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The Big Picture
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The Little Picture

Figure: Cathode schematic.
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The Really Little Picture

Figure: Cathode particles with different geometric properties.
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Project Goals

TIAX would benefit from algorithms, methods, models, scaling relations, or
frameworks to analyze the effect of different particle characteristics on
electrode properties.
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Microscale
Homogenization
Homogenization v.2

Conservation Laws

Conservation of concentrations:

∂c1

∂t
+ ∇ · q1 = 0

∂c2

∂t
+ ∇ · q2 = 0

c1 = c2

where c1 = [Li+] and c2 = [PF−6 ], and the flux is given by:

q1 = −D1(∇c1 +
F

RT
c1∇Φe)

q2 = −D2(∇c2 −
F

RT
c2∇Φe)
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Microscale
Homogenization
Homogenization v.2

Butler-Volmer Kinetics

At the electrolyte/solid interface, reaction rate R:

R = q1 · n̂|∂Ω = −qs · n̂|∂Ω =

k1cs exp
( F

2RT
(φs − φe − u(cs))

)
− k2c exp

(
−

F
2RT

(φs − φe − u(cs))
)

This is the reaction governing the departure of Li+ ions from the solid
into the electrolyte.
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Microscale
Homogenization
Homogenization v.2

Dimensionless Equations

Dimensionless conservation:

∂c
∂t
+
α
λ
∇ ·

[
−∇c − λc∇φe

]
= 0

∂c
∂t
+

D2α
λ
∇ ·

[
−∇c + λc∇φe

]
= 0

where α/λ dimensionless diffusivity of Li+

λ =
Fφ0

RT
>> 1

Dimensionless Butler-Volmer reaction:

R =
k1cs

λ
exp

(
λ
2

(φs − φe − u(cs))
)
−

k2c
λ

exp
(
−
λ
2

(φs − φe − u(cs))
)
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Microscale
Homogenization
Homogenization v.2

Electrode Equations

cs: Concentration of Li in solid electrode particles.

Diffusion equation for cs coupled to Laplace’s equation ∇2ψ = 0 for
potential in particles.

Various conditions on interface relating

ψ, cs in electrode particles,
φ, c in electrolyte

to reaction rate R.
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Microscale
Homogenization
Homogenization v.2

Model Problem
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Microscale
Homogenization
Homogenization v.2

Nondimensional Equations

χ ∼ O(1), Σ ∼ O(1)

λ ∼ O(100),
α
λ
= O(1), β = O(1)

Electrolyte

∂c
∂t
=
α
λ

(1 +D2

D2

)
∇

2c

∇(c∇φ) = −
1
λ

(1 −D2

1 +D2

)
∇

2c

Electrode

∂cs

∂t
= β∇2cs

∇
2ψ = 0
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Microscale
Homogenization
Homogenization v.2

Nondimensional Equations

Boundary Conditions

c
∂φ

∂n
|∂Ω = −

R
2
,

∂c
∂n
|∂Ω = −

λR
2

∂ψ

∂n
|∂Ω =

R
Σ
,

∂cs

∂n
|∂Ω = −

R
χ

R =
k1cs

λ
exp

(
λ
2

(φs − φe − u(cs))
)
−

k2c
λ

exp
(
−
λ
2

(φs − φe − u(cs))
)
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Microscale
Homogenization
Homogenization v.2

Expanding in powers of 1/λ

Since 1/λ << 1, expand dependent variables as:

c(z, t) = c0(z, t) +
1
λ

c1(z, t) + · · ·

cs(z, t) = cs0(z, t) +
1
λ

cs1(z, t) + · · ·

φ(z, t) = φ0(t) +
1
λ
φ1(z, t) + · · ·

Φ(z, t) = Φ0(t) +
1
λ
Φ1(z, t) + · · ·

etc.
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Microscale
Homogenization
Homogenization v.2

Qualitative Results

• At O(1) we find Φ0 determined by Butler-Volman conditions is
constant. By proceeding to O(1/λ) can find evolution of Φ1, the
correction to the potential drop across electrode.

• Show timescale analysis would yield evolution of Φ0(t/λ) over
long times as cs0(t/λ).
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Microscale
Homogenization
Homogenization v.2

Unsystematically averaged macroscale model
Some wild assumptions
• transport of ions occurs in spaces between spheres (which form a

porous medium).
• spheres provide source of ions. Rate given by solving the

microscale problem and is proportional to surface area per
sphere and number of spheres per control-layer volume
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Microscale
Homogenization
Homogenization v.2

The Model
Notation:
• C is the concentration of lithium ions (also counterions) in the

electrolyte at a certain height
• Φ is the electric field at a certain height
• Cs is the concentration of lithium atoms at a certain height
• θ is the liquid volume fraction = 1 − 4/3πa3N/V

∂C
∂t
=
∂
∂z

(
λ1θ

∂C
∂z

)
+

2πa2N
V

R (1)

∂
∂z

(
−λ2θ

∂C
∂z
− λ3θC

∂Φ
∂z

)
=

4πa2N
V

R (2)

dCs

dt
= −

4πa2N
V

R (3)
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Microscale
Homogenization
Homogenization v.2

Initial conditions

Cs = C∗H(m1 − z), C = C0, (4)

Boundary conditions

∂C
∂z
= 0, Φ = 0,

∂Φ
∂z
= −J at z = 0 (5)

∂C
∂z
= 0, at z = L (6)
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Microscale
Homogenization
Homogenization v.2

Numerical Solution of the Model
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Microscale
Homogenization
Homogenization v.2

Flux stuff
Simple model says that
• reaction at surface has Butler-Volmer form
• particles small enough that diffusion ensures that cs is constant in

each sphere, i.e. Cs is constant at each level (NB - not what TIAX
wants!).

R = k1
Cs
N eΦ−U(Cs/N)

− k2Ce−(Φ−U(Cs/N)) cathode (7)
R = 0 in between (8)
R = −k3

Cs
N eΦ−V(Cs/N) + k4Ce−(Φ−V(Cs/N)) anode (9)

• Better plan: solve microscale problem and relate what’s going on
in each sphere to the reaction on the surface

• Can get cs as an infinite sum of exponentials and will (probably)
get Abel-esque equation for cs on the surface.
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Microscale
Homogenization
Homogenization v.2

What can we do with model?

• Vary surface area while keeping volume fraction constant.
• Vary volume fraction while keeping surface area constant.
• Consider populations of spheres - the surface area will become

average surface area and formula for θ will change.
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Microscale
Homogenization
Homogenization v.2

Nondimensional Steady-State Potential Equations

PDE :
{

4u+ = 0 x ∈ Ωe
∇ · (ε∇us) = g x ∈ Ωs

BC : −∂nu+ = ε ∂nus = i0 sinh(us − u+) x ∈ Γ

where
• us : Li atom potential in the solid particles
• u+: Li ion potential in the electrolyte
• ε := κs/κ+
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Microscale
Homogenization
Homogenization v.2

Bounds on Effective Cathode Conductivity

u : Homogenized Li potential throughout the cathode

• ∇ · (κ∇u) = θpg ∀ x ∈ Cathode

• 1 −
(

1
1 −m0

+
1
θpc

)−1

≤ κ

• κ ≤

1
ε
+

θei0 + θpλ + 2
3ε

i0λ + 2
3θeλε + 2

3θpεi0

−1
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Kinetic Monte Carlo Method
Model of circular lithium metal oxide particles:

Initial battery setup allows for variable particle size and packing.
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Kinetic Monte Carlo Method

Based on KMC models of Schulze (2002, 2006) and Voter.

• Atoms in the solid hop with rates determined by the number of
neighbors.

• Atoms hop out of the solid into electrolyte with specified rate.
• Lithium ions diffuse away in the electrolyte instantaneously.
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Volume Fraction Results: Donev, Science 2004

• Ellipsoids with an aspect ratio close to M&M’s candies can
randomly pack more densely, up to φ = 0.68 − 0.71.

• According to their experiments, the aspect ratio α ≈ 1.3 gives the
best density φ ≈ 0.735 with no significant orientational ordering.

• Higher density related to the larger number of particle contacts
required to mechanically stabilize the packing.
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Volume Fraction
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Conclusion

Made progress on several areas TIAX requested, including:

1 Developed thorough microscopic and macroscopic models.
2 Scaling relations.
3 Various numerical approaches.
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Thank you

Questions?
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