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Motivation

Corning is interested in better ceramics with better properties.

We would like to understand various phase field models that model
such phenomena.
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Key definitions

In the models we looked at, the phase φ is defined to be the state of
the matter.

The component c is defined to be a chemically independent
constituent of a phase of a system.

These are under the constraints:

M∑
α=1

φα = 1

N∑
i=1

ci = 1
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Cahn-Hilliard Eq. (1958)

Order parameter c

Two phases

∂c

∂t
=

d2

dx2

(
f ′(c)− κ∂

2c

∂x2

)

f (c) = c2(1− c)2, F [c] =

∫ ∞
−∞

(
f (c) +

1

2
κ

(
dc

dx

)2
)
dx

Describes phase separation nucleation.∫∞
−∞ cdx is conserved
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Previous Work: Wheeler, Boettinger & McFadden 1993

Free energy for a two-phase binary alloy, smooth function f (φ, c)

F [φ, c] =

∫ +∞

−∞

[
f (φ, c) +

1

2
κ

(
dc

dx

)2

+
1

2
λ

(
dφ

dx

)2
]
dx

Calculus of Variations for Equilibrium: (conserved c):

∂f

∂φ
− λd

2φ

dx2
= 0,

∂f

∂c
− κd

2c

dx2
= A (A = Lagrange Multipler)

WBM show that there is a conserved quantity H

H = Ac − f (φ, c) +
1

2
λ

(
dφ

dx

)2

+
1

2
κ

(
dc

dx

)2
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Previous Work: Wheeler, Boettinger & McFadden 1993

Far-field conditions: x → −∞ [φ→ 1, c → c−∞] and x →∞
[φ→ 0, c → c∞] lead to ... three conditions that correspond to the
common tangent construction

A =
∂f

∂c
(0, c∞) =

∂f

∂c
(1, c−∞) =

f (0, c∞)− f (1, c−∞)

c∞ − c−∞
,

AND two other conditions satisfied by careful construction of f (φ, c).

Key point of interest to Corning: This careful construction does not
generalize well to multi-phase/multi-species systems
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Cogswell-Carter evolution equations

From Cogswell and Carter we have the evolution equations:

∂c

∂t
=

D

nRT
∇ ·
(
c(1− c)∇

(
δF

δc

))
(Cahn - Hilliard)

∂φ

∂t
= −rα

δF

δφα
(Allen - Cahn)

Where D is diffusivity, R is gas constant, and T is temperature. These
come from Nernst - Einstein relation.
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Phase Field Model of Cogswell and Carter

Model has a non-smooth free energy functional (multiple obstacle in
the phase fields) (Cogswell and Carter 2011)

F [~c , ~φ] =

∫
V
F (~c , ~φ)dV

F (~c , ~φ) =
M∑
α=1

φαGα(~c) + U(~φ) +
1

2

N−1∑
i=1

N−1∑
j=1

κij∇ci · ∇cj

+
1

2

M−1∑
α=1

M−1∑
α=1

λαβ∇φα · ∇φβ

~c is a dim N − 1 vector of mole fractions.

Similarly, ~φ is a dim M − 1 vector of phase.

Gα(~c) are bulk free energy densities of the phases.

κ and λ are gradient energy coefficients (positive definite matrices).
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Phase Field Model of Cogswell and Carter

The potential U(~φ) for a binary system (one independent phase) is:

{
U(~φ) = φ(1− φ), 0 < φ < 1

U(~φ) = +∞, otherwise

E.g. for a binary system:
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The Phase Potential

The infinite barrier potential can cause issues at the boundaries due
to discontinuity.

Introduce a smooth function instead.

Example:

Ũε(φ) = φ(1− φ) +
ε

φ(1− φ)
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The Binary System Energy Equation (Cogswell-Carter)

For the two phase, two component system, the function F̃ simplifies
to

F̃

(
c , φ,

dc

dx̃
,
dφ

dx̃

)
= φG̃1(c) + (1− φ)G̃2(c) + Ũ(φ)

+
κ̃

2

(
dc

dx̃

)2

+
λ̃

2

(
dφ

dx̃

)2

.

In the far-field, we want to satisfy the pure phase assumption:

φ(+∞) = 0 φ(−∞) = 1.

Similarly, we expect c to tend towards a constant value away from the
interface
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Non-dimensionalization

After non-dimensionalizing the energy equation, we have

F

(
c , φ,

dc

dx
,
dφ

dx

)
= φG1(c) + (1− φ)G2(c) + WU(φ)

+
1

2

(
dc

dx

)2

+
λ

2

(
dφ

dx

)2

.

with the parameters

W =
W̃

∆G̃
, λ =

λ̃

κ̃
.
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Bulk Energy

In the energy equation, G1(c) and G2(c) represent the bulk free
energy density.

Can be complicated functions, but the relevant parts can be
approximated as quadratic:

Gα(c) = Gα,0 +
1

2
G 2
α,2(c − c∗α)2, Gα,2 > 0.
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Euler Lagrange Equations

We use the calculus of variations to minimize the energy of the
system.

Resulting equilibrium equations:

λ
d2φ

dx2
= G1(c)− G2(c) + WU ′(φ), λ

dφ

dx
(±∞) = 0

d2c

dx2
= φG ′1(c) + (1− φ)G ′2(c)− µ, dc

dx
(±∞) = 0

With c− = c(−∞), c+ = c(+∞).

The parameter µ is a Lagrange multiplier that arises from the
conservation of mass.
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Far-field conditions

From the Euler-Lagrange equations we have the following conditions:

G1(c−)− G2(c−) + WU ′(1) = 0,

G1(c+)− G2(c+) + WU ′(0) = 0,

G ′2(c−) = µ,

G ′1(c+) = µ.
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One component - two phase simulation via finite
differences
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Time evolution run via finite differences
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In case the movie doesn’t work
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The Exclusion Zones

We expect φ to tend towards pure phase at infinity.

Boundary conditions:

φ(x) =

{
1, x ≤ x<,

0, x ≥ x>.

We use these values for φ to find equations for c in the exclusion
zones.

Resulting equations:

c<(x) =c− + A−exp(G1,2(x − x<))

c>(x) =c+ − A+exp(−G2,2(x − x>)).

The c’s tend towards c− and c+, and decay slightly towards the
barrier.
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Asymptotics with Large W

Taking W →∞, we find the discontinuous leading order equation

λ
d2φ

dx2
= G1(c)− G2(c) + WU ′(φ)→ U ′0(φ) = 1− 2φ = 0

φ =
1

2
, |x | < x>.

Introduce boundary layer, let

z = W 1/2(x − x>), Φ(z) = φ(x).

Resulting equation:

λ
d2Φ

dz2
+ 2Φ = 1.

The solutions to the above equation oscillate, which cannot match
the matching condition that Φ(z = −∞) = φ(x = x−> ) = 1/2.
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Asymptotics (continued)

We expect Φ(z) to vary only in some interval (−zb, zb), with
boundary conditions:

Φ(z) =

{
1, z ≤ −zb,
0, z ≥ zb.

From the boundary conditions on Φ, we find a leading order solution

Φ0(z) =
1

2

(
1−

sin z
√

2/λ

sin zb
√

2/λ

)
, |z | < zb.
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Asymptotics (continued)

We use the nondimensional version of the evolution equation from
Cogswell and Carter for large W:

∂Φ

∂t
= −r δF

δφ
= −r

[
1− 2Φ− λ∂

2Φ

∂z2

]
.

Introduce small perturbation with exponential decay:

Φ(z , t) = Φ0(z) + εeAt cos

(
(2n + 1)πz

2zb

)
, n ≥ 0.

Using the time evolution equation, we find

A = r

[
2− λ(2n + 1)2π2

4z2b

]
.

We must require A < 0 for decay, for all n.

Using the same kind of analysis one would use on the Fisher equation,

we get: zb = π
2

√
λ
2 23 / 32



Stability Analysis of the Cogswell-Carter model

Consider the following simple case for the stability analysis

Two-phase, two-component system in one-dimension

c = c1 with c2 = 1− c where 0 < c < 1

φ = φ1 with φ2 = 1− φ1 where 0 < φ < 1

Simple quadratic functions for the free energies for the idividuals
phases

G1(c) = 50(c − 1

5
)2 G2(c) = 5 + 150(c − 4

5
)2
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Stability Analysis of the Cogswell-Carter model (Governing
Equations)

∂φ

∂t
= λ

∂2φ

∂x2
+ G2(c)− G1(c)− U ′(φ),

∂c

∂t
=

∂

∂x

[
c(1− c)

∂

∂x

(
φG ′1(c) + (1− φ)G ′2(c)− κ∂

2c

∂x2

)]
U ′(φ) =

{
W (1− 2φ) 0 < φ < 1,

∞ else
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Stability Analysis of the Cogswell-Carter model

Linear perturbations to a spatially homogeneous single phase,

c(x , t) ∼ c̄ + εA cos(kx)eσt φ(x , t) ∼ φ̄+ εB cos(kx)eσt

Substituting into the PDEs and linearizing
→ determine a relation between the c and φ, depending on the
parameter W

φ̄ =
1

2
− 100c̄2 − 220c̄ + 99

2W

→ For k = 0: σ1 = 0: neutrally stable mode, σ2 = 2W > 0: an
unstable mode.
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Criticism of the Cogswell-Carter model

Numerically, if φ ≤ 0→ φ = 0 and if φ ≥ 1→ φ = 1

Cogswell and Carter proposed the algorithm which should restrict the
set of φ′i s to the physically acceptable region (0,1).

However,... the algorithm can be shown to be flawed for two reasons
If φN < 0 is violated, its value does not end corrected.
The output algorithm is not invariant under cyclic permutations for
relabeling the phases.
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Heulens phase field model

Heulens et.al (2011), building on a large body of preceding work (Moelans,
Eiken, Steinbach, et.al.) propose the multicomponent, multi-phase field
model:

F =
M∑
α=1

φαGα(~cα) + U(~η) +
λ

2

M∑
α=1

|∇ηα|2

φα =
η2α∑
β η

2
β

U(~η) = U0

 M∑
α=1

(
η4α
4
− η2α

2

)
+ γ

M∑
α=1

M∑
β>α

η2αη
2
β +

1

4


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Heulens phase field model

cα is determined by a constrained minimization problem.

For the binary two-phase case

min{φ1G1(c1) + φ2G2(c2)}.

subject to the constraint

c = φ1c1 + φ2c2.
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Heulens phase field model (equilibrium)

Free energy for a two-phase binary alloy, smooth function f (η1, η2, c)

F [η1, η2, c] =

∫ ∞
−∞

[
f (η1, η2, c) +

1

2
κ

(
dc

dx

)2

+
1

2
λ1

(
dη1

dx

)2

+
1

2
λ2

(
dη2

dx

)2
]
dx

η1 and η2 are phase field variables. Phase fractions φ1 and φ2 are

φ1 =
η21

η21 + η22
, φ2 =

η22
η21 + η22

We demonstrated that, as in WBM, this model recovers the common
tangent construction and meets all other equilibrium conditions using
the careful construction for f (η1, η2, c) by Heulens et al.

Key point of interest to Corning: This careful construction does
generalize well to multi-phase/multi-species systems
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Conclusion

We analyzed the Cogswell-Carter and Heulens et al. models.

Asymptotic analysis was used to understand the behavior of the phase
and component in certain regions for the Cogswell-Carter model.

However, while the Cogswell-Carter model can be generalized to
multi-phase – multi-component systems, the potential U caused
problems with the numerics.

The Heulens et al. model may be able to remedy this.
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