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Preface
At the 29th Annual Workshop on Mathematical Problems in Industry (MPI), Leslie

Button of Corning presented a problem concerning microstructure evolution in oxide ce-
ramics. The problem consisted of two parts, both involving phase field models. In par-
ticular, each part addressed the issue of how to maintain the phase variables in the range
[0, 1].

The first problem concerned the analysis of the Cogswell model, which uses an obstacle
potential (infinite barrier) to keep the phase variables in the proper range. The second was
the analysis of the more complicated Heulens model, which introduces secondary variables
into the analysis to keep the phase variables in the proper range.

This manuscript is really a collection of reports from teams in the group working on
one or both aspects of the problem. Here is a brief summary of each:

1. Anderson et al. outline the general problem with discussions of both models and some
asymptotic results for the Cogswell model.

2. Fehribach discusses some subtleties of the infinite barrier, in particular the subderiva-
tive.

3. Zyskin discusses the well-posedness of the Cogswell system (number of conditions
matching number of unknown constants) and gives an algorithm for finding the energy
minimizer.

4. Witelski performs some linear stability analysis for both models.
5. Potter performs a careful derivation of the Cogswell model and performs numerical

simulations for some simple cases.
6. DeCourcy analyzes the Heulens model and looks at some asymptotic limits.
7. Nigro and Rahman use shooting and finite-difference methods to analyze the Cogswell

model.
8. Chen and Wang also use shooting methods to analyze the Cogswell model.
9. Ho and Witelski point out some shortcomings of the published algorithm to solve the

3-phase Cogswell model.
10. Safranek et al. perform numerical simulations of the time-dependent Cogswell and

Heulens models.

In addition to the authors of these reports, the following people participated in the
group discussions:

Chris Breward, Oxford University
Humi Mayer, Worcester Polytechnic Institute
Colin Please, Oxford University
Chandana Wijeratne, St. Cloud State University

Special recognition is due to Nguyenho Ho, Lee Safranek, Brendan DeCourcy, and
Aminur Rahman for contributing to the group’s oral presentations throughout the week.
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Section 1: Governing Equations
When formulating oxide ceramics, one wishes to keep track of the composition and

the phase distribution of the resulting structures. Though not precise definitions, for the
purposes of this manuscript, we consider the composition at position x̃ to be the ensemble
of neutral moieties at x̃. (Here and throughout, variables with tildes have dimensions.) For
instance, such a ceramic may be composed of silicon dioxide (SiO2) and alumina (Al2O3).
We denote the molar fraction of component i by

ci(x̃), i = 1, 2, . . . , N. (1.1)

(Note that we will index components by Roman symbols.) As these are all molar fractions,
we have that

N∑
i=1

ci(x̃) = 1, (1.2)

and hence we need consider only N − 1 independent variables ci for any problem, since cN
can trivially be obtained by (1.2).

We consider the phase distribution at position x to be the ensemble of different phases
at position x. Here phases can represent states of matter (melt, solid) or types of crystalline
structure (quartz and crystalobite for silicon dioxide, for instance). Each phase α is tracked
through an order parameter

φα(x̃), α = 1, 2, . . . ,M ; 0 ≤ φα ≤ 1, (1.3)

which represents the fraction of the ceramic that is in phase α. (Note that we will index
phases by Greek symbols.) For this reason, an equation analogous to (1.2) holds:

M∑
α=1

φα(x̃) = 1, (1.4)

and so similarly we need to consider only M − 1 phase variables.

Therefore, at any position x̃ there are N different values of the compositions and M
different values of the phases. To obtain the molar fraction of composition i in phase
α, we just take the product φαci. However, in a general system there will be MN such
combinations, while the present model has only M + N variables. The paradox can be
explained by noting that since there is a single value of φα for the entire system, this model
implies that each component has the same division between phases. In practice, that is
not true: under certain conditions, silicon dioxide may be much more likely to be in the
crystal form than alumina. Other more complicated models [1] address this discrepancy.
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The equilibrium configuration of the ceramic must minimize the free energy of the
system, which consists of the following parts (for more details, see [2]):

1. A term
M∑
α=1

φαG̃α(~c), ~c = (c1, c2, . . . cN−1) (1.5)

which is the sum of the “bulk” free energy density Gα(~c) of phase α, weighted by the
order parameter φα. Here the tilde indicates that the quantity has units. (Again,
recall that one of the φα and ci may be neglected, as we can use (1.2) and (1.4) to
write them in terms of the other variables.)

2. A term
Ũ(~φ), ~φ = (φ1, φ2, . . . φM−1) (1.6)

which measures the potential associated with the phase.
3. A term

1

2

N−1∑
i=1

N−1∑
j=1

κ̃ij(∇̃ci) · (∇̃cj) (1.7)

which penalizes gradients in the compositions. Here the κ̃ij are the gradient energy
coefficients associated with the compositions, and they form the entries of a positive
definite matrix.

4. A term

1

2

M−1∑
α=1

M−1∑
β=1

λ̃αβ(∇̃φα) · (∇̃φβ) (1.8)

which plays a similar role, but penalizes gradients in the phases. Here the λ̃αβ are the
gradient energy coefficients associated with the phases, and they form the entries of
a positive definite matrix.

Summing each of these terms and integrating over the volume under consideration,
we have that the total free energy is given by

F̃ [~c, ~φ] =

∫
V

M∑
α=1

φαG̃α(~c) + Ũ(~φ) +
1

2

N−1∑
i=1

N−1∑
j=1

κ̃ij(∇̃ci) · (∇̃cj)

+
1

2

M−1∑
α=1

M−1∑
β=1

λ̃ij(∇̃φα) · (∇̃φβ) dV. (1.9)

We specialize to the case of a one-dimensional infinite domain with M = N = 2. Then
(1.9) reduces to

F̃ [c, φ] =

∫ ∞
−∞

F̃

(
c, φ,

dc

dx̃
,
dφ

dx̃

)
dx̃, (1.10a)

F̃

(
c, φ,

dc

dx̃
,
dφ

dx̃

)
= φG̃1(c) + (1− φ)G̃2(c) + Ũ(φ) +

κ̃

2

(
dc

dx̃

)2

+
λ̃

2

(
dφ

dx̃

)2

.

(1.10b)
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The true forms of the G̃α can be quite complicated, but for our purposes they can be
approximated as quadratics:

G̃α(c) = G̃α,0 +
G̃2
α,2(c− c∗α)2

2
, G̃α,2 > 0, (1.11)

where c∗α is the minimum value for the bulk free energy density for phase α. The squared
notation on G̃α,2 is used for two reasons. First, it reminds us that this coefficient should
be positive for a reasonable potential. Moreover, it simplifies the algebra later on.

Typically, away from a thin interface one would normally see the phases in pure form;
hence, U(φ) should have the values φ = 0 and φ = 1 as minima. However, since φ must
be bounded between 0 and 1, one approach is to put an infinite barrier at those values to
keep φ trapped in that range:

Ũ(φ) = W̃U0(φ), U0(φ) =

{
φ(1− φ), 0 ≤ φ ≤ 1,
∞, else,

(1.12)

where the W measures the size of the internal hump in the potential.
Note from (1.11) and (1.12) that the sum of the first three terms in F̃ will be nonzero

as x̃ → ±∞. Therefore, the free energy as defined in (1.10a) will be unbounded. Hence
we redefine the free energy density as an average:

F̃ [c, φ] = lim
L̃→∞

1

2L̃

∫ L̃

−L̃
F̃

(
c, φ,

dc

dx̃
,
dφ

dx̃

)
dx̃. (1.13)

We now scale our problem to introduce dimensionless variables and parameters. We
scale the bulk free energy densities as follows:

Gα(c) =
G̃α(c)− G̃1,0

∆G̃
, ∆G̃ = G̃2,0 − G̃1,0, (1.14)

which produces the functional forms

G1(c) =
G2

1,2(c− c∗1)2

2
, G2

1,2 =
G̃2

1,2

∆G̃
, (1.15a)

G2(c) = 1 +
G2

2,2(c− c∗2)2

2
, G2

2,2 =
G̃2

2,2

∆G̃
. (1.15b)

Motivated by (1.12), we let

U(φ) =
Ũ(φ)

W̃
. (1.16)

For the length scale, we may choose a scale including κ̃, W̃ , or λ̃. We choose the last:

x = x̃

√
∆G̃

κ̃
. (1.17)
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Substituting (1.14), (1.16), and (1.17) into (1.13), we have the following:

F [c, φ] = lim
L→∞

1

2L

∫ L

−L
F (c, φ) dx, (1.18a)

F [c, φ] =
F̃ [c, φ]

∆G̃
, F

(
c, φ,

dc

dx
,
dφ

dx

)
=

1

∆G̃
F̃

(
c, φ,

dc

dx̃
,
dφ

dx̃

)
, L = L̃

√
∆G̃

κ
.

(1.18b)

Then normalizing F̃ , we have

F

(
c, φ,

dc

dx
,
dφ

dx

)
=

1

∆G̃

{
φ[∆G̃G1(c) + G̃1,0] + (1− φ)[∆G̃G2(c) + G̃1,0] + W̃U(φ)

+
κ̃

2

(
∆G̃

κ̃

)(
dc

dx

)2

+
λ̃

2

(
∆G̃

κ̃

)(
dφ

dx

)2
}

= φG1(c) + (1− φ)G2(c) +WU(φ) +
1

2

(
dc

dx

)2

+
λ

2

(
dφ

dx

)2

+
G̃1,0

∆G̃
,

(1.19a)

W =
W̃

∆G̃
, λ =

λ̃

κ̃
. (1.19b)

The last term in (1.19a) represents a shift in the total energy, and will drop out of the
problem once we perform optimization.
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Section 2: The Minimization Problem
We begin by considering a standard calculus of variations problem to minimize F ,

with no boundary conditions given. Hence performing the standard analysis, we obtain

δF
δc

= lim
L→∞

1

2L

∫ L

−L
h
∂F

∂c
+ h′

∂F

∂c′
dx

= lim
L→∞

1

2L

{[
h
∂F

∂c′

]L
−L

+

∫ L

−L
h

[
∂F

∂c
− d

dx

∂F

∂c′

]
dx

}
= 0,

where h is a test function and we use the prime notation for derivatives. This must be
true for all h, so we have

∂F

∂c
− d

dx

∂F

∂c′
= 0

∂F

∂c
− d2c

dx2
= 0 (2.1a)

∂F

∂c′
(±∞) = 0

dc

dx
(±∞) = 0. (2.1b)

Equation (2.1b) requires some further discussion. Note that given the form of F , a suitable
test function can approach a nonzero constant as |x| gets large. Hence ∂F/∂c′ must vanish
as x gets large.

We may consider δF/δφ similarly, but with an appropriate caveat. IF all the deriva-
tives are smooth, to find the minimum we set δF/δφ = 0, yielding

∂F

∂φ
− d

dx

∂F

∂φ′
= 0

∂F

∂φ
− λd

2φ

dx2
= 0 (2.2a)

G1(c)−G2(c) +WU ′(φ)− λd
2φ

dx2
= 0, (2.2b)

∂F

∂φ′
(±∞) = 0

λ
dφ

dx
(±∞) = 0, (2.3)

analogous to (2.1). However, a critical point of the functional also occurs where the
derivative does not exist. For U0(φ), this occurs at φ = 0 and φ = 1, so these are also
critical points that must be tested.
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However, upon adapting the analysis by the paper by Cogswell and Carter [2] to the
case of two compositions, they have that

δF
δc

= µ, (2.4)

where µ is related to a normalized version of the difference of the chemical potentials
corresponding to each composition. At least schematically, this is equivalent to minimizing
F subject to the constraint

lim
L→∞

1

2L

∫ L

−L
c dx = c̄, (2.5)

where c̄ is an average value of c determined at the beginning of the experiment. Minimizing
subject to this constraint is equivalent to minimizing

lim
L→∞

1

2L

∫ L

−L
F − µc dx

and treating µ as a Lagrange multiplier. In this case, µ becomes a parameter that comes
out of the analysis. However, it is unclear whether the derivation in [2], which is related
to the difference in derivatives with respect to c and actual molar values, implies that µ
can be considered to be known a priori.

In the Lagrange multiplier context, (2.1a) is replaced by

∂(F − µc)
∂c

− d2c

dx2
= 0, (2.6a)

φG′1(c) + (1− φ)G′2(c)− d2c

dx2
= µ, (2.6b)

as required by (2.4).
From (2.1b) and (2.3), we have that c and φ must be constant as x→ ±∞, as expected

from our physical intuition. Let

c− = c(−∞), c+ = c(∞), (2.7)

and similarly for φ. An important consideration throughout this report will be whether we
have an appropriate number of conditions to solve the problem. We note that by evaluating
(2.2b) and (2.6b) at x = ±∞, we have the following four conditions:

G1(c−)−G2(c−) +WU ′(φ−) = 0, (2.8a)

G1(c+)−G2(c+) +WU ′(φ+) = 0, (2.8b)

φ−G
′
1(c−) + (1− φ−)G′2(c−) = µ, (2.9a)

φ+G
′
1(c+) + (1− φ+)G′2(c+) = µ. (2.9b)

With the addition of (2.5), we now have five conditions for the five unknowns {c±, φ±, µ}.
In theory, we can then solve for the five unknowns, if U ′(φ) is smooth, which in our case
means that φ+ and φ− are in (0, 1).
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Multiplying (2.2a) by dφ/dx and (2.6a) by dc/dx and adding, we obtain

∂F

∂φ

dφ

dx
− λdφ

dx

d2φ

dx2
+
∂(F − µc)

∂c

dc

dx
− dc

dx

d2c

dx2
= 0

d(F − µc)
dx

− 1

2

d

dx

[
λ

(
dφ

dx

)2

+

(
dc

dx

)2
]

= 0.

Integrating this expression from x = −∞ to x =∞, we have

F (c+, φ+, 0, 0)− µc+ − [F (c−, φ−, 0, 0)− µc−] = 0,

where we have used (2.1b), (2.3), and (2.7). This expression is clearly true for all smooth
x (see the analysis in [3] and §6). Hence if φ+ and φ− are in (0, 1), we obtain the following:

[φ+G1(c+) + (1− φ+)G2(c+) +W (U(φ+))]

− [φ−G1(c−) + (1− φ−)G2(c−) +W (U(φ−))] = µ(c+ − c−). (2.10)

In the experimental systems under consideration, in the bulk the phases will be pure;
hence we take

φ− = 1, φ+ = 0. (2.11)

(Note that the choice of phase is arbitrary, so we could have just as easily taken φ− = 0,
φ+ = 1.) Now we turn our attention to the number of constants. Substituting our choices
of φ± into (2.8) and (2.9), we obtain

G1(c−)−G2(c−) +WU ′(1) = 0, (2.12a)

G1(c+)−G2(c+) +WU ′(0) = 0, (2.12b)

G′1(c−) = µ, (2.13a)

G′2(c+) = µ. (2.13b)

Note that if U ′ is smooth, (2.12) and (2.13) form an overdetermined system. This is
because (2.1b) and (2.3) imply that we are trying to find a heteroclinic orbit in the phase
plane between (c−, 0, φ−, 0) and (c+, 0, φ+, 0). The values of c± and φ± are obtained by
finding the fixed points in the phase plane, not imposed a priori. However, this argument
assumes that U ′ exists at 0 and 1, a property which the original U0 does not have.

How do we resolve the overdetermination in (2.12) and (2.13)? Consider a solution
that approaches 0 given the potential in (1.12). As φ → 0+, U ′(φ) → 1, not zero. Hence
the solution may not have φ′ → 0 as φ→ 0+, since φ = 0 is a steady state due only to the
barrier at φ = 0, which the solution has not yet seen. Hence we expect that the solutions
to the system with U0 may not have φ′ = 0 when φ = 0; in other words, they will have
compact support (see Fig. 2.1). However, note from (2.6b) that c can still continue to
evolve in those regions, so c will not have compact support.
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x

U0

φ

φ

Figure 2.1. Left: U0 with (solid) and without (dotted) barrier. Right: φ with (solid) and
without (dotted) barrier.

Another simple way to see this is through the toy system

dφ

dx
= y, (2.14a)

dy

dx
= U ′0(φ). (2.14b)

A phase plane is shown in Fig. 2.2. Note that for 0 < φ < 1, U ′0(φ) = 1 − 2φ and
the trajectories are portions of closed orbits about (1/2, 0). Since we are minimizing a
functional and hence get x-derivatives, the behavior is exactly the opposite of what we
would expect if we had a potential as in (1.12) in a time-dependent problem, where we
would expect (1/2, 0) to be a saddle.

When the trajectories hit the barriers at φ = 0 and φ = 1, they stop. Hence again we
see that φ′ may not equal 0 when φ goes to 0 or 1, so the solutions have compact support.
(Here the full orbit shown is forbidden.) However, there is one solution (the one that goes
through the origin) that does have φ′ = 0 when φ goes to 0 or 1. This trajectory will prove
to be critically important.

The question is then to determine which of the infinite number of trajectories is stable.
Also, note that in the full problem, the G terms vary with x, which is equivalent to moving
between different trajectories as x→ ±∞. But the basic principle should still hold.

Due to the form of the barrier function, φ can be equal to these extremal values over
various regions; therefore, we define x< and x> as follows:

φ(x) =

{
1, x ≤ x<,
0, x ≥ x>.

(2.15)

Note that x< and x> are unknown constants which will have to be determined in the
analysis. Note that when x > x> or x < x<, the U term in (1.19a) doesn’t vary, and
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φ

y

Figure 2.2. Phase plane for toy system (2.14).

the dφ/dx term is zero. Hence in these regions the functional minimization is done only
over c. We call the region x > x> the right exclusion zone, and the region x < x< the
left exclusion zone, where the terminology reminds us that φ will be excluded from the
analysis in this region.

Therefore, when performing the analysis in the exclusion zones that leads to (2.10),
we can eliminate U from the analysis. The other terms are bounded, and so we have

G2(c+)−G1(c−) = µ(c+ − c−)

G2(c+)−G1(c−)

c+ − c−
= µ. (2.16)

One can also obtain this heuristically by noting that U is even about φ = 1/2, so U(1)
“equals” U(0).

Equations (2.13) and (2.16) define the common tangent constraint, namely that the
far-field values c+ and c− are chosen such that the secant line through G2(c+) and G1(c−)
is tangent to both curves at the point of intersection (see Figure 2.3).



10 Anderson, Edwards, and Raymond

c

G

c+c−

Figure 2.3. Two quadratic potentials (solid) and the common tangent (dotted).
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Section 3: Dividing the Domain

φ = φm
c = cm

φ = 1
c = c< c = c>

dc/dx continuous dc/dx continuous
c continuous c continuous

φm = 1 φm = 0

dφm/dx = 0 dφm/dx = 0

φ = 0

x> x< x

Figure 3.1. Schematic of subdivided diagram and characteristic sketches of φ (solid) and
c (dotted).

Given the existence of the exclusion zones, we provide a schematic of the diagram
above. There are two ways to consider a system with such an exclusion zone. The first
(which we shall pursue here) is to treat the system as a free-boundary problem and derive
(or define) appropriate boundary conditions at x = x< and x = x>. The second is to use
the principle of linear complementarity, as in [4]. A further discussion of linear comple-
mentarity for a moving boundary-value problem (though in the context of the American
option in the Black-Scholes model) can be found in §7.6 of [5].

In the left exclusion zone, the only governing equation is (2.6b) with φ = 1:

G′1(c<)− d2c<
dx2

= µ, x < x<

d2c<
dx2

−G2
1,2(c< − c∗1) = −µ

d2c<
dx2

−G2
1,2c< = −(G2

1,2c
∗
1 + µ)

c<(x) = c∗1 +
µ

G2
1,2

+A< exp(G1,2(x− x<)), x < x<, (3.1a)
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where the subscript < indicates that we are in the left exclusion zone. Note from (3.1a)
that

c− = c∗1 +
µ

G2
1,2

, (3.1b)

and that A< must be determined later.
Similarly, using (2.6b) with φ = 0 gives us the solution in the right exclusion zone:

G′2(c>)− d2c>
dx2

= µ, x > x>,

d2c>
dx2

−G2
2,2c> = −(G2

2,2c
∗
2 + µ)

c>(x) = c+ −A> exp(−G2,2(x− x>)), x > x>, (3.2a)

c+ = c∗2 +
µ

G2
2,2

. (3.2b)

Here we have chosen the minus sign so that A> > 0, as will be shown below.
Now we turn our attention to the mass constraint, rewritten in this context:

lim
L→∞

1

2L

[∫ x<

−L
c<(x) dx+

∫ x>

x<

cm(x) dx+

∫ L

x>

c>(x) dx

]
= c̄, (3.3)

where we denote the solution in the middle by cm. Note that the only terms that will
contribute to the first and third integrals will be the constant terms in (3.1a) and (3.2a).
But in that case the x< and x> terms would drop out, which is unreasonable since we
expect their positions (and hence how much of each composition is in the solution) to
matter.

To resolve the paradox, consider a finite domain of length 2L. For a given value of L,
we would expect particular values of x< and x> to characterize what fraction of the total
mass comes from c<, and what fraction comes from c>. Now double the length of the box.
Then to maintain the same fraction, we would have to double each of x< and x>. This
suggests taking

x< = ξ<L, x> = ξ>L; −1 ≤ ξ< ≤ ξ> ≤ 1, (3.4)

where the ξs are constant. Making these substitution into (3.3), we have

lim
L→∞

1

2L

[∫ ξ<L

−L
c<(x) dx+

∫ ξ>L

ξ<L

cm(x) dx+

∫ L

ξ>

c>(x) dx

]
= c̄

lim
L→∞

1

2L

[∫ ξ<L

−L
c− dx+

∫ ξ>L

ξ<L

cm(x) dx+

∫ L

ξ>L

c+ dx

]
= c̄,

where we have used the fact that only the constant terms in c< and c> will contribute to
the expression once we divide by L and take the limit. Continuing to simplify, we obtain

lim
L→∞

1

2L

[
c−(ξ<L+ L) +

∫ ξ>L

ξ<L

cm(x) dx+ c+(L− ξ>L)

]
= c̄

c−(ξ< + 1) + c+(1− ξ>)

2
+ lim
L→∞

1

2L

∫ ξ>L

ξ<L

cm(x) dx = c̄. (3.5)
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Note that the ξs are related to what fraction of the domain is in a particular phase in
a finite-domain problem, and they retain that character as we take the domain to be an
infinite. Note also that the remaining integral is related to the average of cm over the
domain.

Again, we count up the constants and make sure we have the proper number of
constraints. We have one constant from each of the exclusion zones (A< and A>). We have
two constants from the free boundaries of the exclusion zones (ξ< and ξ>). The Lagrange
multiplier µ is undetermined, and we have two second-order ODEs in the middle region,
which provide four other constants. Hence there are nine constants to be determined.

Equation (2.6b) is smooth, so c and dc/dx must be continuous at x = x< and x = x>,
which yields four conditions. The constraint (3.5) provides another condition. The question
then is the proper boundary conditions on φ.

Given that the energies in the exclusion zones must be minimized, we could pose
a new optimization problem just for x< < x < x>, ignoring how those boundaries are
determined. In that case, we would know nothing about φ on the boundaries a priori, and
hence using the same techinques as in §2, we would have the natural boundary conditions

dφm

dx
(x<) = 0, (3.6a)

dφm

dx
(x>) = 0, (3.6b)

analogous to (2.3). However, consider how the free boundaries x< and x> are defined:
namely, that

φm(x<) = 1, (3.7a)

φm(x>) = 0. (3.7b)

Equations (3.6) and (3.7) provide the remaining four conditions to close the system.
There are several reasons to argue why (3.6) is the proper condition for the deriva-

tive. It appears in Blowey and Elliott [4], but there they explicitly say that they are
looking for solutions that are continuously differentiable, which isn’t immediately obvious
by integrating (2.2b) across the jump, given the unusual nature of the singularity in U ′(φ).

There may be another way to impose that condition, as in the Black-Scholes analysis
(principle of no arbitrage), or from the principle of linear complementarity.
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Section 4: Large W Asymptotics
The system is substantially more complicated in (x<, x>), since both (2.2b) and (2.6b)

must be solved. Therefore, we begin by considering the case where W →∞. In this section
we track only the leading-order terms, so we don’t write our dependent variables in formal
perturbation series.

Taking W →∞, (2.2b) becomes, to leading order,

U ′0(φm) = 1− 2φm = 0

φm =
1

2
, x< < x < x<. (4.1)

The solution for φm has a discontinuity at x = x> which we will resolve with the use of a
boundary layer. Inserting the boundary layer, we let

X = W 1/2(x− x>), Φ(X) = φm(x). (4.2)

Note that this definition is equivalent to taking the characteristic length scale to be that
associated with W̃ instead of the one in (1.17). This makes sense, because the original
length scale in (1.17) is associated with κ̃, which characterizes variations in c. In contrast,
W̃ is associated with the potential for φm. Assuming that W →∞ is equivalent to saying
the two processes occur on distinct length scales, and hence the equations decouple.

Substituting (4.2) into (2.2b), we obtain, to leading order,

G1(cm)−G2(cm) +W (1− 2Φ)−Wλ
d2Φ

dX2
= 0, (4.3a)

λ
d2Φ

dX2
+ 2Φ = 1

Φ(X) =
1

2
+Bs sinX

√
2

λ
+Bc cosX

√
2

λ
. (4.3b)

But the solutions to the above equation oscillate, which cannot satisfy the matching con-
dition

Φ(X = −∞) = φm(x = x−>) =
1

2
.

These oscillations reflect the fact that φm = 1/2 is an unstable steady state due to the
form of the potential.

Hence we must conclude that there is no O(1) region (x<, x>) where (4.1) holds.
Therefore x< = x>, and we call the point xb. Hence we must insert an interior layer to
smooth the jump in φ between 0 and 1.

We begin by continuing with the outer solution for c. Note that because the scales
separate, φ totally drops out of the system on this time scale. Instead, we have two
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solutions c< and c> which hold on two sides of some value x = xb. It might seem that xb

is arbitrary by translation invariance, but that is not correct.
First, we note from (2.6b) that only the second derivative of c jumps when φ jumps.

Hence both c and dc/dx will be continuous at x = xb. Therefore, using (3.1a) and (3.2a),
we obtain

dc

dx
(xb) = G1,2A< = G2,2A>.

So we let A< = G2,2A, A> = G1,2A for some unknown constant A. Then we have

c(xb) = c− +G2,2A = c+ −G1,2A

A(G2,2 +G1,2) = c+ − c−

c<(x) = c− +
G2,2(c+ − c−)

G2,2 +G1,2
exp(G1,2(x− xb)), (4.4a)

c>(x) = c+ −
G1,2(c+ − c−)

G2,2 +G1,2
exp(−G2,2(x− xb)). (4.4b)

To find the value of ξb, we use the fact that the middle region is negligible in (3.5) to find

c−(ξb + 1) + c+(1− ξb)

2
= c̄, (4.5)

which is the same as the bulk phase system. Equation (4.5) is called the lever rule.
Note that ξb is then directly related to the fraction of the ceramic in each phase.

ξb = −1 corresponds to all c<, as expected. Similarly, all c> corresponds to ξb = 1, and if
c+ = c−, then c+ = c− = c̄.

We now consider the solution in the boundary layer. For the reasons discussed in
§3, we expect that Φ(X) will have compact support. Since the X problem is invariant
under translation, we expect that Φ(X) will vary only in (−Xb, Xb), where Xb is as yet
undetermined. In particular we have that the analog to (3.6) and (3.7) holds:

dΦ

dX
(−Xb) = 0, (4.6a)

dΦ

dX
(Xb) = 0, (4.6b)

Φ(−Xb) = 1, (4.7a)

Φ(Xb) = 0. (4.7b)

Equation (4.3a) holds no matter the value of x>, so (4.3b) still holds. Given that Φ
is continuous at X = ±Xb, (4.6) and (4.7) provide the boundary conditions on Φ needed
to find the constants B. In particular, satisfying (4.7), we have

Φ(X) =
1

2

(
1−

sinX
√

2/λ

sinXb

√
2/λ

)
, |X| < Xb. (4.8)
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Note from (4.8) that Φ(X) is odd about X = 0, Φ = 1/2, so the equations in (4.6) are
redundant. Hence we need satisfy only (4.6b), yielding

−
√

2

λ
cotXb

√
2

λ
= 0,

Xb = π(n+ 1/2)

√
λ

2
, n ≥ 0, (4.9)

as shown in Fig. 4.1.

X

Φ

Figure 4.1. Graph of Φ(X) vs. X with λ = 1 and n = 0 (solid, acceptable case), and n = 1
(dotted, showing unphysical oscillation).

Note that the acceptable case has n = 0, since once the solution hits φ = 0 or φ = 1,
it must stop there. Hence we have that

Xb =
π

2

√
λ

2
(4.10a)

Φ(X) =
1

2

(
1− sinX

√
2

λ

)
, |X| < π

2

√
λ

2
. (4.10b)



Asymptotics and Literature Discussion 17

Section 5: Large G Asymptotics
Another asymptotic case of interest is when G2

2,2 → ∞. This corresponds to one
component whose surface energy has high curvature, so it takes a lot of energy to displace
c from c∗2.

In this limit, our solution process in the exclusion zone is the same. Hence c< is still
given by (3.1a), while c> is given by (3.2a) in the limit of large G2,2:

c>(x) = c+ = c∗2, x > x>, (5.1)

as one could expect physically from the high-curvature argument.
In the middle region, (2.6b) becomes

φmG
′
1(cm) + (1− φm)G2

2,2(cm − c∗2)− d2cm
dx2

= µ, (5.2)

where we have used (1.15b). The leading order of this equation for large G2,2 is

cm = c∗2. (5.3)

Hence cm(x<) = c∗2, and continuity of composition gives us

c<(x<) = c− +A< = c∗2,

c<(x) = c− + (c∗2 − c−) exp(G1,2(x− x<)). (5.4)

Moreover, substituting (5.1) and (5.3) into (3.5), we have

c−(ξ< + 1) + c∗2(1− ξ>)

2
+ lim
L→∞

1

2L

∫ ξ>L

ξ<L

c∗2 dx = c̄

c−(ξ< + 1) + c∗2(1− ξ>)

2
+
c∗2(ξ> − ξ<)

2
dx = c̄

c−(ξ< + 1) + c∗2(1− ξ<)

2
= c̄, (5.5)

which is (4.5) with ξb replaced by ξ< and c+ replaced by c∗2.
We note that we cannot satisfy the derivative condition at x = x<, since the derivative

on the right is zero, which cannot match to the exponential on the left. Therefore, we will
need a corner layer near x = x<. Why does this happen? Note that as x→ x<, φm → 1−.
Hence the (1 − φm) term in (5.2) becomes small enough that it balances the G2

2,2 term,
allowing cm to move away from c∗2.

Before inserting the corner layer, we examine the behavior of φm. Substituting (5.3)
into (2.2b), we obtain the following:

G1(c∗2)−G2(c∗2) +W (1− 2φm)− λd
2φ

dx2
= 0,

λ
d2φm

dx2
+ 2Wφm = W −G1(c∗2) + 1, (5.6a)
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where we have used (1.15). Solving (5.6a), we have

φm(x) =
1 +A∗

2
+Bs sinx

√
2W

λ
+Bc cosx

√
2W

λ
, A∗ =

G1(c∗2)− 1

W
, (5.6b)

analogous to (4.3b). Note that the solution will oscillate about the constant term; hence
we require that

0 ≤ 1 +A∗
2

≤ 1

|A∗| ≤ 1. (5.7)

The physical significance of this bound isn’t completely clear, though we were told that W̃
should be larger than ∆G̃. We should also note that this bound comes from the Dirichlet
conditions only; another bound comes from the flux conditions below.

In order to strengthen the analogy with the work in the previous section, we define
the following quantities:

x̄ =
x< + x>

2
, ∆x =

x> − x<
2

, xm = x− x̄. (5.8)

Then our solution may be written as

φm(xm) =
1 +A∗

2
+Bs sinxm

√
2W

λ
+Bc cosxm

√
2W

λ
, (5.9)

where we have redefined the constants in (5.6b). Moreover, the interval becomes −∆x ≤
xm ≤ ∆x. Hence we may solve as in §4 with X replaced by xm and Xb replaced by ∆x.
Thus we have

φm =
1

2

(
1−

sinxm

√
2W/λ

sin ∆x
√

2W/λ

)
+
A∗
2

(
1−

cosxm

√
2W/λ

cos ∆x
√

2W/λ

)
, |xm| < ∆x, (5.10)

which satisfies (3.7).
In §4, the forcing constant was 1/2, the mean of the matching values for φ, and hence

we were able to satisfy both derivative conditions simultaneously. Here we can satisfy only
one of the conditions. Since we already expect a corner layer about x = x<, we choose to
satisfy the condition at x = x> (xm = ∆x) instead, yielding

dφm

dxm
(∆x) = −1

2

√
2W

λ
cot

(
∆x

√
2W

λ

)
+
A∗
2

√
2W

λ
tan

(
∆x

√
2W

λ

)
= 0,

(5.11a)

cot2

(
∆x

√
2W

λ

)
= A∗. (5.11b)
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Therefore, in order to satisfy the condition at xm = ∆x, we must have that

0 ≤ A∗ ≤ 1. (5.12)

Note that A∗ > 0 corresponds to the case shown in Fig. 2.3. (Otherwise, c1 always has a
lower energy.) If (5.12) is satisfied, then ∆x is defined by (5.11b) and the outer solutions
are complete.

There still remains a problematic issue. To wit, recall from our previous definitions
in (3.4) that

∆x =
x> − x<

2
=
L(ξ> − ξ<)

2
,

where ξ> and ξ< are O(1) constants. Before we were able to deal with this issue by taking
limits, but there are no corresponding limits for the φ equation. Hence with a finite ∆x,
it seems as if we are driving ξ< and ξ> together again, making a sharp interface.

The solution may be to choose the ratio of bulk phases to be the same as L → ∞.
This allows the two bulk phases to become infinitely large in the same proportion, while
allowing the interface width to be finite.

These computations are enough to determine our solutions except for a small corner
layer near x = x<, i.e., enough to determine the solution on a macroscopic scale. For
mathematical completeness, we write down the equations in the corner layer. We let

X = GA2,2(x− x<), X > 0; φm(xm) = 1−G−A2,2 Φ(X), cm(xm) = c∗2 +G−A2,2 C(X),
(5.13)

where A is a constant that has to be chosen the same in each expression in order to make
the derivatives match. Note that X = 0 corresponds to x = x<, or xm = −∆.

Hence for the boundary conditions, we see that at X = 0, the derivative of Φ must
vanish:

− dΦ

dX
(0) = 0, (5.14a)

while as X →∞, the derivative of C must vanish:

dC

dX
(∞) =

dcm
dxm

(−∆x) = 0. (5.14b)

Similarly, at X = 0, the derivative of C must match:

dC

dX
(0) =

dc<
dx

(x<) = G1,2(c∗2 − c−), (5.15)

where we have used (5.4). As X →∞, the derivative of Φ must match:

− dΦ

dX
(∞) =

dφm

dxm
(−∆x)

= −1

2

√
2W

λ
cot

(
∆x

√
2W

λ

)
− A∗

2

√
2W

λ
tan

(
∆x

√
2W

λ

)
(5.16a)

dΦ

dX
(∞) =

1

2

√
2W

λ

√
A∗ +

A∗
2

√
2W

λ

1√
A∗

=

√
2WA∗
λ

, (5.16b)
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where we have used (5.10) and (5.11b).
Substituting (5.13) into (2.6b), we have, to leading order,

G′1(c∗2) +G−A2,2 ΦG2
2,2(G−A2,2 C)−GA2,2

d2C

dX2
= µ,

which implies that A = 2/3 and the leading order is given by

ΦC − d2C

dX2
= 0. (5.17)

Substituting (5.13) with A = 2/3 into (2.2b), we obtain

G1(c∗2)−

[
1−

G2
2,2(G

−2/3
2,2 C)2

2

]
+W [1− 2(1)]− λG2/3

2,2

d2Φ

dX2
= 0

C2

2
− λ d

2Φ

dX2
= 0. (5.18)

Equations (5.17) and (5.18) form a nonlinear system which can be solved numerically for
the solutions in the boundary layer.
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Section 6: Literature Review
Notes on Wheeler, Boettinger & McFadden, Phys Rev. E 1993

Another view of the two phase binary alloy problem follows from the work of Wheeler,
Boettinger & McFadden [3, 6]. In [3] a free energy functional of the form (given here in
one dimension for simplicity)

F [φ, c] =

∫ +∞

−∞

[
f(φ, c) +

1

2
κ̃

(
dc

dx

)2

+
1

2
λ̃

(
dφ

dx

)2
]
dx

is considered. The specific form of the bulk energy term f(φ, c) must be specified and will
be discussed later. In their earlier work, Wheeler et al. [6], proposed a similar free energy
functional that did not include the gradient energy term in composition c (i.e. κ̃ = 0).
They argued in [3] that inclusion of the gradient energy in composition is appropriate,
especially for the case of rapid solidification where the length scale of the solute boundary
layers at a moving interface may approach atomic dimensions.

In [3] the authors examine a stationary interface scenario in which bulk phases with
φ→ 0 and c→ c∞ (x→∞) and φ→ 1 and c→ c−∞ (x→ −∞) with the compositional
values c∞ and c−∞ to be determined. (Hence c±∞ in [3] correspond to our earlier c±.)

As outlined in §3, equilibrium conditions for the above system can be identified
via standard calculus of variations techniques. Minimization with respect to φ leads to
δF/δφ = 0 so that

∂f

∂φ
− λ̃d

2φ

dx2
= 0. (6.1)

Minimization with respect to c, keeping in mind that the total concentration is a conserved
quantity gives δF/δc = A, where A is a constant Lagrange multiplier whose value is to be
determined. (Hence A in [3] correspond to our earlier µ.) This condition gives

∂f

∂c
− κ̃ d

2c

dx2
= A. (6.2)

An underlying conserved quantity can be identified by multiplying equation (6.1) by dφ/dx,
equation (6.2) by dc/dx and adding the two results. This leads to

d

dx

[
f(φ, c)− cA− 1

2
λ̃

(
dφ

dx

)2

− 1

2
κ̃

(
dc

dx

)2
]

= 0,

which reveals the conserved quantity

Ac− f(φ, c) +
1

2
λ̃

(
dφ

dx

)2

+
1

2
κ̃

(
dc

dx

)2

= H, (6.3)
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where H is a constant.
In [3] the authors then examine these results in the far-field limit where they expect

dφ/dx and dc/dx vanish. From equation (6.3) it follows that

Ac−∞ − f(1, c−∞) = Ac∞ − f(0, c∞). (6.4)

Additionally, from equations (6.1) and (6.2) the far-field conditions imply

∂f

∂φ
(0, c∞) = 0, (6.5)

∂f

∂φ
(1, c−∞) = 0, (6.6)

∂f

∂c
(0, c∞) = A, (6.7)

∂f

∂c
(1, c−∞) = A. (6.8)

Equations (6.4), (6.7) and (6.8) can be used to determine A, c∞ and c−∞. These three
conditions can be expressed as

A =
∂f

∂c
(0, c∞) =

∂f

∂c
(1, c−∞) =

f(0, c∞)− f(1, c−∞)

c∞ − c−∞
,

which is the common tangent construction that generalizes (2.13) and (2.16). The re-
maining two equations (6.5) and (6.6) remain to be satisfied. In [3] the form of f(φ, c)
was chosen in such a way that these two conditions were satisfied automatically. Their
particular choice for f(φ, c), which we do not outline here, is difficult to generalize to the
case of multiple phases and multiple species.

Notes on Heulens et al., 2011

One way to address the difficulties in generalizing a model such as the one outlined
above to multiphase/multispecies scenarios is to take the approach used by Heulens et al.
[1]. Here a set of phase field variables for the M phases are introduced:

η1, η2, . . . , ηM .

The local phase fractions are defined in terms of these phase field variables using

φα =
η2
α∑M

α=1 η
2
α

.

Notice that, by definition, we have that

M∑
α=1

φα = 1,



Asymptotics and Literature Discussion 23

but that the same property does not necessarily hold for the ηα variables. A free energy
functional could then be defined in terms of the phase field variables ηα and a set of
compositional variables (e.g., mole fractions) ci for the N species of interest.

For the present discussion we shall simplify to the scenario with a two-phase binary
system. We introduce a free energy functional of the form

F [η1, η2, c] =

∫ ∞
−∞

[
f(η1, η2, c) +

1

2
κ̃

(
dc

dx

)2

+
1

2
λ̃1

(
dη1

dx

)2

+
1

2
λ̃2

(
dη2

dx

)2
]
dx,

where the function f(η1, η2, c) will be specified below. Following Heulens et al. [1] we
suppose

f(η1, η2, c) = φ1f1(c) + φ2f2(c) + U(η1, η2), (6.9)

where

U(η1, η2) =

(
η4

1

4
− η2

1

2

)
+

(
η4

2

4
− η2

2

2

)
+ γη2

1η
2
2 +

1

4
.

This function has minima when (η1, η2) = (0, 1) and (1, 0). Note that

φ1 =
η2

1

η2
1 + η2

2

, φ2 =
η2

2

η2
1 + η2

2

.

Minimizing as before but now noting that there are three variables η1, η2 and c we
find the following. Minimizing with respect to η1 leads to δF/δη1 = 0 so that

∂f

∂η1
− λ̃1

d2η1

dx2
= 0. (6.10)

Minimizing with respect to η2 leads to δF/δη2 = 0 so that

∂f

∂η2
− λ̃2

d2η2

dx2
= 0. (6.11)

Minimizing with respect to c, keeping in mind the conservation of total species, leads to
δF/δc = A so that

∂f

∂c
− κ̃ d

2c

dx2
= A. (6.12)

In a similar manner to the previous section we can identify the conserved quantity

H = f − cA− 1

2
κ̃

(
dc

dx

)2

− 1

2
λ̃1

(
dη1

dx

)2

− 1

2
λ̃2

(
dη2

dx

)2

.

We now examine the far-field conditions where we expect c → c−∞, φ1 → 1 [along
with (η1, η2) → (1, 0)] as x → −∞ and c → c∞, φ1 → 0 [along with (η1, η2) → (0, 1)] as
x→∞. First, from the conservation of H we find

f(1, 0, c−∞)− c−∞A = f(0, 1, c∞)− c∞A. (6.13)
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From the η1 equation (6.10)

∂f

∂η1
(1, 0, c−∞) = 0, (6.14)

∂f

∂η1
(0, 1, c∞) = 0. (6.15)

From the η2 equation (6.11)

∂f

∂η2
(1, 0, c−∞) = 0, (6.16)

∂f

∂η2
(0, 1, c∞) = 0. (6.17)

From the c equation (6.12)

∂f

∂c
(1, 0, c−∞) = A, (6.18)

∂f

∂c
(0, 1, c∞) = A. (6.19)

We find that equations (6.14)–(6.17) are automatically satisfied by the choice of f(η1, η2, c)
shown above in equation (6.9). The remaining equations (6.13), (6.18) and (6.19) can be
combined to obtain the required conditions

A =
∂f

∂c
(0, 1, c∞) =

∂f

∂c
(1, 0, c−∞) =

f(0, 1, c∞)− f(1, 0, c−∞)

c∞ − c−∞
,

which again can be recognized as the common tangent construction.
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Section 7: Notes on Computing the
Functional Derivative for the

Quasi-equilibrium Model: Ternary Case
Here we examine the free energy for the Heulens et al. [1] for M phases and N

components. For brevity and for the purposes of interest here we write this as

F =

∫ +∞

−∞

 M∑
α=1

φαGα(~cα(~c, ~φ)) +
M∑

α,β=1

λα,β∇ηα · ∇ηβ + U(ηα)

 dx,
where φα represent the phase fractions for α = 1, . . . ,M and ~cα = [c1α, . . . , c

N−1
α ] are

compositions specifically associated with phase α and ~c = [c1, . . . , cN−1] are the total
concentrations at a given point in space and time. For the particular calculation under
consideration here the gradient energy terms will not play a role, nor will the potential
U(ηα). Note that the quantity ~c is related to the φα and ~cα terms by

~c =

M∑
α=1

φα~cα. (7.1)

In the quasi-equilbrium state we determine each cα by minimizing

M∑
α=1

φαGα(~cα)

over the ~cα subject to the constraint (7.1). Introducing Lagrange multipliers Λj for j =
1, ..., N − 1 leads to the following linear system for the M ×N unknowns cjα and Λj :

cj =

M∑
α=1

φαc
j
α, for j = 1, .., N − 1, (7.2)

0 = −φα
∂Gα

∂cjα
+ φαΛj , for j = 1, ..., N − 1 and α = 1, ...,M. (7.3)

We comment that the −φα could be factored out but is left in place to give rise to a
symmetric matrix in a later stage of the calculation.

Here we think about the ternary case with three phases so that ~φ = (φA, φB , φC),
~c = (c1, c2) and ~cα = (c1α, c

2
α) for α = A,B,C. For a formal derivation of governing
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equations, the particular aspect of that calculation of interest here is examining variations
of F with respect to cj :

φA

[
∂GA
∂c1A

∂c1A
∂cj

+
∂GA
∂c2A

∂c2A
∂cj

]
+ φB

[
∂GB
∂c1B

∂c1B
∂cj

+
∂GB
∂c2B

∂c2B
∂cj

]
+ φC

[
∂GC
∂c1C

∂c1C
∂cj

+
∂GC
∂c2C

∂c2C
∂cj

]
,

for j = 1, 2. There are twelve derivatives ∂ciα/∂cj to be determined. A linear system can
be obtained by differentiating the equations (7.2) and (7.3) that determine ~cα with respect

to c1 and c2. Doing so leads to a 16 × 16 symmetric linear system of the form M~x = ~b
where

M =


MA 0 0 ΦA

0 MB 0 ΦB
0 0 MC ΦC

ΦA ΦB ΦC 0

 ,

Mα = −φα


∂2Gα
∂c1α

2 0 ∂2Gα
∂c1α∂c

2
α

0

0 ∂2Gα
∂c1α

2 0 ∂2Gα
∂c1α∂c

2
α

∂2Gα
∂c1α∂c

2
α

0 ∂2Gα
∂c2α

2 0

0 ∂2Gα
∂c1α∂c

2
α

0 ∂2Gα
∂c2α

2

 ,
and

Φα =


φα 0 0 0
0 φα 0 0
0 0 φα 0
0 0 0 φα


for α = A,B,C. The vector ~x has the form

~x =


~xA
~xB
~xC
~xΛ

 ,
where

~xα =


∂c1α
∂c1
∂c1α
∂c2
∂c2α
∂c1
∂c2α
∂c2


for α = A,B,C and

~xΛ =


∂Λ1

∂c1
∂Λ1

∂c2
∂Λ2

∂c1
∂Λ2

∂c2

 .
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Finally, ~b is the zero vector everywhere except in the last 4× 1 block which takes the form
1
0
0
1

 .
It appears that at least some progress can be made analytically towards a solution of the
problem Mx = b under the conditions that

∂2Gα
(∂c1α)2

∂2Gα
(∂c1α)2

−
(
∂2Gα
∂c1α∂c

2
α

)2

6= 0,

for α = A,B,C. This would allow the block matrices Mα to be inverted.
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Section 8: Further Discussion of U
As we have seen, the discontinuity in (1.12) causes analytical problems, since we would

like U to be as differentiable as possible. Therefore, we may wish to consider U0(φ) as the
limit of a smooth function, such as these alternatives:

Uε(φ) = φ(1− φ) +
ε

φ(1− φ)
, (8.1a)

Uε(φ) = φ(1− φ)− log(φ(1− φ)/ε), (8.1b)

Uε(φ) = φ(1− φ) + exp

(
ε

φ(1− φ)

)
. (8.1c)

Graphs of some of these approximations are shown below. Note that all the functional
forms are even about φ = 1/2, which we would expect given the definition of the order
parameter.

φ

Uε Uε

Figure 8.1. Left: (8.1a) with ε = 10−3. Right: (8.1c) with ε = 10−3.

However, further investigation suggests that these regularized forms would simply
smooth φ near 0 and 1, rather than fundamentally change the behavior.

The overdetermined nature of the system (2.12) and (2.13) may be why U0 was defined
as sharp as it was. Consider a simpler case, where U is just given by the quartic U =
φ2(1− φ)2, as shown in Fig. 8.2. Here 0 and 1 are the local minima of the potential, and
hence the fixed points. Note that the G terms in (2.2b) essentially perturb the potential,
which in most cases would shift the minima. As a toy problem, let’s perturb the potential
in Fig. 8.2 by a small linear potential, as shown in Fig. 8.3.
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φ

U

Figure 8.2. Unperturbed quartic potential.

Note that the minima have shifted, and in particular the second minimum is negative.
This is unphysical, and hence must be suppressed by the choice of U .

Now let’s look at the same situation with the potential given by U0 in (1.12), as
shown in Fig. 8.3. Note that even though the value of the second minimum has changed,
the position has not. This will be true for any perturbation, given the infinite barrier,
which is unchangeably high and pins any minima at φ = 0 and 1.



30 Anderson, Edwards, and Raymond

φ

U

Figure 8.3. Quartic potential perturbed by 0.01φ with larger minimum marked.
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φ

U

Figure 8.3. U0(φ) in (1.12) perturbed by 0.01φ.
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Nomenclature

Units are listed in terms of mass (M), moles (N), length (L), and time (T ). If a
symbol appears both with and without tildes, the symbol with tildes has units, while the
one without is dimensionless. Equation numbers where a variable is first defined is listed,
if appropriate.

A: arbitrary constant, variously defined.
B: arbitrary constant, variously defined.
~b: vector in the Heulens model.

C(·): corner-layer variable (5.13).
c(x̃): composition fraction at position x̃ (1.1).

F̃ [~c, ~φ]: free energy, units ML2/T 2 (1.9).
F̃ : free energy density, units ML/T 2 (1.10b).
f : free energy density in literature review section.

G̃α(~c): “bulk” free energy density of phase α, units ML/T 2 (1.5).
H: conserved constant (6.3).
h: test function for variational problem.
i: integer used to index composition (1.1).
j: integer used to index composition (1.7).
L̃: dummy length used to normalize F , units L (1.13).
M : number of phases (1.3) or matrix in the Heulens model.
N : number of compositions (1.1).

Ũ(~φ): phase potential, units ML/T 2 (1.6).
V : arbitrary volume (1.9).
W̃ : constant characterizing the potential, units ML/T 2 (1.12).
X: boundary-layer variable, variously defined (4.2).
x̃: distance along ceramic, units L (1.1).
~x: vector in the Heulens model.
y: phase plane variable, variously defined (2.14).
α: integer used to index composition (1.3).
β: integer used to index composition (1.8).

∆G̃: difference between energy minima of phases (1.14).
∆x: width of transtion region (5.8).
η: phase field variable in Heulens [1].
κ̃: gradient energy coefficient associated with the compositions, units ML3/T 2 (1.7).
Λ: Lagrange multiplier in Heulens model.
λ̃: gradient energy coefficient associated with the phases, units ML3/T 2 (1.8).
µ: variable related to the chemical potential (2.4).
ξ: scaling factor for subdomains (3.4).
Φ: phase fraction in the boundary layer (4.2) or matrix in the Heulens model.
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φ(x̃): phase fraction at position x̃ (1.3).

Other Notation

0: as a subscript on U , used to indicate the infinite-barrier potential (1.12).
A: as a subscript, used to indicate one of the phases in the ternary phase problem.
B: as a subscript, used to indicate one of the phases in the ternary phase problem.
b: as a subscript, used to indicate the shared boundary of the exclusion zones.
C: as a subscript, used to indicate one of the phases in the ternary phase problem.
m: as a subscript, used to indicate the solution in the middle (not in the exclusion

zones) (3.3).
ε: as a subscript on U , used to indicate the smoothed potentials (8.1).
>: as a subscript, used to indicate the right exclusion zone (2.15).
<: as a subscript, used to indicate the left exclusion zone (2.15).
−: as a subscript, used to indicate a value as x→ −∞ (2.7).
+: as a subscript, used to indicate a value as x→∞ (2.7).
∗: used to indicate a minimum in the bulk free energy density (1.11).
¯: used to indicate a spatial average (2.5).
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Comments on Blowey & Elliott

Joseph D. Fehribach
Worcester Polytechnic Institute

Editor’s Note: All references to sections, etc. refer to [1], the paper listed in the title.

1 Subderivative of the indicator function

The most important detail in understanding the concept of the subderivative of the indicator
function as discussed in the Introduction is that the indicator function here is not the same
as the characteristic function.

Definition 1.1 Suppose X is some superset (the union over some collection of sets). The
indicator function for a set A ⊂ X is IA : X → R∞ where

IA(x) =

{
0 x ∈ A
+∞ x /∈ A

The subderivative is then the set of all slopes which lie below the convex function being
considered. For a classically differentiable function, the subderivative is the singleton set
containing the value of the derivative of the function.

Definition 1.2 Suppose F is a convex function from some subset Ω of the real line into the
extended reals: F : Ω → R∞. Let u be a point in the domain where the function is finite:
F (u) < +∞. The slope m is in the subderivative of F at u (m ∈ ∂F (u)) if and only if
m(v − u) + F (u) ≤ F (v) ∀ v ∈ Ω.

Example. Suppose A = [−1, 1] and consider the indicator function of A. Notice that
IA is convex. For u ∈ (−1, 1), IA is differentiable (indeed constant), and thus ∂F (u) = {0}.
For u 6∈ [−1, 1], IA is not finite, so either ∂F (u) is undefined, or alternatively, ∂F (u) = ∅.
Hence the two interesting points are the endpoints of the interval: u = ±1. Consider u = 1;
since F (1) = 0, F (v) = 0 ∀ v ∈ [−1, 1], and F (v) = +∞ ∀ v > 1, the inequality in the
definition of subderivative is satisfied if and only if m ≥ 0. For u = −1, the result is that
m ≤ 0.
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2 The one-dimensional problem

The problem in section 3.2 is the one-dimensional version of the stationary problem (Sγ)
introduced at the beginning of section 3. Lemma 3.2 is used to translate the variational
formulation of (Sγ) given in (3.1) to the more traditional formulation of the problem in one
dimension as stated in (3.14). Here the domain is Ω = (0, `), i.e., an interval of length `. So
u(x) = ±1 ∀x ∈ Ω− Ω0 and

γu′′(x) + u(x) + λ = 0 ∀x ∈ Ω0 (1)

where Ω0 is the subset of Ω where −1 < u < 1. From basic real analysis, any open subset
of the real line (or of (0, `)) can be written as the countable union of disjoint open intervals.
So Ω0 = ∪∞

i=1Ω
i
0 where Ωi

0 = (xiL, x
i
R)1. Now the derivatives must match in the stationary

problem at each interface point between Ω − Ω0 and Ω0, so u′(x) = 0 ∀x ∈ ∂Ω0 (a jump
in the first derivative at an interface point would imply that the second derivative is delta
function). Since u = ±1 on Ω − Ω0, this no-flux condition implies that u ∈ C1,1(Ω). This
means that u and its first derivative are both Lipschitz continuous.

Suppose that we consider the transition from a u = +1 phase to a u = −1 phase.
Consider one of the subintervals of Ω0 (the i-th subinterval), and without loss of generality,
assume that u(xiL) = 1 and u(xiR) = −1. This is the Type 1 possibility of Blowey & Elliott.
As we are interested in a transitional solution and not an oscillatory one, the unique solution
satisfying all of the boundary conditions is

u(x) = cos((x− xiL)/
√
γ) ∀x ∈ Ωi

0 = (xiL, x
i
R) (2)

where xiL − xiR =
√
γπ . So for this system, at least in one dimension, the parameter γ

controls the width of the transition layer between the phases. The other types (Type 2 and
Type 3) deal with the cases where there is a transition between two portions of the same
phase (say u = +1 at both endpoints), solutions involving the overall interval endpoints
(x = 0 or x = `), and finally the case where Ω0 = (0, `), the transition region being the
entire domain interval.

The rest of the section is a meticulous piecing together of the various solution types to
reach and overall solution. Finally Theorem 3.6 states that provided the parameter γ is
small enough to allow at least one transition layer, i.e., γ < `2/π2, the minimizers of (Mγ)
are the steady state solutions with the narrowest transition layer(s), i.e., smallest |Ω0|. The
non-uniqueness of the minimizing solution is due at least in part to location of the transition
layers being arbitrary when the overall boundary conditions require two transitions.

References

[1] J. Blowey and C. Elliott, “The Cahn-Hilliard gradient theory for phase separation with
non-smooth free energy. Part I: Mathematical analysis,” European J. Appl. Math, vol. 2,
pp. 233–280, 1991.

1Blowey & Elliott did not place a naught subscript on these subintervals, but they should have!



Interface solution in 2 phases, 2 concentrations problem

Maxim Zyskin
Rutgers University

Our 2-phase, 2-concentrations problem is described by fields c1(x) ≡ c(x), c2(x) = 1 −
c1(x), x ∈ R (concentrations), ϕ1(x) ≡ ϕ(x), ϕ2(x) = 1− ϕ(x), (phases), with the range for
all fields being [0, 1].

The free energy for the 2-phase, 2-concentrations problem is given by

F [ϕ, c] =

∫ {
ϕG1(c) + (1− ϕ)G2(c) +

λ

2
|∇c|2 +

κ

2
|∇ϕ|2 +W (ϕ)−Kc

}
dx, (1)

where K is the chemical potential, Gi are quadratic,

Gi(c) = gi + 1
2
Ωi (c− ci)2 , i = 1, 2, (2)

and

W (ϕ) =

{
wϕ(1− ϕ), 0 ≤ ϕ ≤ 1

+∞, ϕ 6∈ [0, 1]
(3)

We can think that the integral defining the free energy is taken over a sufficiently large
interval x ∈ [−L,L] .

We are seeking a solution which is “well-behaved” as L→∞ (solution we describe below
does not depend on L, provided L is large enough).

The Euler-Lagrange equations, taking into the account the constraint 0 ≤ ϕ ≤ 1, are:

−κϕ′′ +G1(c)−G2(c) +W ′(ϕ)


= 0, 0 < ϕ < 1;
≤ 0, ϕ = 1;
≥ 0, ϕ = 0;

−λc′′ + ϕG′
1(c) + (1− ϕ)G′

2(c)−K = 0,
0 ≤ ϕ ≤ 1.

(4)

(Sign of inequalities in (4) ensures that the free energy cannot be lowered by varying the
fields, without violating the constraint. We assume that only phase fields may take 0 or 1
values, while concentrations happen to stay away from 0 or 1. )

It can be checked that in general there is no solution with ϕ approaching values 0, 1
respectively from above (below) as x→ −∞ (x→∞), and c approaching a constant value.
However, there may be an interface solution, with ϕ exactly 0 or 1 outside of a finite interval.
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Thus we are seeking an interface solution of (4) with

ϕ =

{
0 x < a
1 x > b

,

c′ → 0, |x| → ∞ (or, equivalently, c is bounded at infinity).
(5)

for some a < b,and such that ϕ, ϕ′, c, c′ are continuous at x = a, b.
From (4), (5) it follows that

c(x) =

 A1 +B1 exp
(
−
√

Ω1

λ
x
)
, A1 = c1 + K

Ω1
, x > b

A2 +B2 exp
(√

Ω2

λ
x
)
, A2 = c2 + K

Ω2
, x < a

, (6)

with arbitrary B1, B2. This implies a condition relating c and c′,

c′ = −
√

Ω1

λ
(c− A1), x ≥ b

c′ =
√

Ω2

λ
(c− A2), x ≤ a

. (7)

At first it appears that such a solution in general will not exist. Indeed, by shifting x by
a we may assume that a = 0. A general solution of (4) will involve 4 arbitrary constants,
and b gives another free parameter; however for this 5 parameters, there are 6 conditions to
satisfy: conditions (7) at x = a, b, and continuity of ϕ, ϕ′ at the endpoints.

However, there is a conserved quantity

H = ϕG1(c) + (1− ϕ)G2(c)− λ
2
|∇c|2 − κ

2
|∇ϕ|2 +W (φ)−Kc, (8)

the “Hamiltonian” for the action (1). It is immediate to check by differentiation that if (4)
are satisfied than dH

dx
= 0. Therefore, H is constant, on x < a, x > b, and a < x < b.

Continuity of ϕ, ϕ′, c, c′ at the endpoints will imply that H is continuous at x = a, x = b,
therefore H is the same constant for all x. Comparing H at x→ ±∞ yields

G1(A1)−KA1 = G2(A2)−KA2 = H, (9)

thus

K =
G2(A2)−G1(A1)

A2 − A1

. (10)

Note that since Ai = ci + K
Ωi
, differentiation of (2) gives

G′
i(Ai) = K, i = 1, 2. (11)

Thus K must be the slope of a common tangent to parabolas G1(c), G2(c). Note that (9) is
a quadratic equation for K, with coefficients determined by coefficients in G1, G2. Thus for
interface solution as described above to exist, the chemical potential should be fixed by the
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common tangent condition (9). Let us now assume that K is such that the tangent condition
is satisfied. It is easy to check that conservation of H implies that

(c(a)− A2)2 − λ
Ω2

(c′(a))2 = (c(b)− A1)2 − λ
Ω1

(c′(b))2 , (12)

thus if the conditions (7) is satisfied at x = a, it is satisfied (up to ± sign) at x = b
automatically.

WLOG, let’s take a = 0. To find a solution, we perform the following steps:

1. Pick a c0 ∈ [0, 1] and set conditions at x = 0 to be ϕ(0) = ϕ′(0) = 0, c(0) = c0

c′(0) =
√

Ω2

λ
(c0 − A2) (so c′(0) satisfies (7)).

2. Solve (4) with such conditions to get c(x), ϕ(x) for x ≥ 0.

3. Find the smallest b > 0 such that ϕ′(b) = 0. Such b will depend on a choice of c0.
Constants c0 for which ϕ(x) or c(x) 6∈ [0, 1], 0 ≤ x ≤ b, can be disregarded.

4. Now vary admissible c0, and try to find c0 such that ϕ(b) = ϕ′(b) = 0. (That can be
achieved for example by spotting two values of c0 with ϕ(b)− 1 of opposite sign, and
than using the secant method).

5. Verify that the condition (7) is satisfied at x = b (it should be satisfied automatically up
to a sign from the conservation of H, within numerical accuracy). Disregard solutions
which give the wrong sign for c′(b).

For illustration, we have performed this computation in the case

G1(c) = 1
2
(c− 0.2)2,

G2(c) = 0.03 + 3
2
(c− 0.6)2,

λ = κ = 1
(13)

We have taken K ≈ 0.0804, which satisfies the common tangent condition, as illustrated in
Fig. 1 We have found an interface solution with c0 ≈ 0.604. This solution is shown in Fig. 2.

c

Figure 1: Common tangent construction
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x

Figure 2: Interface solution



Linear stability analysis of phase field models

Thomas Witelski
Duke University

Linear stability analysis can provide helpful predictions on stability of equilibrium states
and rates of growth/decay of infinitesimal perturbations of those states. While these results
are limited to short-time predictions of near-equilibrium behavior1, they can be used at a
basic level to help understand and compare fundamental properties of different phase field
models being considered.

1 Cahn-Hilliard equation

∂c

∂t
=

∂2

∂x2

(
f ′(c)− κ ∂

2c

∂x2

)
f(c) =

1

2
c2(1− c)2 (1)

Consider small perturbations to constant (spatially homogeneous) states,

c(x, t) ∼ c̄+ ε cos(kx)eσt (2)

Because of the conservation of the composition parameter, the value c̄ is determined by the
average of the initial condition,

c̄ =
1

L

∫ L

0

c0(x) dx (3)

Then, substituting the ansatz for c(x, t) into the PDE and linearizing (keeping up to O(ε)
terms), yields the dispersion relation

σ(k; c̄) = −k2(1− 6c̄+ 6c̄2 + κ k2) (4)

A consequence of the conservation of c for linear stability is that the k = 0 ’bulk mode’
must be neutrally stable, σ(0) = 0, which is consistent with the above result. The dispersion
relation also shows that ranges around each pure component-phase, c̄ = 0, c̄ = 1 are also
stable with σ < 0 for k > 0 – namely for initial conditions corresponding to large or small c̄
averages, perturbations will decay and the solution will equilibrate to the constant c̄.

In contrast, in the spinodal range 1
2
−
√

3/6 < c̄ < 1
2
−
√

3/6 (i.e. the marginal case,
where 1 − 6c̄ + 6c̄2 = 0, 0.211 < c̄ < 0.788) exhibits instabilities (σ > 0 for some range of
k) and perturbed near-constant compositions will break-up into phase-separated states with
interfaces between regions with c = 0 and c = 1.

1and can be done analytically only for simple states
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2 Cogswell-Carter model

Consider a two-phase, two-component system in one-dimension. This system is governed by
two PDE evolution equations, one for the composition fraction (c = c1 with c2 = 1− c) and
one for the phase fraction (φ = φ1 with φ2 = 1− φ1),

∂φ

∂t
= λ

∂2φ

∂x2
+G2(c)−G1(c)− U ′(φ), (5a)

∂c

∂t
=

∂

∂x

[
c(1− c) ∂

∂x

(
φG′

1(c) + (1− φ)G′
2(c)− κ

∂2c

∂x2

)]
(5b)

G1(c) = 50(c− 1
5
)2 G2(c) = 5 + 150(c− 4

5
)2 (6)

U ′(φ) =

{
W (1− 2φ) 0 < φ < 1,

∞ else
(7)

While any homogeneous values for c, φ are equilibrium solutions of the composition equation,
because of the reaction terms in the phase equation, the overall system only has steady
solutions for specific values of c, φ. Depending on the value of the W parameter, these may
not lie in the physically acceptable range (0 ≤ c, φ ≤ 1).

Consider linear perturbations to a spatially homogeneous single phase,

c(x, t) ∼ c̄+ εA cos(kx)eσt φ(x, t) ∼ φ̄+ εB cos(kx)eσt (8)

Substituting into the PDEs and linearizing, at O(ε0) we determine a necessary relation
between the composition and the phase, depending on the parameter W ,

φ̄ =
1

2
− 100c̄2 − 220c̄+ 99

2W
. (9)

For general values of W > 0 this relation does not correspond to either expected pure phase
(i.e. neither φ = 1 for c = 1

5
nor φ = 0 for c = 4

5
). At O(ε), the growth rate of instabilities,

σ(k) follows from solving a 2 × 2 matrix eigenvalue problem for the coefficient eigenvector
(A,B)T . This problem is somewhat messy for general wavenumber k > 0, but it simplifies a
lot for k = 0 (spatially uniform perturbations) and yields σ1 = 0 (the neutrally stable mode
for mass conservation) and σ2 = 2W > 0 an unstable spatially uniform phase change mode.
This solution does not seem physically acceptable.

3 Moelans/Heulens model

The corresponding two-phase, two-component version of the model by Heulens takes the
form

∂η1
∂t

= λ
∂2η1
∂x2

− η31 + η1 − 2η1η
2
2 − ([G1(c1)−G′

1(c1)c1]− [G2(c2)−G′
2(c2)c2])

∂φ1

∂η1
(10a)
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∂η2
∂t

= λ
∂2η2
∂x2

− η32 + η2 − 2η2η
2
1 − ([G2(c2)−G′

2(c2)c2]− [G1(c1)−G′
1(c1)c1])

∂φ2

∂η2
(10b)

∂c

∂t
=

∂

∂x

(
φ1
∂c1
∂x

+ (1− φ2)
∂c2
∂x

)
(10c)

φ1 =
η21

η21 + η22
φ2 =

η22
η21 + η22

(10d)

c1 = 1
5
− α

100
c2 = 4

5
− α

300
α =

1
5
φ1 + 4

5
(1− φ1)− c

1
100
φ1 + 1

300
(1− φ1)

. (10e)

The stability analysis for this system follows similar lines to the approach used for the
Cogswell-Carter model: assume perturbed solutions

c(x, t) ∼ c̄+ εA cos(kx)eσt η1(x, t) ∼ η̄1 + εB cos(kx)eσt η2(x, t) ∼ η̄2 + εC cos(kx)eσt

(11)
At O(ε0) there is a complicated relation between c̄, η̄1, η̄2. At O(ε), there is a 3 × 3 matrix
eigenvalue problem for the growth rates (σ(k = 0) = 0 must be one solution by the mass
constraint). Further work is needed to analyze these resulting equations.
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I worked through the derivation given in the paper “Thermodynamics phase-field model
for microstructure with multiple components and phases: the possibility of metastable
phases” by Daniel A. Cogswell and W. Craig Carter. I then used my formulation of their
equations to determine the PDE governing the mole fractions ci and phase fractions φα for
2 components / 1 phase, 1 component / 2 phases, and 2 components / 2 phases and imple-
mented each of these cases numerically using the method of finite differences with Newton’s
method to handle the nonlinearity and a Backward-Time Centered-Space implicit difference
scheme.

1 General Equations

Let our system have M components indexed by α, N phases indexed by i, and d dimensions,
where d ∈ {1, 2, 3}. We will here consider only the d = 1 case.

The Cahn-Hilliard equations are derived from energy considerations, in particular by
considering the free energy f(~c, ~φ, ~∇~c, ~∇~φ, . . .). A full expression for the free energy is totally
unknown, but we can approximate it by linearizing it about the homogeneous free energy
f0(~c, ~φ, 0, 0, . . .) in a Taylor expansion to get the leading order correction terms. If we then
postulate the form of f0 we will have an approximate expression for f .

This linearization yields the following quadratic form:

1

2

[
~∇~c ~∇~φ

] [κij ξiα
ξαi λαβ

][
(~∇~c)T
(~∇~φ)T

]
(1.1)

where ~c is a row vector with M − 1 entries and ~φ is a row vector with N − 1 entries since we
set

cM := 1−
M−1∑
i=1

ci and φN := 1−
N−1∑
α=1

φα. (1.2)

The three matrices above are d×(M+N−2), (M+N−2)×(M+N−2), and (M+N−2)×d.
Our free energy functional is then

F [~c, ~φ] =

∫
V

(
f0 +

1

2

[
~∇~c ~∇~φ

] [κij ξiα
ξαi λαβ

][
(~∇~c)T
(~∇~φ)T

])
dV (1.3)
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We model the homogeneous free energy f0 as a linear combination of paraboloid potential
wells in mole fractions, one for each phase; i.e. each phase has an instrinsic composition c∗α
according to its preferred composition of components, and deviations from this composition
lead to more energetically costly states. Each such potential well we shall denote by Gα(~c).
We also introduce a potential barrier that separates each phase from its competitors, which
we denote by U(~φ). Thus we postulate that

f0 =
N∑
α=1

φαGα(~c) + U(~φ) (1.4)

where

Gα(~c) = Eα + Sα

M−1∑
i=1

(ci − c∗i,α)2 (1.5)

and

U(φ) =
1

2
~φW ~φT . (1.6)

Several parameters here enter our model. Eα is the energy level of phase α, Sα is the
steepness of the potential well for phase α, and W is a symmetric matrix with 0 entries on
its diagonal and positive entries off the diagonal. The entry Wα,β gives the magnitude of the
potential barrier between phase α and phase β.

This completes our specification of the energy functional:

F [~c, ~φ] =

∫
V

(
N∑
α=1

φα

(
Eα + Sα

M−1∑
i=1

(ci − c∗i,α)2

)
+

1

2
~φW ~φT (1.7)

+
1

2

[
~∇~c ~∇~φ

] [κij ξiα
ξαi λαβ

][
(~∇~c)T
(~∇~φ)T

])
dV (1.8)

The PDE equations governing ~c and ~φ are then given as follows. The mole fractions
evolve according to a generalization of Ficksian diffusion, i.e. instead of evolving with flux

~qFicks,i = −Di
~∇ci (1.9)

the mole fractions evolve with flux

~qCH,i = −Mi
~∇µi = − Di

RT
ci~∇µi (1.10)

where Di is the diffusivity of component i, Mi is the mobility of component i, R is the
universal gas constant, T is temperature, and µi is the chemical potential associated with
component i. This chemical potential is defined to be a functional derivative of our free
energy functional from above:

µi :=
1

n

δF

δci
. (1.11)
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We are then left with the PDE

∂ci
∂t

= ~∇ ·
(

Di

nRT
ci~∇

δF

δci

)
. (1.12)

The PDE governing the phases is a gradient flow of the free energy functional:

∂φα
∂t

= −rα
n

δF

δφα
(1.13)

where the parameters rα give a measure of how rapidly each phase progresses along its path
of steepest descent.

2 2 Components, 1 Phase

In this case φ1 ≡ 1 with c2 := 1− c1 so that c1 is our only variable. Our energy functional is

F [c1] =

∫
V

(
E1 + S1(c1 − c∗1,1)2 +

1

2
κ11(c1,x)

2)

)
dV (2.1)

so that our PDE here is
∂c1
∂t

=
D1

nRT

(
−κ11 (c1c1,xxx)x +

(
c1
(
2S1(c1 − c∗1,1)

)
x

)
x

)
. (2.2)

This case is incredibly boring: numerical simulations lead to solutions that demonstrate
nothing more than fourth order diffusion. As there is no competition between phases for
components the components simply level off and you are left with a terribly boring uniform
solution.

3 1 Component, 2 Phases

In this case c1 ≡ 1 with φ2 := 1− φ1 so that φ1 is our only variable. Our energy functional
is then

F [φ1] =

∫
V

(
φ1E1 + (1− φ1)E2 +W12φ1(1− φ1) +

1

2
λ11(φ1,x)

2

)
dV (3.1)

so that our PDE here is

φ1,t = −r1
n

(E1 − E2 +W12(1− 2φ1)− λ11φ1,xx) . (3.2)

This case is much more interesting. If E1 < E2, then this dominates long-term behavior
of the system: as phase 1 is in this case a lower energy phase in the long run everything
converts into phase 1 so that φ1 ≡ 1 as t→∞. This progression towards a uniform solution
takes the form of a front separating the phase 1 and phase 2 regions that propogates towards
the boundary. If E1 = E2 then this front does not progress towards the boundary, but rather
remains stationary in the center of the computational domain and develops a steady state
solution. The steepness of this interface between phase 1 and phase 2 regions is determined
by the magnitude of W12: as W12 gets larger the interface becomes sharper, i.e. there is a
more rapid transition from phase 1 to phase 2. This is shown in Figure 1 below.
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Figure 1: Evolution of PDE yields steady state interface between phases. Interface is steeper
as W12 increases.

4 2 Components, 2 Phases

In this case we have that c2 := 1 − c1 and φ2 := 1 − φ1 so that we are left with the two
variables c1 and φ1. Our energy functional is then

F [c1, φ1] =

∫
V

(
φ1E1 + φ1S1(c1 − c∗1,1)2 (4.1)

+ (1− φ1)E2 + (1− φ1)S2(c1 − c∗1,2)2 (4.2)

+W12φ1(1− φ1) +
1

2
κ11(c1,x)

2 +
1

2
λ11(φ1,x)

2 + ξ12φxcx

)
dV (4.3)

so that our system of PDE here is

c1,t =
D1

nRT

[
−ξ12 (c1φ1,xxx)x − κ11 (c1c1,xxx)x (4.4)

+
(
c1
[
2φ1S1(c1 − c∗1,1) + 2(1− φ1)S2(c1 − c∗1,2)

]
x

)
x

]
(4.5)

and

φ1,t =
−r1
n

(
E1 − E2 + S1(c1 − c∗1,1)2 − S2(c1 − c∗1,2)2 (4.6)

+ W12(1− 2φ1)− ξ12c1,xx − λ11φ1,xx) . (4.7)

My simulations in this case were deemed undesirable as they seemed to show behavior
that was not consistent with the expectations of the industrial presenter; specifically, even
if the energy levels of the two phases were set equal to one another the front that developed
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from step-function in phase and uniform in component initial conditions propagated past the
computational domain, leaving only one phase remaining in the entire domain, and uniform
component mole fractions throughout the entire domain.



Minimizing Energy in the Quasi-Equilibrium Phase
Field Approach

Brendan DeCourcy
Rensselær Polytechnic Institute

1 The Two-phase Energy Equation, Heulens et. al.

(2011)

One of the difficult intricacies of the Cogswell and Carter model is the infinite barriers of
the phase potential, which restricts the phase to a domain of φ ∈ [0, 1]. A method that
eliminates this problem is described by Heulens, Blanpain, and Moelans [1]. For a two phase
system, the energy functional is

F̃ [~η, c] =

∫ ∞
−∞

F̃

(
η1, η2,

∂η1
∂x̃

,
∂η2
∂x̃

, c

)
dx̃, (1)

with

F̃

(
η1, η2,

∂η1
∂x̃

,
∂η2
∂x̃

, c

)
= (2)

φ1G̃1(c) + G̃2(c) + Ũ(~η) +
λ̃1
2

(
∂η1
∂x̃

)2

+
λ̃2
2

(
∂η2
∂x̃

)2

,

where

Ũ(~η) = Ũ0

(
η41
4
− η21

2
+
η42
4
− η22

2
+ γη21η

2
2 +

1

4

)
, (3)

φ1 =
η21

η21 + η22
, φ2 =

η22
η21 + η22

, (4)

for constants Ũ0 and γ, and where the˜represent dimensional values. With these definitions
for φ, the need for the infinite potential barrier is eliminated, as φ1 +φ2 = 1 by construction.

To find the minimal energy state, we use calculus of variations to find the following
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equations for η1, η2, and c:

δF̃

δη1
= 0, (5)

δF̃

δη2
= 0, (6)

δF̃

δc
= µ̃, (7)

where µ̃ is a Lagrange multiplier that arises from conservation of mass. The corresponding
Euler-Lagrange equations are:

λ1η
′′
1 =

2η1η
2
2

(η21 + η22)2
[G̃1(c)− G̃2(c)] + Ũ0[η

3
1 + η1(2γη

2
2 − 1)] (8)

λ2η
′′
2 =− 2η21η2

(η21 + η22)2
[G̃1(c)− G̃2(c)] + Ũ0[η

3
2 + η2(2γη

2
1 − 1)] (9)

0 =η21[G̃′1(c) + µ̃] + η22[G̃′2(c) + µ̃]. (10)

We also have the natural boundary conditions,

∂η1
∂x̃

∣∣∣∣
±∞

=
∂η2
∂x̃

∣∣∣∣
±∞

. (11)

To analyze these equations, it will be beneficial to simplify their form by defining the
following functions from (8), (9), and (10):

P (c) ≡ G̃′1(c) + µ̃

G̃′2(c) + µ̃
, G̃(c) ≡ G̃1(c)− G̃2(c). (12)

Substituting these into (8), (9), and (10) yields

λ̃1η
′′
1 = − 2P (c)G̃(c)

(1− P (c))2
1

η1
+ Ũ0[(1− 2γP (c))η31 − 1] (13)

λ̃2η
′′
2 =

2P (c)G̃(c)

(P (c)− 1)2
1

η2
+ Ũ0[(1− 2γP (c)−1)η32 − 1] (14)

η22 = −P (c)η21. (15)

One last function will be defined to make these equations more compact before analyzing
them:

J̃(c) ≡ 2P (c)G̃(c)

(1− P (c))2
. (16)

And thus, the simplified dimensional versions of equations (14) and (15) are:
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λ̃1η
′′
1 = −J̃(c)η−11 + Ũ0[(1− 2γP (c))η31 − 1] (17)

λ̃2η
′′
2 = J̃(c)η−12 + Ũ0[(1− 2γP (c)−1)η32 − 1]. (18)

2 Non-dimensionalization of the Minimum Energy Equa-

tions

The next step in solving for η1, η2, and c is to non-dimensionalize the equations.

Recall the quadratic form used for the bulk free energy equations:

G̃α(c) = G̃α,0 +
1

2
G̃2
α,2(c− c∗α)2

We non-dimensionalize:

G1(c) =
G̃1(c)− G̃2,0

∆G̃
, G2(c) =

G̃2(c)− G̃1,0

∆G̃
, ∆G̃ = G̃1,0 − G̃2,0 (19)

such that

G̃(c) = ∆G̃[G1(c)−G2(c)− 1] ≡ ∆G̃G(c), (20)

and

J̃(c) = ∆G̃
2P (c)G(c)

(1− P (c))2
≡ ∆G̃J(c) (21)

P (c) =
G′1(c) + µ

G′2(c) + µ
, (22)

with µ = µ̃/∆G̃.

If we use the scaling x = x̃
√
λ̃1/∆G̃, we can reduce our equations to non-dimensional

form:

η′′1 = −J(c)η−11 + U0[(1− 2γP (c))η31 − 1] (23)

λη′′2 = J(c)η−12 + U0[(1− 2γP (c)−1)η32 − 1], (24)

where the dimensionless constants are defined as follows:

λ =
λ̃2

λ̃1
, U0 =

Ũ0

∆G̃
.
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3 Examining Extreme Values of the Parameters

The next step we will take is to examine how large or small parameter values affect the
behavior of the equations, and to see what physical meaning can be found in the results.

3.1 Small U0

First we examine what happens when U0 is small. This will occur when the potential energy
scale is much smaller than the bulk free energy scale. In this case, the equations simplify to
the following:

η′′1 = −J(c)η−11 , (25)

λη′′2 = J(c)η−12 , (26)

with the addition of the natural boundary conditions (11). We can rearrange these equations
to eliminate J(c), and thus the dependence on c, and integrate over the domain x ∈ (−∞,∞):∫ ∞

−∞
(η′′1η1 + λη′′2η2)dx = 0.

By integrating by parts and applying (11), we find∫ ∞
−∞

[(η′1)
2 + λ(η′2)

2]dx = 0, ⇒ (η′1)
2 + λ(η′2)

2 = 0. (27)

We can justify this by the fact that in order to ‘penalize’ the energy gradients associated
with η1 and η2, we must take λ̃1 and λ̃2 to be positive. Thus, the integrand in (27) is greater
than or equal to zero at all values x ∈ (−∞,∞). Since λ > 0 and we require that the phases
are purely real values, we must conclude that

η1 = constant, (28)

η2 = constant, (29)

and accordingly, both φ1 and φ2 are constant. This implies the existance of an infinitesmally
small interface where a sharp transition between phases occur.

3.2 Large U0

In the case of large potential energy and small scale bulk free energy, we can look at what
happens when U0 is large. The equations become:

η31 =
1

1− 2γP (c)
, η32 =

P (c)

P (c)− 2γ
. (30)
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In this case, we can solve for η1 and η2 explicitly in terms of c(x), and with the inclusion of
the non-dimensional version of (8), we have a system of three equations and three unknowns
which can be solved. These equations were not explored in further detail.
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Numerical Schemes for the Cogswell-Carter Model

David Nigro
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1 Shooting method

Consider the Gibbs free energy functional for a binary system,

F

(
c, φ,

dc

dx
,
dφ

dx

)
= φG1(c) + (1− φ)G2(c) +W (1− 2φ) +

κ

2

(
dc

dx

)2

+
λ

2

(
dφ

dx

)2

, (1)

with the usual far-field conditions, as x → −∞, φ → 1, c → c1, and as x → ∞, φ → 0,
c → c2. Taking δF/δc = K and δF/δφ = 0, where K is the Lagrange multiplier, gives the
following system of ordinary differential equations,

φG′
1(c) + (1− φ)G′

2(c)− κc′′ = K, (2)

G1(c)−G2(c)− λφ′′ +W (1− 2φ) = 0. (3)

For the numerics we consider the following functions for the Gibbs free energies,

G1(c) = 0 +
1

2
(100)(c− 0.2)2, (4)

G2(c) = 5 +
1

2
(300)(c− 0.8)2. (5)

To find the common tangent, we solve the equations,

G′
1(c1) = G′

2(c2), (6)

(c2 − c1)K = G2(c2)−G1(c1), (7)

to get K = 8.75699, c1 = .294098, and c2 = .831366.
We write a shooting method code using bisection and ode45 to solve the system of

differential equations. In Figure 1, we see that while we could match the boundaries we
artificially provided, we could not avoid having discontinuous derivatives. Also, further
analysis shows that c is a negative exponential for a region, (−∞,−zb) ∪ (cb,∞), for some
zb, which contradicts our assumption that c is constant in this region.
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Figure 1: Plot of the phase and component graphs found using shooting method.

2 Finite differences

Consider the full Cogswell and Carter evolution equations [1],

∂c

∂t
=

D

nRT
∇ ·

(
c(1− c)∇

(
δF

δc

))
∂φ

∂t
= −rα

δF

δφα

We attempt to solve this via finite differences, using a standard forward in time – centered
in space scheme. However we get peculiar results, as can be seen in Figure 2. Changing the
time step and spacial discretization either gives similar results or crashes the code. Finite
differences may not be the best way to numerically solve the Cogswell-Carter evolution
equations.
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Figure 2: Plot of phase and component graphs found using a forward in time and centered
in space scheme.

References

[1] D.A. Cogswell and W.C. Carter (2011). Thermodynamic phase-field model for mi-
crostructure with multiple components and phases: The posibility of metastable phases.
Phys. Rev. E 83, 061602.



Shooting Method for the Cogswell Model
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Here is an example with two phases and two components. The energy is given as

F [c, φ] =

∫ ∞
−∞

φGA(c) + (1− φ)GB(c) +
κ

2
(
dc

dx
)2 +

λ

2
(
dφ

dx
)2 + U(φ) dx (1)

The equilibrium conditions, which can be obtained from calculus of variations, are the fol-
lowing ODEs:

λ
d2φ

dx2
= GA(c)−GB(c) +W (1− 2φ), (2)

κ
d2c

dx2
= φG′A(c) + (1− φ)G′B(c)−K (3)

where GA, GB are the quadratic potentials for the two phases, given as

GA(c) =
G′′A
2

(c− c0A)2 +G0
A, GB(c) =

G′′B
2

(c− c0B)2 +G0
B, 0 < c < 1.

With the expressions of GA(c) and GB(c), we can solve for the values of c∗A, c
∗
B and K which

satisfy the common tangent condition, i.e.,

K = G′A(c∗A) = G′B(c∗B) =
GA(c∗A)−GB(c∗B)

c∗A − c∗B
.

Since we know φ becomes one at some position “to the left” and zero at another position “to
the right”, we can solve the composition equation (3) in the “far field” regions analytically.
Let’s do the left side. (3) turns into

κ
d2c

dx2
= G′′A(c− c0A)−K. (4)

The general solution to (4) is

c(x) = Ce

√
G′′
A
κ
x

+De
−
√
G′′
A
κ
x

+
G′′Ac

0
A +K

G′′A
, (5)
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where C,D are to be determined. It is clear to see D = 0 since c(x) should be bounded
when x < 0. Substituting K = G′A(c∗A) = G′′A(c∗A − c0A) into (5), we get

c(x) = Ce

√
G′′
A
κ
x

+ c0A +
G′′A(c∗A − c0A)

G′′A
= Ce

√
G′′
A
κ
x

+ c∗A.

Thus we have the expression for c(x) at far field (beyond the interface):

c(x) = c1e
ζAx + c∗A, ζA =

√
G′′A
κ
, x < 0, (6)

c(x) = c2e
−ζBx + c∗B, ζB =

√
G′′B
κ
, x > l, (7)

where c1 and c2 are to be determined, and l is the length of interface. It is easy to verify
that

c′(0)− ζA(c(0)− c∗A) = 0, (8)

c′(l) + ζB(c(l)− c∗B) = 0. (9)

Now we apply the shooting method. Guess value for φ′(x = 0) and c(x = 0); integrate
the ODE system (2),(3) until φ = 1 (implicitly defining the length of interface l); refine the
guess for the initial value until boundary condition (9) is satisfied. We will dump the guess
if c grows beyond [0,1] when integrating the ODE system.

We could see this shooting method is underdetermined, meaning there is a family of initial
guesses {φ′(0), c(0)} (parameterized by φ′(0)), which will satisfy the boundary condition (9).
Our interest is to find the pair (φ′(0), c(0)), which will minimize the energy integral.

Let’s take a closer look at the energy integral. φ′ and U(φ) vanish at far field; c(x)
decreases exponentially, and is thus integrable; however

lim
x→−∞

φGA(c) = GA(c∗A);

lim
x→∞

φGA(c) = 0;

lim
x→−∞

(1− φ)GB(c) = 0;

lim
x→∞

(1− φ)GB(c) = GB(c∗B);

which implies the energy integral will go to infinity. How can we do minimization?

Let’s separate the energy integral into three parts.

F [c, φ] = I1 + I2 + I3 =

∫ 0

−∞
+

∫ L

0

+

∫ ∞
L

φGA(c)+(1−φ)GB(c)+
κ

2
(c′)2 +

λ

2
(φ′)2 +U(φ) dx.

(10)
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Here L is a sufficiently large number which is greater than the length of interface l for any
pair (φ′(0), c(0)) satisfying (9). Then

I1 =

∫ 0

−∞

G′′Ac
2
1

2
e2ζAx +G′′Ac1(c

∗
A − c0A)eζAx +

κ

2
(c′)2 +

G′′A(c∗A − c0A)2

2
dx, (11)

I3 =

∫ ∞
L

G′′Bc
2
2

2
e−2ζBx +G′′Bc2(c

∗
B − c0B)e−ζBx +

κ

2
(c′)2 +

G′′B(c∗B − c0B)2

2
dx. (12)

If we drop the constant terms which have nothing to do with the shooting, then the
integral is finite! So we can compare the energy integral for different guesses (φ′(0), c(0)).

We didn’t prove the existance of the L, which bounds the length of interface l. Here we
can show the graph “l v.s. φ′(0)” as a small evidence that such large L exists. We should
have written “l v.s. (φ′(0), c(0))”, notice that c(0) is determined by φ′(0) from shooting
method.
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Figure 1: l v.s. φ′(0)

One Example

Given GA(c) = 50(c− 0.2)2, GB(c) = 150(c− 0.8)2 + 5, κ = 5, λ = 1,W = 80.



60 Shooting Method

−10 −8 −6 −4 −2 0
11.5

12

12.5

13

13.5

14

dphi(0)

e
n
e
rg

y
 i
n
te

g
ra

l

Figure 2: energy v.s. φ′(0)

The figure above indicates that the guess φ′(0) ≈ 0 will lead to minimal energy. Now we
choose the pair (φ′(0), c(0)) that minimize the energy, solve the ODE system (2), (3) as IVP,
thus obtaining the behavior of φ(x) and c(x) at the interface.
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Examination of the Cogswell-Carter multiObstacle
algorithm

Nguyenho Ho
Worcester Polytechnic Institute

Thomas Witelski
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In the Physical Review E paper published in 2011, Daniel A. Cogswell provided a pseudo-
code algorithm to enforce constraints on phase evolution in their phase-field model [1]. The
phase-field model uses φα as the phase fractions where index α distinguishes between different
phases, α = 1, 2, ..., N in the system. Their energy is unbounded if any of the phases go
outside the region of physically admissible solutions. Therefore, there is a need for a process
that projects all φα onto the set of admissible solutions. As described in [1, 2] admissible
phases must satisfy: the individual phase fraction is between zero and one, and the sum of
all the φ must add up to one. In other words, the phase fractions must satisfy the following
constraints

1. 0 < φα < 1 for each α = 1, 2, ..., N

2.
N∑
α=1

φα = 1.

Figure 1: The algorithm proposed in Cogswell and Carter [1].
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The algorithm multiObstacle proposed in [1], see Fig. 1 claims to carry this out. Their
algorithm appears to be flawed for two reasons:

(i) If positivity of the final phase (φN = 1−
∑N−1

α=1 φα), φN < 0 is violated, its value is not
truncated to φN = 0 in the algorithm, and

(ii) The output algorithm is not invariant under cyclic permutations for relabeling the
phases. namely, considering a four-phase system with φ1 + φ2 + φ3 + φ4 = 1, if input
values for the ‘raw’ phase values are given as the ordered set {φA, φB, φC , φD} and
the algorithm produces the truncated output values {φ̃A, φ̃B, φ̃C , φ̃D} then inputting
{φB, φC , φD, φA} should produce {φ̃B, φ̃C , φ̃D, φ̃A} and similarly for other permutations
of the values since the results should be independent of the arbitrary labeling/ordering
of the phases.

The simplest case is with two phases, N = 2, i.e., φ1 + φ2 = 1, where the system can
be reduced to a single phase parameter, φ, with φ1 = φ, φ2 = 1 − φ that will satisfy both
constraints if 0 ≤ φ ≤ 1. If φ is not in this range, then it must be truncated back into the
range 0 ≤ φ ≤ 1, i.e., if φ < 0 then φ := 0 and if φ > 1 then φ := 1, respectively. Cogswell’s
cutoffBarrier2D algorithm [2, section 2.3, p. 55] correctly implements this:

1 f unc t i on cuto f fBar r i e r2D ( phi1 )
i f phi1<0

3 phi1=0;
e l s e i f 1−phi1<0

5 phi1=1;
end

7 end

In his thesis, Cogswell also gives the algorithm for the N = 3 case [2, section 2.3, p. 57]

1 f unc t i on phi=cuto f fBar r i e r3D ( phi1 , phi2 )
i f phi1<0

3 phi1=0;
end

5 i f phi2<0
phi2=0;

7 end
phi3=1−phi1−phi2 ;

9 i f phi3<0
phi1=phi1+phi3 /2 ;

11 cuto f fBar r i e r2D ( phi1 ) ;
phi2=1−phi1 ;

13 end
phi=[ phi1 ; phi2 ; phi3 ] ;

15 sum( phi ( 1 : end ) )
end
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This algorithm is flawed in that it does not correct the value of φ3 if the φ3 < 0 case is active,
but this can be fixed by adding the command φ3 = 1 − φ1 − φ2 after “φ2 = 1 − φ1”. This
routine satisfies the condition on permutations of the phases in terms of the interchange
of φ1 ↔ φ2, namely the results from cutoffBarrier3D(0.5,0.6) map onto those from
cutoffBarrier3D(0.6,0.5). But if all three phases had been provided, for example consider
{φ1 = 0.5, φ2 = 0.6, φ3 = −0.1}, then different permutations of which two phases are used
in cutoffBarrier3D will produce different results.

The algorithm called multiObstacle in [1] is the general version of the algorithm from
Cogswell’s thesis [2, section 2.3, p. 58], and makes use of the recursive structure suggested
by cutoffBarrier3D,

f unc t i on phi=cu t o f fB a r r i e r (N, phi )
2 sum1=0;

f o r i =1:N−1
4 i f phi ( i )<0

phi ( i )=0;
6 end

sum1=sum1+phi ( i ) ;
8 end
phi (N)=1−sum1 ;

10 sum2=0;
i f phi (N)<0

12 f o r i =1:N−2
phi ( i )=phi ( i )+phi (N) /(N−1) ;

14 sum2=sum2+phi ( i ) ;
end

16 c u t o f fB a r r i e r (N−1, phi ( 1 :N−2) ) ;
phi (N−1)=1−sum2 ;

18 end

It can be shown that this routine has the same problems identified above for cutoffBarrier3D.
For instance, we implemented a code for the case N = 4 with produced from random val-

ues for the phases, {φ1, φ2, φ3, φ4} = {0.278498218867048, 0.546881519204984, 0.957506835434298,
0.964888535199277}, respectively. Each individual phase was generated as a uniformly dis-
tributed random number between zero and one, which immediately satisfies the first con-
straint, the sum of them is 2.747775108705607 violating the second constraint. Therefore,
the proposed algorithm in [1] has is not correct in stated form and needs some corrections.

c l e a r ;
2 c l c ;
format long

4 N=4;
phi=rand (N, 1 ) ;

6 sum=sum( phi ( 1 :N) ) ;
c u t o f fB a r r i e r (N, phi ( 1 :N−1) ) ;

8 sum2=0;
i f phi (N)<0
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10 f o r i =1:N−2
phi ( i )=phi ( i )+phi (N) /(N−1) ;

12 sum2=sum2+phi ( i ) ;
end

14 c u t o f fB a r r i e r (N−1, phi ( 1 :N−2) ) ;
phi (N−1)=1−sum2 ;

16 end
phi

When running the code, the proposed algorithm was still not consistent with the two
basic constraints stated above. In order words, there were cases that either the results
would satisfy both constraints or failed to accompany with either of them. We present some
further examples for N = 3 in the table below to show the inconsistency of the troublesome
algorithm.

Table 1: The results for 3D algorithm, N=3

Cases φ1 φ2 φ3 Summation

1 0.255095115459269 0.505957051665142 0.238947832875589 1
2 0.129906208473730 0.568823660872193 0.301270130654077 1
3 0.469390641058206 0.011902069501241 0.518707289440553 1
4 0.741534749319551 0.258465250680449 -0.105499582728712 0.894500417271288
5 0.482432297668387 0.517567702331613 -0.343293601616790 0.656706398383210
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Time-dependent numerical simulations of the phase field
models
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As an approach to gaining a better understanding of the dynamics in the phase field
models, we implemented numerical simulations of the time-dependent model equations in
the simplest cases. All of the computations made use of finite-difference schemes with second-
order accuracy in space, first-order accurate implicit (backward Euler) or explicit (forward
Euler) time-stepping. Some were written in C, others were done in MATLAB. Below we
outline the specific simulations that were carried out.

1 Cahn-Hilliard equation

This ‘sub-model’ has one conserved composition parameter, c(x, t) and simulations were
considered only in one dimension,

∂c

∂t
=

∂2

∂x2

(
f ′(c)− κ ∂

2c

∂x2

)
, f(c) =

1

2
c2(1− c)2 (1)

on 0 ≤ x ≤ L with no-flux boundary conditions

∂xc = ∂xxxc = 0 at x = 0, L. (2)

Both implicit and explicit codes were written. Because the governing equation is fourth order
in x, the explicit code has a strong constraint on its timestep for stability, ∆t < O(∆x4).
The implicit code uses a backward Euler discretization that is solved at each time step using
Newton’s method.
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Numerical computations confirmed that initial conditions starting with either uniformly
high or low c would converge to spatially constant values while initial conditions resembling
step profiles would evolve to steady interface solutions connecting c = 0 to c = 1.

These simulations mainly served as validations for the more complicated later models.

2 Cogswell-Carter two-phase model

For this model we considered a two-phase, two-component system in one-dimension. This
problem is governed by two PDE evolution equations, one for the composition fraction (c = c1
with c2 = 1− c) and one for the phase fraction (φ = φ1 with φ2 = 1− φ1):

∂φ

∂t
= λ

∂2φ

∂x2
+G2(c)−G1(c)− U ′(φ), (3a)

∂c

∂t
=

∂

∂x

[
c(1− c) ∂

∂x

(
φG′1(c) + (1− φ)G′2(c)− κ

∂2c

∂x2

)]
(3b)

We used simple quadratic functions for the free energies for the individual phases given
by

G1(c) = 50(c− 1
5
)2 G2(c) = 5 + 150(c− 4

5
)2 (4)

and the phase potential function,

U ′(φ) =

{
W (1− 2φ) 0 ≤ φ ≤ 1,

∞ else,
(5)

where W > 0 is a positive constant. Cogswell and Carter selected this singular form for U ′(φ)
to effectively impose an infinite energy-penalty to prevent the phase from going outside of
the physically acceptable range 0 ≤ φ ≤ 1. At an operational level, the meaning of the
“else” case is that in numerical simulations of the system, if φ ≥ 1, then it is truncated to
φ = 1 and if φ ≤ 0 then it is set to φ = 0.

Both implicit and explicit codes were written for this model, with the explicit code having
the same constraint on ∆t as the Cahn-Hilliard equation.
Fig. 1 shows the smooth steady state interface starting from the Heaviside step functions for
φ, c using the explicit code. The dash lines are the compositions which satisfy the common
tangent condition (equations (2.13) and (2.16) in the report by Anderson et al.). Due to the
time-step restriction, we could only run the explicit code for a short time, however, from
Fig 1 it is clear that transients were very fast as the solution converged to the equilibrium
values for the composition away from the phase interface.
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Figure 1: The simulation of Cogswell-Carter model using explicit time stepping: (left) initial
condition for φ, c, (right) the solution having evolved towards a steady-state after a short
time.

3 Moelans/Heulens model

The corresponding two-phase, two-component version of the model by Heulens and Moelans
takes the form

∂η1
∂t

= λ
∂2η1
∂x2

− η31 + η1 − 2η1η
2
2 − ([G1(c1)−G′1(c1)c1]− [G2(c2)−G′2(c2)c2])

∂φ1

∂η1
, (6a)

∂η2
∂t

= λ
∂2η2
∂x2

− η32 + η2 − 2η2η
2
1 − ([G2(c2)−G′2(c2)c2]− [G1(c1)−G′1(c1)c1])

∂φ2

∂η2
, (6b)

∂c

∂t
=

∂

∂x

(
φ1
∂c1
∂x

+ (1− φ2)
∂c2
∂x

)
, (6c)

where the phases φ1, φ2 automatically satisfy φ1 + φ2 = 1 since they are given in terms of
η1, η2 by

φ1 =
η21

η21 + η22
φ2 =

η22
η21 + η22

, (6d)

so each φ necessarily lies in the range 0 ≤ φ ≤ 1.
The c1, c2 are intermediate variables that describe the portion of each component involved

in the various phases present. These values satisfy the condition1

c(x, t) = φ1(x, t)c1 + φ2(x, t)c2

and are selected to minimize the total homogeneous free energy

min
c1,c2

φ1G1(c1) + φ2G2(c2)

1where c(x, t), φ1(x, t), φ2 = 1− φ1 are assumed given at each x, t for this calculation
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Figure 2: Evolution of the composition and phase in Heulens model in one dimension: (left)
the initial conditions and (right) near-steady solution computed after a finite time. Dashed
blue lines represent the common-tangent values, c+ and c−.

This can be worked out explicitly as a constrained optimization problem, using the La-
grangian objective function

L = φ1G1(c1) + φ2G2(c2)− α(φ1c1 + φ2c2 − c)

where α is a Lagrange multiplier. This yields G′1(c1) = G′2(c2) = α for the Lagrange multi-
plier, and then from our choices of G1, G2 we obtain c1, c2 in terms of φ1, c:

c1 = 1
5
− α

100
c2 = 4

5
− α

300
α =

1
5
φ1 + 4

5
(1− φ1)− c

1
100
φ1 + 1

300
(1− φ1)

, (6e)

namely c1, c2 are nonlinear algebraic functions of η1, η2, c.
Substituting the later algebraic relations yields a closed system of three PDEs for c, η1, η2

that is solved with Neumann no-flux boundary conditions. Note that each equation in this
system is only second-order with respect to x derivatives, and hence an explicit code can
have ∆t = O(∆x2), a much less restrictive condition on the timestep.

Explicit codes were written for this model in 1-D and 2-D (with the natural generalizations
of ∂x → ∇ for c(x, t) → c(x, y, t) and similarly for η1, η2 in the PDE’s). Figure 2 shows the
evolution of the phase and composition fields in the Heulens model starting from a single 1-D
phase/composition interface. Very similarly to the Cogswell-Carter model, transients decay
quickly and the structure of the equilibrium interface can be obtained to good accuracy.

As in the Cahn-Hilliard equation, starting from an initial condition in the unstable range
of compositions, leads to spinodal decomposition, marked by the formation of several inter-
faces, see Figure 3. Similar evolution in two-dimensions is shown in Figure 4.
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Figure 3: Small perturbations lead to development of sharp interfaces
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Figure 4: Simulation of Heulens’ model in two dimensions: (top) 3-d/contour plots of the ini-
tial conditions for the composition and phase, (bottom) the development of sharp interfaces
in both composition and phase.




