
23

C H A P T E R

4
Using SYSTEM 2000 Data in SAS
Programs

Introduction 23
Reviewing Variables 24

Printing Data 25

Charting Data 26

Calculating Statistics 27

Using the FREQ Procedure 27
Using the MEANS Procedure 28

Using the RANK Procedure 30

Selecting and Combining Data with the SQL Procedure 30

Using the WHERE Clause 31

Combining Data from Various Sources 31

Creating a New Item with the PROC SQL GROUP BY Clause 35
Updating a SAS Data File with SYSTEM 2000 Data 36

Updating a Version 6 Data File 36

Updating a Version 7 Data File 38

Performance Considerations 40

Introduction
The advantage of the SAS/ACCESS interface to SYSTEM 2000 software is that it

enables the SAS System to read and write SYSTEM 2000 data directly using SAS
programs. This chapter presents examples of using SYSTEM 2000 data described by
view descriptors in SAS programs. For information on the example data used in this
chapter, see Appendix 3, “Example Data,” on page 143.

Throughout the examples, the SAS terms variable and observation are used instead
of comparable SYSTEM 2000 terms, because this chapter illustrates using SAS System
procedures and the DATA step. The examples include printing and charting data, using
the SQL procedure to combine data from various sources, and updating a Version 7 SAS
data set with data from SYSTEM 2000 software. For more information on the SAS
language and procedures used in the examples, refer to the books listed at the end of
each section.

At the end of this chapter, “Performance Considerations” on page 40 presents some
techniques for using view descriptors efficiently in SAS programs.

24 Reviewing Variables 4 Chapter 4

Reviewing Variables

If you want to use SYSTEM 2000 data described by a view descriptor in your SAS
program but cannot remember the variable names or formats and informats, you can
use the CONTENTS or DATASETS procedures to display this information.

This example uses the DATASETS procedure to give you information on the view
descriptor VLIB.EMPPOS, which you created in Chapter 3, “Defining SAS/ACCESS
Descriptor Files,” on page 19.

proc datasets library=vlib memtype=view;
contents data=emppos(s2kpw=demo);

run;

Output 4.1 on page 24 shows the information for this example.

Output 4.1 Using the DATASETS Procedure with a View Descriptor

The SAS System 1

DATASETS PROCEDURE

Data Set Name: VLIB.EMPPOS Observations: 887
Member Type: VIEW Variables: 5
Engine: SASIOS2K Indexes: 0
Created: 03NOV89:16:17:59 Observation Length: 53
Last Modified: 07SEP89:14:15:58 Deleted Observations: 0
Data Set Type: Compressed: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

4 DEPARTME Char 14 36 $14. $14. DEPARTMENT
2 FIRSTNME Char 10 10 $10. $10. FORENAME
1 LASTNAME Char 10 0 $10. $10. LAST NAME
5 MANAGER Char 3 50 $3. $3. MANAGER
3 POSITION Char 16 20 $16. $16. POSITION TITLE

Note the following points about Output 4.1 on page 24:

� You cannot change a view descriptor’s variable labels using the DATASETS
procedure. The labels are generated to be the complete SYSTEM 2000 item name
when the view descriptor is created, and they cannot be overridden.

� The Created date is when the access descriptor for this view descriptor was created.

� The Last Modified date is the last time the SYSTEM 2000 database was updated.

� The Observations number shown is the highest number of schema records that has
ever occurred in the database. This number of observations does not correspond to
the number of observations that the view descriptor accesses.

For more information on the DATASETS procedure, see the SAS Procedures Guide.

Using SYSTEM 2000 Data in SAS Programs 4 Printing Data 25

Printing Data
Printing SYSTEM 2000 data described by a view descriptor is exactly like printing a

SAS data file, as shown in the following example:

proc print data=vlib.emppos(s2kpw=demo);
title2 ’Subset of EMPLOYEE Database

Information’;
run;

Output 4.2 on page 25 shows the first page of output for this example.

Output 4.2 Results of PROC PRINT

Subset of EMPLOYEE Database Information 1

OBS LASTNAME FIRSTNME POSITION DEPARTME MANAGER

1 PROGRAMMER INFORMATION SY MYJ
2 AMEER DAVID SR SALES REPRESE MARKETING VPB
3 AMEER DAVID JR SALES REPRESE MARKETING VPB
4 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
5 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
6 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
7 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
8 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
9 CHAN TAI SR SALES REPRESE MARKETING TZR
10 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
11 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM
12 FERNANDEZ SOPHIA STANDARDS & PROC INFORMATION SY JLH
13 FREEMAN LEOPOLD SR SYSTEMS PROGR INFORMATION SY JLH

When you use the PRINT procedure, you may want to use the OBS= option, which
enables you to specify the last observation to be processed. This is especially useful
when the view descriptor describes large amounts of data or when you just want to see
an example of the output. The following example uses the OBS= option to print the
first five rows described by the view descriptor VLIB.EMPPOS:

proc print data=vlib.emppos(s2kpw=demo obs=5);
title2 ’First Five Data Rows Described by

VLIB.EMPPOS’;
run;

Output 4.3 on page 26 shows the result of this example.

26 Charting Data 4 Chapter 4

Output 4.3 Results of Using the OBS= Option

First Five Data Rows Described by VLIB.EMPPOS 1

OBS LASTNAME FIRSTNME POSITION DEPARTME MANAGER

1 PROGRAMMER INFORMATION SY MYJ
2 AMEER DAVID SR SALES REPRESE MARKETING VPB
3 AMEER DAVID JR SALES REPRESE MARKETING VPB
4 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
5 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS

In addition to the OBS= option, the FIRSTOBS= option also works with view
descriptors, but the FIRSTOBS= option does not improve performance significantly
because each record must still be read and its position calculated.

For more information on the PRINT procedure, see the SAS Procedures Guide. For
more information on the OBS= and FIRSTOBS= options, see SAS Language Reference:
Dictionary.

Charting Data
CHART procedure programs work with data described by view descriptors just as

they do with SAS data files. The following example uses the view descriptor
VLIB.EMPPOS to create a vertical bar chart of the number of employees each manager
has had:

proc chart data=vlib.emppos(s2kpw=demo);
vbar manager;
title2 ’Data Described by VLIB.EMPPOS’;

run;

Output 4.4 on page 27 shows the information for this example. The number of
employees for each manager is represented by the height of the bar.

Using SYSTEM 2000 Data in SAS Programs 4 Using the FREQ Procedure 27

Output 4.4 Vertical Bar Chart Showing Number of Employees per Manager

Data Described by VLIB.EMPPOS 1

Frequency

8 + **
| **

7 + **
| **

6 + **
| **

5 + ** **
| ** **

4 + ** ** ** ** ** **
| ** ** ** ** ** **

3 + ** ** ** ** ** ** ** ** ** ** ** **
| ** ** ** ** ** ** ** ** ** ** ** **

2 + ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
| ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

1 + ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

A C F G H I J J J J M M O P P R S T V
F P A V E L B C F L A Y M Q R M Q Z P
G W C H B P M S H S J G K J T R B

MANAGER

For more information on the CHART procedure, see the SAS Procedures Guide. If
you have SAS/GRAPH software, you can create colored block charts, plots, and other
graphics based on SYSTEM 2000 data. See SAS/GRAPH Software: Reference for more
information on the kinds of graphics you can produce with this SAS software product.

Calculating Statistics
You can also use statistical procedures with SYSTEM 2000 data. The following

sections show simple examples using the FREQ and MEANS procedures.

Using the FREQ Procedure
Suppose you want to find what percentages of your employees have specific degrees.

The following example calculates the percentage of employees for each degree appearing
in the EMPLOYEE database using the view descriptor VLIB.EMPEDUC:

proc freq data=vlib.empeduc;
tables degree;
title2 ’Data Described by VLIB.EMPEDUC’;

run;

Output 4.5 on page 28 shows the one-way frequency table this example generates.

28 Using the MEANS Procedure 4 Chapter 4

Output 4.5 Frequency Table for Item DEGREE Described by View Descriptor VLIB.EMPEDUC

Data Described by VLIB.EMPEDUC 1

DEGREE/CERTIFICATE

Cumulative Cumulative
DEGREE Frequency Percent Frequency Percent

AA 5 7.9 5 7.9
BA 12 19.0 17 27.0
BS 23 36.5 40 63.5
HIGH SC 6 9.5 46 73.0
MA 3 4.8 49 77.8
MBA 1 1.6 50 79.4
MS 9 14.3 59 93.7
PHD 4 6.3 63 100.0

Frequency Missing = 12

For more information on the FREQ procedure, see the SAS Procedures Guide.

Using the MEANS Procedure
In your further analysis of employee education, suppose you also want to develop

some statistics on employees’ skill types and their years of experience. The view
descriptor VLIB.EMPSKIL accesses values from the EMPLOYEE database for skill
type and years of experience.

The following example generates the mean and sum of the years of experience by
skill type. Also included are the number of observations (N) and the number of missing
values (NMISS).

proc means data=vlib.empskil mean sum n nmiss
maxdec=0;

by skilltyp;
var years;
title2 ’Data Described by VLIB.EMPSKIL’;

run;

Note that the BY statement causes the interface view engine to generate a SYSTEM
2000 ordering-clause so that the data is sorted by skill type. Output 4.6 on page 29
shows some of the information produced by this example.

Using SYSTEM 2000 Data in SAS Programs 4 Using the MEANS Procedure 29

Output 4.6 Statistics on Skill Type and Years of Experience

Data Described by VLIB.EMPSKIL 1

Analysis Variable : YEARS YEARS OF EXPERIENCE

--------------------------- SKILL TYPE= -----------------------------------

N Nmiss Mean Sum

0 6 . .

--------------------------- SKILL TYPE=ACCOUNTING --------------------------

N Nmiss Mean Sum

6 0 8 47

---------------------------- SKILL TYPE=ASSEMBLER --------------------------

N Nmiss Mean Sum

14 0 10 141

--------------------------- SKILL TYPE=CARTOON ART -------------------------

N Nmiss Mean Sum

1 0 1 1

----------------------------- SKILL TYPE=CHINESE ---------------------------

N Nmiss Mean Sum

1 0 8 8

------------------------------ SKILL TYPE=COBOL ----------------------------

N Nmiss Mean Sum

12 0 7 88

For more information on the MEANS procedure, see the SAS Procedures Guide.

30 Using the RANK Procedure 4 Chapter 4

Using the RANK Procedure
You can also use more advanced statistics procedures with SYSTEM 2000 data. The

following example uses the RANK procedure with data described by the view descriptor
VLIB.EMPBD to calculate the order of birthdays for a set of employees and to assign
the variable name DATERNK to the new item created by the procedure. (The
VLIB.EMPBD view descriptor includes a SYSTEM 2000 where-clause to select only the
employees in the Marketing Department.)

proc rank data=vlib.empbd out=mydata.rankexm;
var birthday;
ranks daternk;

run;

proc print data=mydata.rankexm;
title2 ’Order of Marketing Employee Birthdays’;

run;

Output 4.7 on page 30 shows a portion of the result of this example.

Output 4.7 Ranking of Employee Birthdays

Order of Marketing Employee Birthdays 1

OBS LASTNAME FIRSTNME BIRTHDAY DATERNK

1 AMEER DAVID 10OCT51 14.0
2 BROOKS RUBEN R. 25FEB52 15.0
3 BROWN VIRGINA P. 24MAY46 9.0
4 CHAN TAI 04JUL46 10.0
5 GARRETT OLAN M. 23JAN35 2.0
6 GIBSON GEORGE J. 23APR46 8.0
7 GOODSON ALAN F. 21JUN50 13.0
8 JUAREZ ARMANDO 28MAY47 11.0
9 LITTLEJOHN FANNIE 17MAY54 17.0
10 RICHARDSON TRAVIS Z. 30NOV37 4.0
11 RODRIGUEZ ROMUALDO R 09FEB29 1.0
12 SCHOLL MADISON A. 19MAR45 7.0
13 SHROPSHIRE LELAND G. 04SEP49 12.0
14 SMITH JERRY LEE 13SEP42 5.5
15 VAN HOTTEN GWENDOLYN 13SEP42 5.5
16 WAGGONNER MERRILEE D 27APR36 3.0
17 WILLIAMSON JANICE L. 19MAY52 16.0

For more information on the RANK procedure and other advanced statistics
procedures, see the SAS Procedures Guide.

Selecting and Combining Data with the SQL Procedure
The next three examples show you how to select and combine data using the SAS

System SQL procedure.

Using SYSTEM 2000 Data in SAS Programs 4 Combining Data from Various Sources 31

Using the WHERE Clause
Suppose you have two view descriptors, VLIB.EMPPOS and VLIB.EMPEDUC, that

access employee positions and employee education, respectively. You could use the SQL
procedure to combine these files into a single SAS data file. The WHERE clause
specifies that you want a data file containing information on employees who do not have
a degree (that is, the value is missing) and who are in the CORPORATION department.

Note: The SQL procedure displays the variable labels as stored in the view.
However, because you are referencing a view descriptor, you must use the SAS variable
names in the WHERE clause, not the SYSTEM 2000 item names. 4

proc sql;
title ’Corporation Positions With No Degrees’;
select emppos.lastname, position, degree,

departme
from vlib.emppos, vlib.empeduc
where emppos.lastname=empeduc.lastname and

empeduc.degree is missing and
emppos.departme=’CORPORATION’

order by lastname;

Output 4.8 on page 31 shows the result of this example. (Notice that Waterhouse
appears twice in the output. This is because he has two values for schema item C411
SCHOOL, but neither value has an associated value for C412 DEGREE/CERTIFICATE.)

Output 4.8 SQL Procedure Output Using a WHERE Clause

Corporation Positions With No Degrees 1

LAST NAME POSITION TITLE DEGREE/CERTIFICATE DEPARTMENT
--
FAULKNER SECRETARY CORPORATION
KNIGHT SECRETARY CORPORATION
WATERHOUSE PRESIDENT CORPORATION
WATERHOUSE PRESIDENT CORPORATION

Combining Data from Various Sources
Suppose along with view descriptors VLIB.EMPPOS and VLIB.EMPEDUC, you

have a SAS data file, MYDATA.CLASSES, that contains in-house continuing education
classes taken by employees. You can use the SQL procedure to join these sources of
data to form a single output table of employees, their departments, their degrees, and
the in-house classes they have taken. For example:

proc print data=vlib.emppos;
title2 ’Data Described by VLIB.EMPPOS’;

32 Combining Data from Various Sources 4 Chapter 4

run;

proc print data=vlib.empeduc;
title2 ’Data Described by VLIB.EMPEDUC’;

run;

proc print data=mydata.classes;
title2 ’SAS Data File MYDATA.CLASSES’;

run;

Note: If you have many PROC SQL views as well as view descriptors, you may want
to store your PROC SQL views in a separate SAS data library from your view
descriptors. They both have a member type of VIEW, so you cannot tell a view
descriptor from a PROC SQL view. 4

Output 4.9 on page 32, Output 4.10 on page 33, and Output 4.11 on page 33 show the
results of the PRINT procedure performed on the data described by VLIB.EMPPOS,
VLIB.EMPEDUC, and MYDATA.CLASSES.

Output 4.9 Data Described by the View Descriptor VLIB.EMPPOS

Data Described by VLIB.EMPPOS 1

OBS LASTNAME FIRSTNME POSITION DEPARTME MANAGER

1 PROGRAMMER INFORMATION SY MYJ
2 AMEER DAVID SR SALES REPRESE MARKETING VPB
3 AMEER DAVID JR SALES REPRESE MARKETING VPB
4 BOWMAN HUGH E. EXECUTIVE VICE-P CORPORATION CPW
5 BROOKS RUBEN R. JR SALES REPRESE MARKETING MAS
6 BROWN VIRGINA P. MANAGER WESTERN MARKETING OMG
7 CAHILL JACOB MANAGER SYSTEMS INFORMATION SY JBM
8 CANADY FRANK A. MANAGER PERSONNE ADMINISTRATION PRK
9 CHAN TAI SR SALES REPRESE MARKETING TZR
10 COLLINS LILLIAN MAIL CLERK ADMINISTRATION SQT
11 FAULKNER CARRIE ANN SECRETARY CORPORATION JBM
12 FERNANDEZ SOPHIA STANDARDS & PROC INFORMATION SY JLH
13 FREEMAN LEOPOLD SR SYSTEMS PROGR INFORMATION SY JLH

Using SYSTEM 2000 Data in SAS Programs 4 Combining Data from Various Sources 33

Output 4.10 Data Described by the View Descriptor VLIB.EMPEDUC

Data Described by VLIB.EMPEDUC 1

OBS LASTNAME FIRSTNME SEX DEGREE

1
2 AMEER DAVID MALE BS
3 BOWMAN HUGH E. MALE MS
4 BOWMAN HUGH E. MALE BS
5 BOWMAN HUGH E. MALE PHD
6 BROOKS RUBEN R. MALE BS
7 BROWN VIRGINA P FEMALE BA
8 CAHILL JACOB MALE BS
9 CAHILL JACOB MALE BS
10 CANADY FRANK A. MALE MA
11 CANADY FRANK A. MALE BS
12 CHAN TAI MALE PHD
13 CHAN TAI MALE BA

Output 4.11 SAS Data File MYDATA.CLASSES

SAS Data File MYDATA.CLASSES 1

OBS LASTNAME FIRSTNME CLASS

1 AMEER DAVID PRESENTING IDEAS
2 CANADY FRANK A. PRESENTING IDEAS
3 GIBSON MOLLY I. SUPERVISOR SKILLS
4 GIBSON MOLLY I. STRESS MGMT
5 RICHARDSON TRAVIS Z. SUPERVISOR SKILLS

The following SAS code selects and combines data from these three sources (the two
view descriptors and the SAS data file) to create a view, SQL.EDUC. This view
retrieves employee names, their departments, their degrees, and the in-house classes
they’ve taken.

proc sql;
create view sql.educ as

select emppos.lastname, emppos.firstnme,
emppos.departme,empeduc.degree,
classes.class as course
from vlib.emppos

vlib.empeduc,
mydata.classes

34 Combining Data from Various Sources 4 Chapter 4

where (emppos.lastname=empeduc.lastname
and emppos.firstnme=empeduc.firstnme)
and

(empeduc.lastname=classes.lastname
and empeduc.firstnme=classes.firstnme)

order by emppos.lastname, course;

title ’Data Described by SQL.EDUC’;
select * from sql.educ;

The CREATE VIEW statement incorporates a WHERE clause as part of the SELECT
statement. The last SELECT statement retrieves and displays the PROC SQL view,
SQL.EDUC. To select all items from the view, an asterisk (*) is used in place of item
names. The order of the items displayed matches the order of the items as specified in
the first SELECT clause.

Output 4.12 on page 34 shows the data described by the SQL.EDUC view. Note that
the SQL procedure uses the variable labels in the output by default.

Output 4.12 Data Described by the PROC SQL View SQL.EDUC

Data Described by SQL.EDUC 1

LAST NAME FORENAME DEPARTMENT DEGREE/CERTIFICATE
COURSE
--
AMEER DAVID MARKETING BS
PRESENTING IDEAS

AMEER DAVID MARKETING BS
PRESENTING IDEAS

CANADY FRANK A. ADMINISTRATION MA
PRESENTING IDEAS

CANADY FRANK A. ADMINISTRATION BS
PRESENTING IDEAS

GIBSON MOLLY I. INFORMATION SY BA
STRESS MGMT

GIBSON MOLLY I. INFORMATION SY BA
SUPERVISOR SKILLS

RICHARDSON TRAVIS Z. MARKETING BS
SUPERVISOR SKILLS

The view SQL.EDUC lists entries for employees, their departments, and their
degrees that have taken in-house classes. However, it contains duplicate observations
because some employees have more than one degree and have taken more than one
in-house class. To make the data more readable, you can create a final SAS data file,
MYDATA.UPDATE, using the SET statement and the special variable FIRST. This
variable identifies which observation is the first in a particular BY group. You only
need an employee’s name associated once with his or her degrees and in-house
education classes, regardless of the number of degrees or the number of classes taken.

Using SYSTEM 2000 Data in SAS Programs 4 Creating a New Item with the PROC SQL GROUP BY Clause 35

data mydata.update;
set sql.educ;
by lastname course;
if first.lastname then output;

run;

proc print;
title2 ’MYDATA.UPDATE Data File’;

run;

The data file MYDATA.UPDATE contains an observation for each unique combination
of employee, degree, and in-house class. Output 4.13 on page 35 displays this data file.

Output 4.13 SAS Data File MYDATA.UPDATE

MYDATA.UPDATE Data File 1

OBS LASTNAME FIRSTNME DEPARTME DEGREE COURSE

1 AMEER DAVID MARKETING BS PRESENTING IDEAS
2 CANADY FRANK A. ADMINISTRATION MA PRESENTING IDEAS
3 GIBSON MOLLY I. INFORMATION SY BA STRESS MGMT
4 RICHARDSON TRAVIS Z. MARKETING BS SUPERVISOR SKILLS

For more information on the special variable FIRST., see SAS Language Reference:
Dictionary.

Creating a New Item with the PROC SQL GROUP BY Clause
It is often useful to create new items with summary or aggregate functions such as

AVG or SUM. Although you cannot use the ACCESS procedure to create new items, you
can easily use the SQL procedure with data described by a view descriptor to display
output that contains new items.

This example uses the SQL procedure to retrieve and manipulate data from the view
descriptor VLIB.EMPVAC. When this query (as a SELECT statement is often called) is
submitted, it calculates and displays the average vacation time (in hours) for each
department.

proc sql;
title ’Average Vacation Per Department’;
select distinct departme,

avg(accruedv) label=’Avg Vac’
from vlib.empvac
where departme is not missing
group by departme;

The order of the items displayed matches the order of the items as specified in the
SELECT clause of the query. Output 4.14 on page 36 shows the SELECT statement’s
result.

36 Updating a SAS Data File with SYSTEM 2000 Data 4 Chapter 4

Output 4.14 Data Retrieved by a PROC SQL Query

Average Vacation Per Department

DEPARTMENT Avg

ADMINISTRATION 43
CORPORATION 40.72727
INFORMATION SY 61.75
MARKETING 47.61905

For more information on the SQL procedure, refer to the SAS Procedures Guide.

Updating a SAS Data File with SYSTEM 2000 Data
You can update a SAS data file with SYSTEM 2000 data described by a view

descriptor just as you can update a SAS data file using another data file: by using a
DATA step UPDATE statement. In this section, the term transaction data refers to the
new data that are to be added to the original file. Because the SAS/ACCESS interface
to SYSTEM 2000 uses the Version 6 compatibility engine, the transaction data are from
a Version 6 source. The original file can be a Version 6 data file or a Version 7 data file.
See the following sections for an example.

Updating a Version 6 Data File
You can update a Version 6 SAS data file with SYSTEM 2000 data described by a

view descriptor the same as you did with Version 6 of the SAS System. Suppose you
have a Version 6 data file, V6.BIRTHDY, that contains Marketing employee names and
birthdays. The file is out-of-date, and you want to update it with data described by
VLIB.EMPBD. To perform the update, enter the following SAS code:

proc sort data=v6.birthdy;
by lastname;

run;

data mydata.newbday;
update v6.birthdy vlib.empbd;
by lastname firstnme;

run;

In this example, the updated SAS data file, MYDATA.NEWBDAY, is a Version 6 data
file. When the UPDATE statement references the view descriptor VLIB.EMPBD and
uses a BY statement in the DATA step, the BY statement causes the interface view
engine to automatically generate a SYSTEM 2000 ordering-clause for the variable
LASTNAME. Thus, the ordering-clause causes the SYSTEM 2000 data to be presented
to the SAS System in a sorted order so they can be used to update the
MYDATA.NEWBDAY data file. The data file V6.BIRTHDY had to be sorted before the

Using SYSTEM 2000 Data in SAS Programs 4 Updating a Version 6 Data File 37

update, because the UPDATE statement expects the data to be sorted by the BY
variable.

Output 4.15 on page 37, Output 4.16 on page 37, and Output 4.17 on page 38 show
the results of the PRINT procedure on the original data file, the transaction data, and
the updated data file.

Output 4.15 Data File to Be Updated, V6.BIRTHDY

V6.BIRTHDY Data File 1

OBS LASTNAME FIRSTNME BIRTHDAY

1 JONES FRANK 22MAY53
2 MCVADE CURTIS 25DEC54
3 SMITH VIRGINIA 14NOV49
4 TURNER BECKY 26APR50

Output 4.16 Data Described by the View Descriptor, VLIB.EMPBD

Data Described by VLIB.EMPBD 1

OBS LASTNAME FIRSTNME BIRTHDAY

1 AMEER DAVID 10OCT51
2 BROOKS RUBEN R. 25FEB52
3 BROWN VIRGINA P. 24MAY46
4 CHAN TAI 04JUL46
5 GARRETT OLAN M. 23JAN35
6 GIBSON GEORGE J. 23APR46
7 GOODSON ALAN F. 21JUN50
8 JUAREZ ARMANDO 28MAY47
9 LITTLEJOHN FANNIE 17MAY54
10 RICHARDSON TRAVIS Z. 30NOV37
11 RODRIGUEZ ROMUALDO R 09FEB29
12 SCHOLL MADISON A. 19MAR45
13 SHROPSHIRE LELAND G. 04SEP49
14 SMITH JERRY LEE 13SEP42
15 VAN HOTTEN GWENDOLYN 13SEP42
16 WAGGONNER MERRILEE D 27APR36
17 WILLIAMSON JANICE L. 19MAY52

38 Updating a Version 7 Data File 4 Chapter 4

Output 4.17 Updated Data File, MYDATA. NEWBDAY

MYDATA.NEWBDAY Data File 1

OBS LASTNAME FIRSTNME BIRTHDAY

1 AMEER DAVID 10OCT51
2 BROOKS RUBEN R. 25FEB52
3 BROWN VIRGINA P. 24MAY46
4 CHAN TAI 04JUL46
5 GARRETT OLAN M. 23JAN35
6 GIBSON GEORGE J. 23APR46
7 GOODSON ALAN F. 21JUN50
8 JONES FRANK 22MAY53
9 JUAREZ ARMANDO 28MAY47
10 LITTLEJOHN FANNIE 17MAY54
11 MCVADE CURTIS 25DEC54
12 RICHARDSON TRAVIS Z. 30NOV37
13 RODRIGUEZ ROMUALDO R 09FEB29
14 SCHOLL MADISON A. 19MAR45
15 SHROPSHIRE LELAND G. 04SEP49
16 SMITH JERRY LEE 13SEP42
17 SMITH VIRGINIA 14NOV49
18 TURNER BECKY 26APR50
19 VAN HOTTEN GWENDOLYN 13SEP42
20 WAGGONNER MERRILEE D 27APR36
21 WILLIAMSON JANICE L. 19MAY52

Updating a Version 7 Data File
Versions 6 and 7 of the SAS System support different naming conventions, therefore,

there may be character-length discrepancies between the variables in the original data
file and the transaction data. You have two choices when updating a Version 7 data file
with the data described by a view descriptor:

� let the compatibility engine truncate names exceeding 8 characters. The truncated
variables will be added to the updated data file as new variables.

� rename the variables in the Version 7 data file to match the variable names in the
descriptor file.

The following example resolves character-length discrepancies by using the
RENAME DATA step option with the UPDATE statement. The Version 7 data file
V7.CONSULTING_BIRTHDAYS, which contains Consulting names and birthdays, is
updated with data described by VLIB.EMPBD.

proc sort data=v7.consulting_birthdays;
by last_name;

run;

data newdata.new_birthdays;
update v7.consulting_birthdays
(rename=(last_name=lastname

first_name=firstnme

Using SYSTEM 2000 Data in SAS Programs 4 Updating a Version 7 Data File 39

birthdate=birthday)) vlib.empbd;
by lastname firstnme;

run;

In this example, the updated SAS data file NEWDATA.NEW_BIRTHDAYS is a
Version 7 data file stored in the Version 7 SAS library associated with the libref
NEWDATA. The RENAME= DATA step option is used with the UPDATE statement to
rename the variables before the updated data file NEWDATA.NEW_BIRTHDAYS is
created.

Output 4.18 on page 39 and Output 4.19 on page 40 show the results of the PRINT
procedure on the original data file and the updated data file.

Output 4.18 Data File to be Updated, V7.CONSULTING_BIRTHDAYS

V7.Consulting_Birthdays Data File 1

obs last_name first_name birthdate

1 JOHNSON ED 30JAN65
2 LEWIS THOMAS 25MAY54
3 SMITH AMANDA 02DEC60
4 WILSON REBECCA 13APR58

40 Performance Considerations 4 Chapter 4

Output 4.19 Updated Data File, V7.NEW_BIRTHDAYS

V7.NEW_BIRTHDAYS Data File 1

obs lastname firstnme birthday

1 AMEER DAVID 10OCT51
2 BROOKS RUBEN R. 25FEB52
3 BROWN VIRGINA P. 24MAY46
4 CHAN TAI 04JUL46
5 GARRETT OLAN M. 23JAN35
6 GIBSON GEORGE J. 23APR46
7 GOODSON ALAN F. 21JUN50
8 JOHNSON ED 30JAN65
9 JUAREZ ARMANDO 28MAY47
10 LEWIS THOMAS 25MAY54
11 LITTLEJOHN FANNIE 17MAY54
12 RICHARDSON TRAVIS Z. 30NOV37
13 RODRIGUEZ ROMUALDO R 09FEB29
14 SCHOLL MADISON A. 19MAR45
15 SHROPSHIRE LELAND G. 04SEP49
16 SMITH AMANDA 02DEC60
17 SMITH JERRY LEE 13SEP42
18 VAN HOTTEN GWENDOLYN 13SEP42
19 WAGGONNER MERRILEE D 27APR36
20 WILLIAMSON JANICE L. 19MAY52
21 WILSON REBBECA 13APR58

For more information on the UPDATE statement, see SAS Language Reference:
Dictionary.

Note: You cannot update a SYSTEM 2000 database directly using the DATA step,
but you can update a SYSTEM 2000 database using the following procedures: APPEND,
FSEDIT, FSVIEW, QUEST, and SQL. See Chapter 5, “Browsing and Updating SYSTEM
2000 Data,” on page 43 for more information on updating SYSTEM 2000 data. 4

Performance Considerations
While you can generally treat view descriptors like SAS data files in SAS programs,

there are a few things you should keep in mind:
� It is sometimes best to extract SYSTEM 2000 data and place them in a SAS data

file rather than to read them directly. Here are some circumstances when you
should probably extract:

� If you plan to use the same SYSTEM 2000 data in several procedures over a
period of time, you may improve performance by extracting. SAS data files
are organized to provide optimal performance with PROC and DATA steps.
SAS programs using SAS data files often use less CPU time than when they
directly read SYSTEM 2000 data.

� If you plan to read large amounts of data from a large SYSTEM 2000
database and the database is being shared by several users (Multi-User

Using SYSTEM 2000 Data in SAS Programs 4 Performance Considerations 41

environment), your direct reading of the data could adversely affect all users’
response time.

� If you are the owner of a database, and you think that directly reading this
data would present a security risk, you may want to extract the data and not
distribute information about either the access descriptor or view descriptor.

� If you intend to use the data in a particular sorted order several times, it is usually
best to run the SORT procedure on the view descriptor, using the OUT= option.
This is more efficient than requesting the same sort repeatedly (with an ORDER
BY clause) on the SYSTEM 2000 data. Note that you cannot run the SORT
procedure on a view descriptor unless you use the SORT procedure’s OUT= option.

� Sorting data can be resource-intensive, whether it is done with the SORT
procedure, with a BY statement (that generates an ordering-clause), or with an
ordering-clause included in the view descriptor. You should sort data only when it
is needed for your program.

� If you reference a view descriptor in SAS code and the code includes a BY
statement for a variable that corresponds to an item in the SYSTEM 2000
database, the interface view engine automatically generates an ordering-clause for
that variable. Thus, the ordering-clause sorts the SYSTEM 2000 data before it
uses the data in your SAS program. If the SYSTEM 2000 database is very large,
this sorting can affect performance.

If the view descriptor already has an ordering-clause and you specify a BY
statement in your SAS code, the BY statement overrides the view descriptor’s
ordering-clause. When you use a SAS BY statement with a view descriptor, it is
most efficient to use a BY variable that is associated with an indexed SYSTEM
2000 item.

� When writing SAS code and referencing a view descriptor, it is more efficient to
use a WHERE statement in the code than it is to use a subsetting IF statement.
The interface view engine passes the WHERE statement as a SYSTEM 2000
where-clause to the view descriptor, connecting it (using a Boolean AND) to any
where-clause included in the view descriptor. (You can further optimize the
selection criteria by using connecting strings. See “Connecting Strings” on page
139. Applying a WHERE clause to the SYSTEM 2000 data may reduce the
number of entries processed, which often improves performance.

Refer to “Creating and Using View Descriptors Efficiently” on page 95 for more
details on creating efficient view descriptors.

42 Performance Considerations 4 Chapter 4

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Interface to SYSTEM 2000 ® Data Management Software: Reference,
Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/ACCESS® Interface to SYSTEM 2000® Data Management Software:
Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–549–3
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

