Voter.

- Atoms in the solid hop with rates determined by the number of neighbors.
- Atoms hop out of the solid into electrolyte with specified rate.
- Lithium ions diffuse away in the electrolyte instantaneously.

Volume Fraction Results: Donev, Science 2004

- Ellipsoids with an aspect ratio close to M&M's candies can randomly pack more densely, up to $\phi = 0.68 0.71$.
- According to their experiments, the aspect ratio $\alpha \approx 1.3$ gives the best density $\phi \approx 0.735$ with no significant orientational ordering.
- Higher density related to the larger number of particle contacts required to mechanically stabilize the packing.

Volume Fraction

Conclusion

Made progress on several areas TIAX requested, including:

- 1 Developed thorough microscopic and macroscopic models.
- Scaling relations.
- **3** Various numerical approaches.

Referenc

Thank you

Questions?

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

References

- West, K., Jacobsen, T."Modeling of Porous Insertion Electrodes with Liquid Electrolyte," J. Electrochem. Soc. 129, 1480–1485 (1982).
- Fuller, T., Doyle, M., Newman, J."Simulation and Optimization of the Dual Lithium Ion Insertion Cell," J. Electrochem. Soc. 141, 1–10 (1994).
- Doyle, M., Fuller, T., Newman, J."Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell," J. Electrochem. Soc. **140**, 1526–1533 (1993).
- Ionix"ionixpower.com/lithium-ion-battery.htm," **url:**, (2008).