
63

C H A P T E R

6
Creating and Loading SYSTEM
2000 Databases

Introduction 63
SYSTEM 2000 BANKING Database Definition 64

SYSTEM 2000 BANKING Data 64

Effect of the Version 6 Compatibility Engine 66

Loading the BANKING Database 66

Subsetting Your Input Data 68
Incremental Load Example 69

Adding New Logical Entries Versus Updating Existing Logical Entries 69

Selecting the Processing Mode for the Load 70

Introduction
The DBLOAD procedure enables you to create and load a SYSTEM 2000 database

from a SAS data set. Optionally, you can create the database definition only and do one
or more incremental loads later.

The DBLOAD procedure constructs SYSTEM 2000 statements to create the database
definition. You can load new logical entries into the database, or you can insert new
records into existing logical entries. The data can come from a SAS data file, from a
view created with the SQL procedure, or from a SYSTEM 2000 database or another
DBMS (using a view created with the ACCESS procedure).

The procedure associates each SAS variable in the input data with a SYSTEM 2000
item and assigns a default item name, number, and type to each item. By default, items
are non-key at level 0. You can use the defaults or change the names, key/non-key
status, and level numbers as necessary. When you are finished customizing the items,
the DBLOAD procedure creates the SYSTEM 2000 database.

The DBLOAD procedure can run in interactive line and batch modes.
This chapter presents examples of creating and loading a database. The examples

create a database named BANKING, with input data that resides in the SAS data file
TRANS.BANKING, shown in “TRANS.BANKING Data File” on page 160. The data
contain information regarding individual checking and savings account transactions.
Also, the section “Incremental Load Example” on page 69 shows a sample incremental
load for an existing database.

Refer to Chapter 8, “DBLOAD Procedure Reference,” on page 97 for reference
information on the DBLOAD procedure.

64 SYSTEM 2000 BANKING Database Definition 4 Chapter 6

SYSTEM 2000 BANKING Database Definition
The examples of the DBLOAD procedure given in this chapter create a BANKING

database and load data into it. In this new database, each logical entry contains data
for one customer.

The ENTRY schema record at level 0 contains two items: the customer name and
customer ID. There is one schema record at level 1; it contains information about the
customer’s checking and savings accounts. The schema record at level 2 contains
information about the transactions for each account.

After you create the BANKING database, you can use the QUEST procedure to issue
a SYSTEM 2000 DESCRIBE statement, which would produce Output 6.1 on page 64,
showing the database definition.

Output 6.1 BANKING Database Definition

SYSTEM RELEASE NUMBER 12.1
DATA BASE NAME IS BANKING
DEFINITION NUMBER 1
DATA BASE CYCLE NUMBER 18

1* CUSTNAME (CHAR X(20))
2* CUSTID (CHAR X(7))

100* RECORD_LEVEL_1 (RECORD)
101* ACCOUNT NUMBER (INTEGER NUMBER 9999 IN 100)
102* ACCOUNT TYPE (CHAR X IN 100)
200* RECORD_LEVEL_2 (RECORD IN 100)

201* TRANS TYPE (CHAR X IN 200)
202* TRANS AMOUNT (NON-KEY MONEY $9(7).99 IN 200)
203* TRANS DATE (DATE IN 200)

Notice that the records are stair-stepped down and to the right, reflecting the record
relationships. That is, record C200 is related to record C100, which is related to the
level 0 record.

SYSTEM 2000 BANKING Data
The input SAS data file for the examples is shown in “TRANS.BANKING Data File”

on page 160. If you want to run the examples, be sure that you sort the observations
before you use the DBLOAD procedure. Sorting groups the observations by accounts for
each customer, which produces data in the sequence required for loading the three-level
BANKING database.

Each observation in the input data file represents one transaction. For example,
John Booker has four transactions, two for each of his accounts. His name and account
numbers are repeated in each observation as shown in Output 6.2 on page 65.

Creating and Loading SYSTEM 2000 Databases 4 SYSTEM 2000 BANKING Data 65

Output 6.2 Sample SAS TRANS.BANKING Data File

OBS CUSTNAME CUSTID ACCTNUM ACCTTYP TRANSTYP TRANSAMT TRANSDAT

1 BOOKER, JOHN 74-9838 8349 S D $40.00 05JUN89
2 LOPEZ, PAT 38-7274 9896 S D $15.67 23JUN89
3 JONES, APRIL 85-4941 4141 C W $213.78 29JUN89
4 BOOKER, JOHN 74-9838 8349 S I $34.76 30JUN89
5 MILLER, NANCY 07-6163 7890 S I $53.98 30JUN89
6 LOPEZ, PAT 38-7274 9896 S I $16.43 30JUN89
7 JONES, APRIL 85-4941 4141 C W $354.70 30JUN89
8 MILLER, NANCY 07-6163 7890 S D $1,245.87 01JUL89
9 JONES, APRIL 85-4941 4141 C D $2,298.65 01JUL89

10 MILLER, NANCY 07-6163 3876 C W $45.98 08JUL89
11 ROGERS, MIKE 96-5052 4576 C D $75.00 10JUL89
12 BOOKER, JOHN 74-9838 3673 C D $150.00 10JUL89
13 LOPEZ, PAT 38-7274 9896 S D $50.00 10JUL89
14 BOOKER, JOHN 74-9838 3673 C W $65.43 13JUL89
15 ROGERS, MIKE 96-5052 4576 C W $12.34 13JUL89
16 ROGERS, MIKE 96-5052 4576 C W $45.67 13JUL89
17 MILLER, NANCY 07-6163 3876 C D $56.79 14JUL89
18 ROGERS, MIKE 96-5052 4576 C W $12.16 15JUL89

After you sort the input data file by customer name and account type, the DBLOAD
procedure loads each customer as a logical entry in the SYSTEM 2000 database.
Redundant data is reduced, thus saving storage space. The logical entry for John
Booker would look like Figure 6.1 on page 65.

Figure 6.1 Sample Logical Entry in BANKING Database

BOOKER, JOHN
74-9838

3673
C

8349
S

D
$150.00
07/10/1989

W
$65.43
07/13/1989

D
$40.00
06/05/1989

I
$34.76
06/30/1989

After you load the TRANS.BANKING input data, you could run this SYSTEM 2000
LIST statement using the QUEST procedure:

list c1, c101, c102, c201, c202;

The output from this LIST statement is shown in Output 6.3 on page 66.

66 Effect of the Version 6 Compatibility Engine 4 Chapter 6

Output 6.3 BANKING Database Data from LIST Command

* CUSTNAME ACCOUNT NUMBER ACCOUNT TYPE TRANS TYPE TRANS AMOUNT

* BOOKER, JOHN 3673 C D $150.00
* W $65.43
* 8349 S D $40.00
* I $34.76
* JONES, APRIL 4141 C W $213.78
* W $354.70
* D $2,298.65
* LOPEZ, PAT 9896 S D $15.67
* I $16.43
* D $50.00
* MILLER, NANCY 3876 C W $45.98
* D $56.79
* 7890 S I $53.98
* D $1,245.87
* ROGERS, MIKE 4576 C D $75.00
* W $12.34
* W $45.67
* W $12.16

Notice, for example, the data values for John Booker - his name appears only once
here, but he has two account numbers and four transactions. Since the examples of the
DBLOAD procedure given in this chapter rank the data values into levels, you have a
clear, logical view of the data.

Effect of the Version 6 Compatibility Engine
You can use both Version 6 and Version 7 data files to create and load SYSTEM 2000

databases with the DBLOAD procedure. However, for Version 7 data files, any variables
whose names are longer than 8 characters will have their names truncated to 8
characters in the access and view descriptors created by the DBLOAD procedure. The
DBLOAD RENAME statement can be used to rename the variables in the SYSTEM
2000 database, but it will not change the variable names in the access and view
descriptors. The shortened names must be used to access the data described by the
view descriptors.

Loading the BANKING Database
You create and load a SYSTEM 2000 database by using the DBLOAD procedure

with options and statements that describe the SYSTEM 2000 database you want to
create and the data you want to load into the database. To load the BANKING
database with the DBLOAD procedure, use the following options and statements:

JCL statements;

Creating and Loading SYSTEM 2000 Databases 4 Loading the BANKING Database 67

proc dbload dbms=s2k data=trans.banking;
s2kpw=mine;
dbn=banking;
accdesc=mylib.bank;
viewdesc=vlib.myview;
s2kmode=m;
rename acctnum=’account number’ 4= ’account type’

5=’trans type’ 6=’trans amount’
7=’trans date’;

index 1=y 2=y 3=y 4=y transtyp=y 7=y;
level 3=1 4=1 5=2 6=2 transdat=2;
list all;

load;
run;

JCL statements;
submit your statements for execution under the SAS System.

proc dbload dbms=s2k data=trans.banking;
invokes the DBLOAD procedure. The DBMS= option specifies the DBMS into
which you want to load data. The DATA= option specifies the SAS data file where
the data reside.

s2kpw=mine;
issues the password that will become the master password for the new database.

dbn=banking;
identifies the database you want to create with the DBN= statement, in this case,
a SYSTEM 2000 database named BANKING.

accdesc=mylib.bank;
specifies the access descriptor libref and member name. The access descriptor is
created automatically by the DBLOAD procedure. In this example, the name
specified is MYLIB.BANK. The default access descriptor name would be
WORK.BANKING.ACCESS, where BANKING is the name of the database to be
created. The access descriptor member name must not already exist when you are
creating a new database.

viewdesc=vlib.myview;
specifies the view descriptor libref and member name for the new database. The
view descriptor is created automatically by the DBLOAD procedure. In this
example, the specified name is VLIB.MYVIEW. The default view descriptor name
would be WORK.BANKING.VIEW, where BANKING is the name of the database
to be created. The view descriptor member name must not already exist when you
are creating a new database.

s2kmode=m;
creates the new database in a Multi-User environment. The default (S) is a
single-user job. For a Multi-User session, the new database files can be allocated
when the session is initialized or dynamically allocated during execution using the
ALLOC command (Release 12.0 and later). For a single-user job, you must allocate
the database files in the JCL for the job.

rename acctnum=’account number’ 4= ’account type’ 5=’trans type’
6=’trans amount’ 7=’trans date’;

changes the names of the last five items with the RENAME statement. You always
use a SAS variable on the left-hand side of the equal sign. You can use either the
SAS variable name or its positional equivalent as shown in the LIST statement,
and you can rename as many items as you want in one RENAME statement.

68 Subsetting Your Input Data 4 Chapter 6

index 1=y 2=y 3=y 4=y transtyp=y 7=y;
defines items as key (indexed) with the INDEX statement. This statement makes
key items of all items except TRANS AMOUNT. TRANS AMOUNT is not listed, so
it defaults to non-key. You always use a SAS variable on the left-hand side of the
equals sign. You can use either the SAS variable name or its positional equivalent
as shown in the LIST output, and you can index as many items as you want in one
INDEX statement.

level 3=1 4=1 5=2 6=2 transdat=2;
changes the level number of an item with the LEVEL statement. In this example,
ACCOUNT NUMBER and ACCOUNT TYPE become items in a level 1 record;
TRANS TYPE, TRANS AMOUNT, and TRANS DATE become items in a level 2
record. The DBLOAD procedure automatically defines the schema record names
RECORD_LEVEL_1 and RECORD_LEVEL_2, respectively, and assigns
appropriate component numbers.

You always use a SAS variable on the left-hand side of the equals sign. You can
use either the SAS variable name or its positional equivalent as shown in the
LIST output, and you can change the level number for as many items as you want
in one LEVEL statement.

list all;
lists the items, levels, and index settings with the LIST statement.

load; run;
executes the DBLOAD procedure and creates and loads the database.

The output of the LIST statement is shown in Output 6.4 on page 68.

Output 6.4 LIST Statement Output

Command ===>

PROC DBLOAD for SYSTEM 2000 - OPTIONS FOLLOW:
Input data set= TRANS BANKING DATA
View descriptor= VLIB MYVIEW VIEW
Access descriptor= MYLIB BANK ACCESS
Database name= BANKING
S2KMODE= M
Label option= N
Create option= N
S2KLOAD= N

------------SAS NAME---LEVEL---INDEX---COMPONENT NAME----
1 CUSTNAME YES CUSTNAME
2 CUSTID YES CUSTID
3 ACCTNUM 1 YES ACCOUNT NUMBER
4 ACCTTYP 1 YES ACCOUNT TYPE
5 TRANSTYP 2 YES TRANS TYPE
6 TRANSAMT 2 TRANS AMOUNT
7 TRANSDAT 2 YES TRANS DATE

Subsetting Your Input Data
To subset your input data, use the SAS WHERE statement. Creating a subset of the

input data is useful if you need to transfer only a portion of your SAS data to a

Creating and Loading SYSTEM 2000 Databases 4 Adding New Logical Entries Versus Updating Existing Logical Entries 69

SYSTEM 2000 database. For example, you might want to include only observations in
which the value in a variable is greater than a specified number. Here is an example
using the SAS WHERE statement:

proc dbload dbms=s2k data=trans.banking;
s2kpw=mine;
dbn=banking;
s2kmode=m;
where acctnum > 4141;

load;
run;

This example subsets the input data to include only those observations in which the
SAS variable ACCTNUM has a value greater than 4141. Here, none of the items are
renamed or indexed, and they are all at level 0.

Note that you use the SAS variable name in the WHERE statement, not the
SYSTEM 2000 item name. For information on the syntax of the SAS WHERE
statement, see SAS Language Reference: Dictionary.

Incremental Load Example
This section illustrates how to load more logical entries into an existing SYSTEM

2000 database. You invoke the DBLOAD procedure and specify the input data file and
the appropriate view descriptor. The view descriptor contains the database name, the
component names, levels, and so on. It also contains the password for the database and
the access mode (single user or Multi-User). You can use a SAS WHERE clause to limit
the input. (If the view descriptor includes a SYSTEM 2000 where-clause, it does not
affect an incremental load.)

To perform the incremental load with the DBLOAD procedure, use the following
options and statements. In this example, the data file is TRANS.INCLOAD.

JCL statements;

proc dbload dbms=s2k data=trans.incload;
viewdesc=vlib.myview;

load;
run;

proc dbload dbms=s2k data=trans.incload;
invokes the DBLOAD procedure. The DBMS= option specifies the DBMS into
which you want to load data. The DATA= option specifies the SAS data file where
the data reside.

viewdesc=vlib.myview;
specifies the appropriate view descriptor with the VIEWDESC= statement.

load; run;
executes the DBLOAD procedure and loads the database.

Adding New Logical Entries Versus Updating Existing Logical Entries
Incremental loads can add either new logical entries or new records to existing

records. Both types of incremental loading are performed the same way, as shown in
the above example. How then does the SYSTEM 2000 engine know whether to insert
new logical entries or append records to existing logical entries?

70 Selecting the Processing Mode for the Load 4 Chapter 6

One simple way for the engine to tell the difference is whether you have issued the
S2KLOAD statement. If so, the input observations are treated as new logical entries.
Several observations may be collected to form each logical entry, but they are all new.
Your observations must be sorted in order to achieve the correct result.

If you did not issue the S2KLOAD statement, your results depend on the order of
your observations and whether your view descriptor contains a BY key. A BY key
identifies the placement of inserted data records in an incremental load. See “Using a
BY Key to Resolve Ambiguous Inserts” on page 130. When using a BY key, it is best
(less ambiguous) if your view descriptor and the BY key begin at level 0, even if you are
loading records only at some lower level.

Selecting the Processing Mode for the Load

Two modes of processing are available when you are loading data with the DBLOAD
procedure: insert mode and optimized load mode. Optimized load mode is a fast,
efficient way to add new logical entries to the database. Insert mode must be used to
add data records to existing logical entries. For details about these processing modes,
see the S2KLOAD statement discussion in “Procedure Statements” on page 99.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Interface to SYSTEM 2000 ® Data Management Software: Reference,
Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/ACCESS® Interface to SYSTEM 2000® Data Management Software:
Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–549–3
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

