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Some Motivation from the World of Radar



An Early Radar Tradeoff

Two performance objectives:

I Long detection ranges.

I Good range resolution.

How to get both at the same time?



Detection Range

Consider a simple radar signal:

I Rectangular pulse of width T .

I Constant transmit power P.

Long detection ranges depend on getting as much energy on the
target as possible.

The only option: make T as large as possible.



Range Resolution

Resolution is the minimum distance between two targets for which
a radar sees them as two separate targets.

Range resolution is proportional to the pulse width T .

Range resolution is improved by making T small.



Achieving Resolution and Detection Range

I Long detection range means longer pulses.

I Good resolution requires short pulses.

What if we want both at the same time?

Answer: Pulse compression.



Basics of Pulse Compression and Barker Codes



Pulse Compression

Pulse compression works as follows:

I Divide a radar pulse into N equal-width subpulses.

I Before transmitting, apply a phase shift to each subpulse,
either:

I Zero degrees (that is, multiply subpulse by 1).
I 180 degrees (i.e., multiply subpulse by −1).

I Save the sequence of 1 and −1 factors as N-length “code” x .

I When the radar pulse return is received, apply a Matched
Filter using the same code x .



Illustration of Pulse Encoding



The Binary Code Space

A binary code x is a sequence of elements

x = [x1, x2, . . . , xN ]

where
xi ∈ {−1, 1}

for i = 1, . . . ,N, where N is its length.

Then the code alphabet is

S2 = {−1, 1}

and the code space is

SN
2 = S2 × S2 × . . .× S2

(the Cartesian product of N copies of S2).



Matched Filter Response

For x ∈ SN
2 , The response of the matched filter is the

autocorrelation of x :
ACFx = x ∗ x

where x is the reversal of x and ∗ represents aperiodic convolution.

The autocorrelation is a sequence of length 2N − 1. Element k can
be written in terms of code elements xi as:

ACFx(k) =

N−|k|∑
i=1

xixi+|k|.

for any k , −(N − 1) ≤ k ≤ N − 1.



Example

x = [x1, x2, x3, x4]

= [1, 1,−1, 1]

Then

ACFx(1) = x1 ∗ x2 + x2 ∗ x3 + x3 ∗ x4 = 1− 1− 1 = −1

ACFx(2) = x1 ∗ x3 + x2 ∗ x4 = −1 + 1 = 0

ACFx(3) = x1 ∗ x4 = 1



Properties of the Autocorrelation

I For x ∈ SN
2 , ACFx has length 2N − 1.

I ACFx(0) = N (the “peak”).

I ACFx(k) for 1− N ≤ k ≤ N − 1, k 6= 0, is a “sidelobe”.

I ACFx(k) = ACFx(2N− k) for k = 1− N, . . . ,N − 1 (the
autocorrelation is symmetric).

I The peak sidelobe level (PSLx) is the maximum sidelobe size:

PSLx = max
k6=0
|ACFx(k)|.



The Importance of Low Peak Sidelobe Level

Suppose there are undesired point targets in the vicinity of a target
of interest.

Then:

I Ideally the desired target will experience the peak response.

I The response for the undesired targets should be as low as
possible to avoid declaring false detections.



Autocorrelation of a Length-7 Barker Code
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The Binary Barker Codes

For any binary code x :

I PSLx is a positive integer.

I PSLx ≥ 1.

A binary code x for which PSLx = 1 is a Barker Code.



Operations Preserving Peak Sidelobe Level

There are three operations that preserve peak sidelobe level in
binary codes:

I Reversal: Rx = x .

I Negation: Nx = −x .

I Alternating sign: Px = xA where

A = Diag(1,−1, 1, . . . , (−1)N−1).



The PSL-Preserving Operator Groups

The PSL-preserving operations generate two groups, one for odd
code lengths and one for even code lengths.

For odd code lengths, R, N and P generate an Abelian group
isomorphic to Z2 × Z2 × Z2.

For even code lengths, R, N and P generate a non-Abelian
dihedral-8 group.



Equivalence Classes

For y , x ∈ SN
2 define the relation y ∼ x to mean that y can be

formed from x by some combination of the three PSL preservers.

y ∼ x is easily seen to be an equivalence relation.

SN
2 is partitioned into equivalence classes of size either 8 or 4.

The equivalence class of any odd-length binary Barker code has
size 4 (The peak sidelobe preserver group action on the
odd-Barkers degenerates due to a shared symmetry known of as
Golay’s skew-symmetry).



The Known Binary Barkers

All known binary Barkers are equivalent to the following codes:

I N = 2: [1, 1] and [1,−1].

I N = 3: [1, 1,−1].

I N = 4: [1, 1, 1,−1] and [1, 1,−1, 1].

I N = 5: [1, 1, 1,−1, 1].

I N = 7: [1, 1, 1,−1,−1, 1,−1].

I N = 11: [1, 1, 1,−1,−1,−1, 1,−1,−1, 1,−1].

I N = 13: [1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1].



The Main Problem

There are no Barker codes of odd length greater than 13 (Turyn
and Storer, “On binary sequences”, Proceedings of the AMS,
volume 12 (1961), pages 394-399.):

The existence of even-length Barkers for N > 4 remains open.

Problem 1. Is there a largest N <∞ for which a binary Barker
Code of length N exists?



A Good Resource

An excellent summary of developments on solving Problem 1:

Jedwab, J., “What can be used instead of a Barker sequence?”,
submitted to Contemporary Mathematics.



Key Results for Binary Barker Codes

Theorem. if there exists a binary Barker code of even length
N > 4, then N = 4S2 for some odd integer S ≥ 55 that is not a
prime power. (Turyn, R., “Character sums and difference sets”,
Pacific Journal of Mathematics, volume 15 (1965), pages 319-346.

Theorem. If there exists a Barker sequence of even length N then
N has no prime factor congruent to 3 mod 4. (Eliahou, S.,
Kervaire, M. and Saffari, B., “A new restriction on the lengths of
Golay complementary sequences”, Journal of Combinatorial Theory
(A), volume 55 (1990), pages 49-59).

Theorem. There is no Barker sequence of length N for
13 < N < 1022. (Leung, K., and Schmidt, B., “The field descent
method”, Design, Codes and Cryptography, volume 36, pages
171-188).



An Approach
To get a handle on the proportion of Barker codes in SN

2 for a
given N, one approach that has been tried:

I Assume the code elements are random variables.

I Assume the pairwise products in sidelobe sums are statistically
independent.

I View the sidelobe sums as random walks.

I Assume the sidelobes are statistically independent.

I Find the probability of a Barker Code of length N as the
product of probabilities that all the random walks return to
the interval [−1, 1] in the appropriate number of steps.

The Devil in the details: at lower PSL values, the sidelobe
independence assumption breaks down.

The idea might be made to work if a good model of dependence
can be found and exploited.



Barkers Beyond Binary



Generalized Barker Sequences

Consider generalizing the code alphabet from S2 to

Sm = {exp(i2πk/m) : k = 0 : m − 1}.

for m ≥ 2.

In other words, Sm is the set of the mth roots of unity.

Then
SN

m = Sm × Sm × . . .× Sm

the Cartesian product of N copies of Sm.



Terminology

Codes x ∈ SN
m for m > 2 are referred to using several names, and

the usage is not standardized:

I Generalized Sequence – code elements are mth roots of unity.
(often, N-Phase sequence means the same thing).

I Polyphase Sequences – unit magnitude is assumed, but no
constraint on phase.

I Unimodular Sequences – code elements have unit magnitude.



Autocorrelation Function for Polyphase Sequences

For x ∈ SN
m , m ≥ 2, the autocorrelation of x is :

ACFx = x ∗ x∗

where x∗ is the conjugate reversal of x .

The autocorrelation so defined remains a sequence of length
2N − 1. Element k can be written in terms of code elements xi as:

ACFx(k) =

N−|k|∑
i=1

xix∗i+|k|.

for any k , −(N − 1) ≤ k ≤ N − 1.



Autocorrelation Function for a Length-77 Barker Sequence
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Some Differences With the Binary Case

I Sidelobes may be complex quantities.

I Except for the extreme sidelobes on each side, sidelobes can
have any size between 0 and 1.

I ACFx is Hermitian.

I There are four operations that preserve PSL.



More Terminology

Define:

The set of N-length m − phase Barker sequences:

BN
m = {x ∈ SN

m : PSLx = 1}

The set of N-length Generalized Barker Sequences:

BN =
⋃
m>2

BN
m .

The set of N-length Barker Sequences:

BN
0 =

⋃
m≥2

BN
m .



Generalizing the Problem

Problem 2. Is there a largest N <∞ for which BN
0 is nonempty?

If Problem 2 can be answered in the positive, Problem 1 can be
answered in the positive.



PSL-Preservers for Generalized Barkers
The following four operations preserve PSL for polyphase
sequences:

I Cx = x∗ (Conjugation).

I Rx = x (Reversal).

I Mµx = µx , where |µ| = 1 (Multiplication).

I Pρx = xDiag({ρ0, ρ, ρ2, . . . , ρN−1}) where |ρ| = 1
(Progressive Multiplication).

Note:

I When m is specified, and a mapping from SN
m to SN

m is needed,
then µ and ρ need to be restricted to mth roots of unity.

I When restricting to real codes, the four operations reduce to
the three we saw before.



A Question about Group Structure

Question: For a given m, what is the structure of the associated
PSL-preserver group?

(My TSC lecture “Theory of groups and low-sidelobe phase
coding” (25 June 2007) identifies the structure of groups for odd
lengths N. I do not know if the structure for even N is known.)



Equivalence Classes

For x ∈ SN
m , the equivalence class relative to the four

PSL-preservers has size 4m2.

The four operations again generate a group. But now:

I There are m groups, depending on N mod m.

I The groups are non-Abelian.



Normalized Sequences

Define an equivalance relation similar to that for the binary codes.

Any generalized sequence x is equivalent to one with its first two
elements equal to 1.

The term Normalization will refer to the representation of a
sequence x by its equivalent with first two elements set to 1.



Number of Normalized Generalized Barkers

Borwein and Ferguson, “Barker Sequences”, CMS-MITACS 2007:

N/m 2 3 4 5 6 7 8 9 10 11 12

6 0 0 0 0 1 0 0 0 0 0 1
7 1 1 1 0 7 0 6 6 12 7 64
8 0 0 0 0 9 1 4 5 10 6 72
9 0 2 0 1 18 4 17 37 72 73 367

10 0 0 0 0 11 0 1 2 7 0 99
11 1 0 1 0 7 0 3 1 12 2 92
12 0 0 0 0 3 0 1 0 0 0 9
13 1 0 1 0 9 0 3 0 14 3 156
14 0 0 0 0 1 0 0 0 1 0 9
15 0 0 1 0 1 0 1 0 4 0 47
16 0 0 0 0 0 0 1 0 0 0 7
17 0 0 0 0 0 0 0 0 0 0 7
18 0 0 0 0 1 0 0 0 0 0 1



Patterns in the Number of Generalized Barkers

Let QN(m) represent the number of normalized Generalized
Barkers of length N with m phases.

Then
QN(km) ≥ QN(m)

for k ≥ 1 an integer.

Note also that the length-6 case is special. If the number of phases
is a multiple of 6, there is exactly one normalized Barker.
Otherwise, there are none.



The Quaternary Sequences

For radar engineers, m = 4 (the quaternary sequences) are almost
as useful as the binary codes.

Question: Where do the quaternary sequences end?



Lowest PSL for Quaternary Codes, to Length 24

N Min PSL No. Seqs. N Min PSL No. Seqs

2 1 1 14
√

2 1
3 1 1 15 1 1

4 1 2 16
√

2 5

5 1 1 17
√

2 3

6
√

2 7 18 2 17
7 1 1 19 2 15

8
√

2 14 20 2 6

9
√

2 17 21 2 14

10
√

2 12 22 2 4
11 1 1 23 2 1

12
√

2 9 24 2 1
13 1 1



Barkers – Needed Alphabet Size Tends to Grow with N
Borwein and Ferguson, “Barker Sequences”, CMS-MITACS 2007:

N min(|ACFx|∞) min(m) N min(|ACFx|∞) min(m)

37 .818 48 52 .939 95
38 .820 34 53 .918 70
39 .872 48 54 .823 45
40 .871 40 55 .944 90
41 .842 41 56 .965 150
42 .894 50 57 .897 67
43 .842 42 58 .963 295
45 .898 59 59 .976 280
46 .847 42 60 .951 145
47 .888 51 61 .983 400
48 .885 54 62 .931 100
49 .899 54 63 .965 235
50 .916 76 64 .964 206
51 ..830 42 65 .983 412

(|ACFx|∞ excludes extreme outer sidelobes)



A Conjecture of Ein-Dor et al

Ein-Dor, L., Kanter, I. and Kinzel, W., “Low autocorrelated
multiphase sequences”, Physical Review E, volume 65 (2002):

Conjecture: an m-phase generalized Barker sequence of length N
exists for all m ≥ N and sufficiently large N.

They assume Golay’s “Postulate of Mathematical Ergodicity”
(essentially, statistical independence of sidelobes).



Question: Is there a point where increasing the alphabet size m
fails to deliver the needed marginal benefit as N grows?



Barkers and Littlewood Polynomials
Let f (z) be a Littlewood polynomial of order N − 1 defined as:

f (z) =
N−1∑
j=0

ajz
j

where aj ∈ {1,−1} for j = 0, . . . ,N − 1.

Define the p-norm of f (z) as

||f ||p =

(∫ 1

0
|f (exp(i2πt))|pdt

)1/p

.

A popular measure of sidelobe level is Merit Factor, defined as

MF(ACF) =
N2

2
∑N−1

k=1 |ACF(k)|2
.



Barkers and Littlewood Polynomials, Continued

Borwein and Mossinghoff (ref. 4) show that for sequence
{ACF(k)}, 1 ≤ k ≤ N − 1, the Littlewood polynomial formed
from the sequence must obey:

MF(f) =
||f||42

||f||44 − ||f||42
.

If the coefficients of polynomial f (z) form a Barker sequence of
length N, then

||f ||4 ≤
√

N +
1

4
√

N
.

To show that long Barker sequences do not exist, it suffices to
prove that for all Littlewood polynomials f (z) of a sufficiently large
N,

||f ||4 >
√

N +
1

4
√

N
.



Barker Sequence Spectra

Note that the Fourier transform of the autocorrelation is:

F (ACFx) = F (x ∗ x∗)

= |F (x)|2

Since Barkers approximate unit impulse functions, which have
constant Fourier transform, periodicities in sequence elements are
represented in an optimally equal way.



A Final Thought

There is more than one way to “generalize” sequence elements.

Suppose that one proceeds from code elements represented with
no decimals ({1,−1, i ,−i}) and study the prevalence of Barkers as
the number of decimals is increased.

The problem is still combinatorial, but there is one perhaps
unexpected bit of control: at each step, exactly eight points are
added to the set. (Thanks to Chris Monsour of Travellers Group
for pointing this out to me).



A Last Thought, Continued

The new points come from solving for x and y in:( x

10k

)2
+
( y

10k

)2
= 1.

There is exactly one new solution for each increment in k ,
corresponding to a Pythagorean triangle with sides:

I (n2 −m2)/(n2 + m2).

I (2mn)/(n2 + m2)

where:
±n ±mi = (ie)(1 + 2i)k

and e ∈ {0, 1}.



A Last Thought, Continued

The new points at each step are from two symmetrically-placed
points in each of the four quadrants. Here are the first several
solutions:

k x y

0 0 1
1 0.6 0.8
2 0.28 0.96
3 0.352 0.936
4 0.5376 0.8432
5 0.0758 0.9971

(Note that using this approach, some nice properties such as the
PSL-preserving operations no longer apply.)
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Additional Resources

I Ron Ferguson (Simon Fraser University, Burnaby, British
Columbia)

I Idris Mercer (York University, York, Ontario).
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