
73

C H A P T E R

7
ACCESS Procedure Reference

Introduction 73
Syntax 74

PROC ACCESS Statement Options 74

Specifying Passwords for SAS/ACCESS Descriptors 75

Assigning SAS System Passwords 76

Procedure Statements 77
SYSTEM 2000 Where-Clause 90

Syntax 90

Examples 92

Unary operators 92

Binary operators 93

Ternary operators 93
CONTAINS operator 93

Combining conditions with AND and OR 93

Not qualifying a condition with NOT 93

Designating specific types of records with HAS 94

Specifying position with AT 94
Processing order 94

SYSTEM 2000 Ordering-clause 94

Syntax 95

Example 95

Creating and Using View Descriptors Efficiently 95
ACCESS Procedure Data Conversions 96

Introduction
The ACCESS procedure enables you to create and edit the descriptor files used by

the SAS/ACCESS interface to SYSTEM 2000 software.
This chapter provides reference information for the ACCESS procedure and its

options and statements. First, the PROC ACCESS statement is presented, then each of
the options and statements. For examples of how to use the statement options, refer to
Chapter 3, “Defining SAS/ACCESS Descriptor Files,” on page 19.

“Creating and Using View Descriptors Efficiently” on page 95 presents several
efficiency considerations for using the SAS/ACCESS interface to SYSTEM 2000
software. The final section, “ACCESS Procedure Data Conversions” on page 96,
summarizes how the SAS/ACCESS interface treats each type of SYSTEM 2000 data.

For information on SAS data sets and data libraries and their naming conventions,
or if you need help with the terminology used in this procedure description, refer to the
SAS Language Reference: Dictionary and the SAS documentation for your host system.
Help is also available from within the SAS System by choosing Help then

74 Syntax 4 Chapter 7

SAS System Help from the menu bar, then Help on SAS System Products and
SAS/ACCESS in the help system.

Syntax

PROC ACCESS <options>;

CREATE libref.member-name.ACCESS|VIEW;
DATABASE<=>database-name <S2KPW<=>password

<MODE<=>SINGLE|MULTI>>;
ASSIGN<=>YES|NO;
BYKEY variable-identifier<=>YES|NO

< ...variable-identifier-n<=>YES|NO>;
DROP variable-identifier

< ...variable-identifier-n>;
FORMAT variable-identifier<=>SAS-format-name

< ...variable-identifier-n<=>SAS-format-name-n>;
INFORMAT variable-identifier<=>SAS-informat-name

< ...variable-identifier-n<=>SAS-informat-name-n>;
LENGTH variable-identifier<=>item-width

< ...variable-identifier-n
<=>item-width-n>;

LIST <ALL|VIEW|variable-identifier>;
QUIT;
RENAME variable-identifier<=>SAS-variable-name

< ...variable-identifier-n<=>SAS-variable-name-n>;
RESET ALL|variable-identifier < ...variable-identifier-n>;
SELECT ALL|variable-identifier < ...variable-identifier-n>;
SUBSET selection-criteria;
S2KPW<=>password <MODE <=>MULTI|SINGLE>;
UNIQUE<=>YES|NO;

PROC ACCESS Statement Options
The following options can be used with the PROC ACCESS statement.

ACCDESC= libref.access-descriptor
identifies an access descriptor. You use this option to create a view descriptor from
an existing access descriptor.

If the access descriptor has been assigned a SAS password, you may need to
specify the password in the ACCDESC= option in order to create a view descriptor
based on the access descriptor. Whether you specify the password depends on the
level of protection that was assigned to the access descriptor. For information on
assigning and using passwords, see “Specifying Passwords for SAS/ACCESS
Descriptors” on page 75.

If you create the access descriptor and the view descriptor in the same execution
of PROC ACCESS, omit the ACCDESC= option because you specify the access
descriptor’s name in the CREATE statement.

AD= and ACCESS= are aliases for this option.

ACCESS Procedure Reference 4 Specifying Passwords for SAS/ACCESS Descriptors 75

DBMS= S2K
specifies that you want to invoke the SAS/ACCESS interface to SYSTEM 2000
software. This option is required when creating a descriptor, but not when
extracting DBMS data.

OUT=libref.member
specifies the SAS data file to which DBMS data are written. The OUT= option is
used only with the VIEWDESC= option.

VIEWDESC=libref.view-descriptor
specifies a view descriptor that accesses the DBMS data. VIEWDESC= is used
only with the OUT= option.

VIEW= and VD= are aliases for this option.

See Appendix 3, “Example Data,” on page 143 for examples of using options in
procedure statements.

Specifying Passwords for SAS/ACCESS Descriptors
The SAS/ACCESS interface requires both access descriptors and view descriptors to

have a SYSTEM 2000 password to access the database. The password for the access
descriptor determines the picture of the database used to create view descriptors. The
password for the view descriptor determines the data you see, and your ability to subset
and edit it through the descriptor.

You specify the password for the access descriptor as part of the DATABASE
statement. For the view descriptor, you have the option to store the SYSTEM 2000
password in the view descriptor (S2KPW statement) or submit it as a SAS data set
option. Storing the SYSTEM 2000 password in a view descriptor enables all who use it
to have access to its data. Relying on the data set option means giving users access to
database passwords.

To protect your database passwords, you may want to store the SYSTEM 2000
password in the view descriptor and assign one or more SAS passwords to control access
to the descriptor file. You can also assign SAS passwords to control who can create view
descriptors from an access descriptor. To access the descriptor files, you specify the SAS
password as a data set option. For example, to create a view descriptor, you would
specify the access descriptor password after the ACCDESC= option as follows:

proc access dbms=s2k accdesc=mylib.employee
(alter=reward);
create vlib.customer.view;
select all;

run;

You must first create descriptor files before assigning SAS passwords to them.
Table 7.1 on page 76 summarizes the levels of protection that SAS System passwords

have and their effects on descriptor files.

76 Assigning SAS System Passwords 4 Chapter 7

Table 7.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor from
being read or edited

view descriptor protects DBMS data from being
read or updated

protects DBMS data
from being updated

protects descriptor from
being read or edited

For detailed information about the levels of protection and the types of SAS
passwords you can use, refer to SAS Language Reference: Dictionary. For more
information about protecting access and view descriptors, see “Ensuring Data Security”
on page 123. The following section describes how you assign SAS System passwords to
descriptors.

Assigning SAS System Passwords
You can assign, change, or clear a password for an access descriptor, a view

descriptor, or another SAS file in the SAS System by using the DATASETS procedure’s
MODIFY statement. Here is the basic syntax for using PROC DATASETS to assign a
password to an access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY= libref MEMTYPE= member-type;

MODIFY member-name (password-level = password-modification);

RUN;

In this syntax statement, the password-level argument can have one or more of the
following values: READ=, WRITE=, ALTER=, or PW=. PW= assigns read, write, and
alter privileges to a descriptor or data file. The password-modification argument
enables you to assign a new password or to change or delete an existing password.

For example, this PROC DATASETS statement assigns the password REWARD with
the ALTER level of protection to the access descriptor MYLIB.EMPLOYE:

proc datasets library=mylib memtype=access;
modify employe (alter=reward);

run;

In this case, users are prompted for the password whenever they try to browse or edit
the access descriptor or to create view descriptors that are based on MYLIB.EMPLOYE.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.CUSTACCT:

proc datasets library=vlib memtype=view;
modify custacct (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read the
DBMS data, or try to browse or edit the view descriptor VLIB.CUSTACCT itself. You
need both levels to protect the data and descriptor from being read. However, a user
could still update the data accessed by VLIB.CUSTACCT, for example, by using a
PROC SQL UPDATE. Assign a WRITE level of protection to prevent data updates.

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

ACCESS Procedure Reference 4 Procedure Statements 77

proc datasets library=vlib memtype=view;
modify custacct (read=mypw/ alter=mydept/);

run;

In the following example, PROC DATASETS sets a READ and ALTER password for
view descriptor VLIB.CUSTINFO. PROC PRINT tries to use the view descriptor with
both an invalid and valid password.

/* Assign passwords */
proc datasets library=vlib memtype=view;

modify custinfo (read=r2d2 alter=c3po);
run;

/* Invalid password given */
proc print data=vlib.custinfo (pw=r2dq);

where ssn = ’178-42-6534’;
title2 ’Data for 178-42-6534’;

run;

/* Valid password given */
proc print data=vlib.custinfo (pw=r2d2);

where ssn = ’178-42-6534’;
title2 ’Data for 178-42-6534’;

run;

Refer to SAS Language Reference: Dictionary for more examples of assigning,
changing, deleting, and using SAS System passwords.

Procedure Statements
Within SAS/ACCESS software, there are two categories of procedure statements:

database-description statements and editing statements. In SAS/ACCESS interface to
SYSTEM 2000 software, the DATABASE statement and its options describe the
database. All other statements, except CREATE, are considered to be editing
statements and are optional. The DATABASE statement is specified after the CREATE
statement but before any editing statements.

The options and statements you use with the ACCESS procedure depends on your
task.

For example, to create an access descriptor:

proc access dbms=s2k;
create mylib.employe.access;

DATABASE statement;
optional editing statement(s);

run;

To create an access descriptor and a view descriptor:

proc access dbms=s2k;
create mylib.employe.access;

DATABASE statement;
optional editing statement(s);

create vlib.emppos.view;
optional editing statement(s);

run;

78 ASSIGN= 4 Chapter 7

To create a view descriptor from an existing access descriptor:

proc access dbms=s2k accdesc=mylib.employe;
create vlib.emppos.view;

optional editing statement(s);
run;

The procedure statements are described in the following sections.

ASSIGN=
Generates SAS names and formats that are based on item names and data types

Optional statement

Applies to: access descriptor

Syntax
ASSIGN=|AN= YES|NO|Y|N;

Details The ASSIGN= statement causes view descriptors to inherit the SAS variable
names and formats of the parent access descriptor at the time that the access descriptor
is created. That is, if ASSIGN=Y, the variable names generated for the access
descriptor will be used in all derived view descriptors, regardless of the statements used
in the view descriptor. If ASSIGN=NO (or N), which is the default value, you specify
the SAS variable names and formats when you create a view descriptor from this access
descriptor. You use the RENAME, FORMAT, INFORMAT, LENGTH, BYKEY, and
UNIQUE statements to change the variable names and attributes during a descriptor’s
creation.

The ASSIGN= statement generates SAS variable names based on the first eight,
non-blank characters of the item names and SAS variable attributes based on the
items’ data types. You can change the names and formats, but only in the access
descriptor. The names saved in the access descriptor are the ones that will be used in
the view descriptors.

When a new CREATE statement is entered, the ASSIGN= statement is reset to the
default NO value.

AN is the alias for the ASSIGN statement.

BYKEY
Designates one or more items as sort keys

Optional statement
Applies to: access descriptor and view descriptor

Syntax
BYKEY variable-identifier<=> YES|NO

ACCESS Procedure Reference 4 CREATE 79

< ...variable-identifier-n<=> YES|NO>;

Details The BYKEY statement designates one or more items as BY keys and in a
view descriptor, also selects them for the view.

The BYKEY statement cannot be used to change the BYKEY value in a view
descriptor if the ASSIGN= statement in the access descriptor from which the view
descriptor is derived has a value of YES (or Y).

The BYKEY statement applies to data items. The variable-identifier argument can
be one of the following:

� current SAS name for the data item

Note: Any name on the lefthand side of the equal sign must be a SAS name,
not a SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must use the item number or component number (C-number) on the
lefthand side of the equal sign. 4

� positional equivalent, which is the number that represents the item, as given by
the LIST statement

� SYSTEM 2000 C-number of the database item.

For example, if you want to make the third item a BY key, issue the following
statement:

bykey 3=y;

CREATE

Creates an access descriptor or view descriptor

Required statement

Applies to: access descriptor and view descriptor

Syntax
CREATE libref.member-name.ACCESS|VIEW;

Details The CREATE statement identifies an access descriptor or view descriptor
that you want to create.

To create the descriptor, use a three-level name. The first level is the libref of the
SAS data library where you want the descriptor stored. You can store the descriptor in
a temporary (WORK) or permanent SAS data library. The second level is the access
descriptor’s name (that is, the member name). The third level is the type of SAS file:
ACCESS for access descriptors and VIEW for view descriptors.

You can create access descriptors and view descriptors in the same procedure
statement (view descriptors directly following the access descriptors that they describe),
unless you specify the ACCDESC= option in the PROC ACCESS statement. Then, the
CREATE statement will create only view descriptors.

When you submit a CREATE statement for processing, the SAS/ACCESS interface
checks the statement for errors. The descriptor is not actually written until the next
CREATE or RUN statement is processed. If the SAS/ACCESS interface finds errors,

80 DATABASE 4 Chapter 7

error messages are written to the SAS log and processing is terminated. After you
correct the error, resubmit the statements for processing.

The database-identification and DROP statements cannot be specified when creating
a view descriptor.

DATABASE

Specifies the SYSTEM 2000 database to use

Required statement

Applies to: access descriptor

Syntax
DATABASE<=>database-name S2KPW<=>password <MODE<=>access-mode>;

Details The DATABASE statement specifies the name of the SYSTEM 2000 database
that you want to access, its password, and optionally the access mode. The DATABASE
statement should immediately follow the CREATE statement for the access descriptor
being created.

The database name can be one to 16 characters long. Names longer than 16
characters will be truncated without an error message. If the database name contains
blanks or special characters, enclose the name in single or double quotes.

The database password, submitted with the S2KPW argument, determines the
picture of the database that can be used to create view descriptors. For information
about acceptable passwords, see “SYSTEM 2000 Passwords” on page 17.

The syntax for the S2KPW argument is:

S2KPW<=>password

The password can be one to four characters long, with no embedded blanks, and
optionally enclosed in single quotes. Passwords longer than four characters will be
truncated with a warning message. If you specify a special character for a password, it
must be a single character (that is, a one-character password) and enclosed in single
quotes. This argument is required.

The syntax for the MODE argument is:

<MODE<=> SINGLE|MULTI>

The MODE argument specifies your mode of accessing SYSTEM 2000 software.
SINGLE means the database is in a single-user environment (that is, a database in
your SAS program environment). MULTI means the database files are in the
Multi-User environment. The default value is MULTI. The SINGLE value can be
abbreviated as SU or S. The MULTI value can be abbreviated as MU or M.

DB, DBN, and S2KDB are aliases for the DATABASE statement.

DROP
Drops the specified item so that it is not available for selection

ACCESS Procedure Reference 4 FORMAT 81

Optional statement

Applies to: access descriptor

Syntax
DROP variable-identifier < ...variable-identifier-n>;

Details The DROP statement drops the specified variable from the access descriptor
so that the variable is not available for selection when creating a view descriptor. The
specified variable in the database remains unaffected by this statement.

If you drop a record, every item in the record is dropped.
The variable-identifier argument can be one of the following:
� current SAS name for the item
� positional equivalent, which is the number that represents the item, as given by

the LIST statement
� SYSTEM 2000 C-number of the database item.

For example, if you want to drop the third and fifth items, submit the following
statement:

drop 3 5;

If you are creating an access descriptor in interactive line mode and want to mark an
item as display that was previously marked as non-display with the DROP statement,
use the RESET statement for that item. Note, however, that this will also reset the
various attributes of that item to their default values (such as name, format, and so on).

FORMAT

Assigns a SAS format to a SYSTEM 2000 data item

Optional statement

Applies to: access descriptor and view descriptor

Syntax
FORMAT variable-identifier <=> SAS-format-name

< ...variable-identifier-n<=>SAS-format-name-n>;

Details The FORMAT statement changes a SAS variable format from its default
format; the default format is based on the database item’s data type. You can enter
formats for as many items as necessary using one FORMAT statement.

You cannot specify the FORMAT statement for a record.
The variable-identifier argument can be one of the following:
� current SAS variable name for the item

Note: Any name on the lefthand side of the equal sign must be a SAS name,
not a SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is

82 INFORMAT 4 Chapter 7

omitted, you must use the item number or component number (C-number) on the
lefthand side of the equal sign. 4

� positional equivalent, which is the number that represents the item, as given by
the LIST statement

� SYSTEM 2000 C-number of the database item.

For example, if you want to associate the DATE9. format with the fifth item in the
access descriptor, issue the following statement:

format 5 date9.;

You can only use the FORMAT statement with a view descriptor if the ASSIGN
statement used when creating the access descriptor was specified with the NO value.
When used in a view descriptor, the FORMAT statement automatically selects the
reformatted item. That is, if you change the format associated with an item, you do not
have to issue a SELECT statement for that item.

FMT is an alias for the FORMAT statement.

INFORMAT

Assigns a SAS informat to a SYSTEM 2000 item

Optional statement

Applies to: access descriptor and view descriptor

Syntax
INFORMAT variable-identifier<=> SAS-informat-name < ...variable-identifier-n<=>

SAS-informat-name-n>;

Details The INFORMAT statement changes a SAS variable informat from its default
informat; the default informat is based on the database item’s data type. You can enter
as many informats as necessary using one INFORMAT statement.

You cannot specify the INFORMAT statement for a record.
The variable-identifier argument can be one of the following:
� current SAS variable name for the item

Note: Any name on the lefthand side of the equal sign must be a SAS name,
not a SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must use the item number or component number (C-number) on the
lefthand side of the equal sign. 4

� positional equivalent, which is the number that represents the item, as given by
the LIST statement

� SYSTEM 2000 C-number of the database item.

For example, if you want to associate the DATE7. informat with the second item in
the access descriptor, issue the following statement:

informat 2 DATE7.;

You can only use the INFORMAT statement with a view descriptor if the ASSIGN
statement in the access descriptor from which it is derived is specified with the NO

ACCESS Procedure Reference 4 LIST 83

value. When used for a view descriptor, the INFORMAT statement automatically
selects the reformatted item. That is, if you change the informat associated with an
item, you do not have to issue a SELECT statement for that item.

INF is an alias for the INFORMAT statement.

LENGTH

Assigns a character width to a data item

Optional statement

Applies to: access descriptor and view descriptor

Syntax
LENGTH variable-identifier<=> item-width

< ...variable-identifier-n<=> item-width-n>;

Details The LENGTH statement changes the item width in characters from the
default width; the default item width is based on the database item’s picture
specification. This statement enables the SAS System to deal with S2K CHARACTER/
TEXT items that overflow their widths (the SAS System does not permit variable-length
character variables). The item-width argument can be no greater than 200.

The LENGTH statement only applies to data items; you cannot specify a length for a
record.

The variable-identifier argument can be one of the following:
� current SAS name for the item

Note: Any name on the lefthand side of the equal sign must be a SAS name,
not a SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must use the item number or component number (C-number) on the
lefthand side of the equal sign. 4

� positional equivalent, which is the number that represents the item, as given by
the LIST statement

� SYSTEM 2000 C-number of the database item.

You can only use the LENGTH statement with a view descriptor if the ASSIGN
statement in the access descriptor from which it is derived is specified with the NO
value. When used for a view descriptor, the LENGTH statement automatically selects
the reformatted item. That is, if you change the length associated with an item, you do
not have to issue a SELECT statement for that item.

LEN and S2KLEN are aliases for the LENGTH statement.

LIST

Lists all or selected items in the descriptor and information about the items

Optional statement

84 QUIT 4 Chapter 7

Applies to: access descriptor and view descriptor

Syntax
LIST <ALL|VIEW|variable-identifier>;

Details The LIST statement lists all or selected items in the descriptor and attributes
of items, including their positional equivalents, SYSTEM 2000 component numbers,
default SAS variable names based on the first eight, non-blank characters of the
SYSTEM 2000 item names, and the default SAS formats based on the SYSTEM 2000
data types.

Note: The SYSTEM 2000 item names are not listed in the log because of their
possible 40 or more character length. 4

The LIST information is written to your SAS log.
The LIST statement can take one or more of the following arguments:

ALL lists all items and item attributes available in the access descriptor
for selection. If an item has been dropped when creating an access
descriptor, *NON-DISPLAY* is shown next to the item’s description.
When creating a view descriptor, items selected for the view are
shown with *SELECTED* next to the item’s description.

If you do not specify an argument, the default is ALL.

VIEW lists all items and item attributes in the access descriptor selected
for the view descriptor and any subsetting or ordering criteria. The
VIEW argument is only valid when creating a view descriptor.

variable-
identifier

the current SAS name, the positional equivalent (which is the
number that represents the item, as given by the LIST statement),
or the SYSTEM 2000 C-number of the database item.

If you specify a record in a LIST statement, all the data items in
that record are listed.

For example, if you want to list information about the fifth item
in the database, issue the following statement:

list 5;

If you want to list all of the items in the database followed by the items selected for
the view descriptor, issue the following statement:

list all view;

QUIT

Terminates the procedure without any further descriptor creation

Optional statement

Applies to: access descriptor and view descriptor

ACCESS Procedure Reference 4 RENAME 85

Syntax
QUIT|EXIT;

Details The QUIT statement terminates the ACCESS procedure without any further
descriptor creation.

EXIT is the alias for the QUIT statement.

RENAME

Enters or modifies the SAS name for an item

Optional statement

Applies to: access descriptor and view descriptor

Syntax
RENAME variable-identifier<=> SAS-variable-name

< ...variable-identifier-n<=>SAS-variable-name-n>;

Details The RENAME statement enters or modifies the SAS variable name
associated with a database item. If you are creating a view descriptor from an existing
access descriptor that has an ASSIGN value of YES (or Y), you cannot use the
RENAME= statement.

When creating an access descriptor and ASSIGN=YES, you can use the RENAME
statement to assign new SAS names to the default SAS names and these new names
will always be used when creating view descriptors based on the access descriptor.

When ASSIGN=NO, any names assigned in the access descriptor can be changed in
the view descriptor with the RENAME statement, but the new name applies only in
that view.

The variable-identifier argument can be one of the following:

� current SAS variable name for the item

Note: Any name on the lefthand side of the equal sign must be a SAS name,
not a SYSTEM 2000 name. In an access descriptor, if the ASSIGN statement is
omitted, you must use an item number or component number (C-number) on the
lefthand side of the equal sign. 4

� positional equivalent from the LIST statement, which is the number that
represents the item’s place in the descriptor

� SYSTEM 2000 C-number of the database item.

For example, if you want to modify the SAS variable names associated with the
fourth and fifth items in a descriptor, issue the following statement:

rename 4=hire birthday=birth;

86 RESET 4 Chapter 7

When creating a view descriptor, the RENAME statement automatically selects the
renamed item for the view. That is, if you rename the SAS variable associated with a
database item, you do not have to issue a SELECT statement for that item.

RESET

Resets specified or all items to their default settings

Optional statement

Applies to: access descriptor and view descriptor

Syntax
RESET ALL|variable-identifier

< ...variable-identifier-n>;

Details The RESET statement resets all or the specified items to their default values.
When creating an access descriptor, the default setting for a SAS variable name is a

blank, unless you enter SAS variable names using the RENAME statement or include
the ASSIGN=YES statement. Therefore, when using the RESET statement, the SAS
variable names can be reset to the default name generated by the ACCESS procedure
(that is, the first eight characters of the variable name) or to a blank. Items dropped
with a DROP statement also become available and can be selected in view descriptors
based on this access descriptor.

When creating a view descriptor, the results depend on the setting of the ASSIGN
statement in the access descriptor on which the view descriptor is based. If ASSIGN=Y,
the RESET statement cannot be used in the view descriptor. If ASSIGN=NO, if you
reset SAS variable names and variable attributes and then select them later within the
same procedure execution, the SAS variable names and attributes are reset to the
default values generated from the item names and data types. In a view descriptor, the
RESET statement clears any items specified in the SELECT statement (that is, it
unselects the items).

The RESET statement can take one or more of the following arguments:

ALL resets all the database items defined in the access descriptor to their
default name and attribute settings. When creating a view
descriptor, the ALL argument resets all the items that have been
selected, so that no items are selected for the view; you can then use
the SELECT statement to select new items. See the SELECT
statement later in this chapter for more information.

variable-
identifier

can be the current SAS name, the positional equivalent (which is the
number that represents the item as given by the LIST statement),
or the SYSTEM 2000 component number of the database item.

For example, if you want to reset the SAS variable name and
attribute associated with the third item, issue the following
statement:

reset 3;

ACCESS Procedure Reference 4 SUBSET 87

SELECT
Selects the items in the access descriptor that are to be included in the view descriptor

Optional statement
Applies to: view descriptor

Syntax
SELECT ALL|variable-identifier

< ...variable-identifier-n>;

Details The SELECT statement selects the database items in the access descriptor to
be included in the view descriptor.

The SELECT statement can take one or more of the following arguments:

ALL includes in the view descriptor all of the items defined in the access
descriptor that were not dropped.

variable-
identifier

can be the current SAS name, the positional equivalent (which is the
number that represents the item as given by the LIST statement),
or the SYSTEM 2000 component number of the database item.

For example, if you want to select the first three items, issue the
following statement:

select 1 2 3;

You can select as many items as you want using one SELECT
statement.

SELECT statements are cumulative within the same view creation. That is, if you
submit the following two SELECT statements, items 1, 5, and 6 are selected (not just
items 5 and 6):

select 1;
select 5 6;

To clear all of your current selections when creating a view descriptor, you can use
the RESET ALL statement; you can then use another SELECT statement to select new
items.

Selecting a record selects all items within the record.

SUBSET
Adds or modifies selection criteria defined for a view descriptor

Optional statement
Applies to: view descriptor

Syntax
SUBSET selection-criteria;

88 S2KPW 4 Chapter 7

Details The SUBSET statement specifies the selection criteria when creating a view
descriptor This statement is optional, but omitting it causes the view to retrieve all the
data in the database. For example, you can issue the following statement:

subset "where amount<1010";

If you have multiple selection criteria, enter them all in one SUBSET statement, as
in the following example:

subset "where amount<1010"
"ob amount";

The quoted strings are concatenated and passed to SYSTEM 2000 software for
processing.

For more information on selection and ordering criteria for the SAS/ACCESS
interface to SYSTEM 2000 data management software, refer to your Release 6.06
SAS/ACCESS documentation.

To clear the selection criteria, issue a SUBSET statement without an argument, as
follows:

subset;

S2KPW

Stores the SYSTEM 2000 password and access mode for a view descriptor

Optional statement

Applies to: view descriptor

Syntax
S2KPW<=>password <MODE<=>MULTI|SINGLE>;

Details The S2KPW statement specifies a SYSTEM 2000 password and optional
access mode for creating a view descriptor. The password you specify will be stored in
encrypted form and enable all who access the view descriptor to have access to the data
it describes. If you do not specify the S2KPW statement when creating a view
descriptor, you must specify the password when using the view descriptor to access data
from the database.

The password used when you open a view descriptor determines the data you see and
your ability to subset and edit it through the view descriptor. You can specify the
password used in the access descriptor from which the view is derived, or another
password that encompasses a subset of its data. If you specify a password that does not
encompass data from the access descriptor, the view will be created, but the software
will issue an error message when you attempt to open it.

The password specified in the S2KPW statement can be one to four characters long,
with no embedded blanks, and optionally enclosed in single quotes. Passwords longer
than four characters will be truncated with a warning message. If you specify a special
character for a password, it must be a single character (that is, a one-character
password) and enclosed in single quotes.

ACCESS Procedure Reference 4 UNIQUE 89

The S2KPW statement takes one optional argument, as follows:

MODE <=> SINGLE|MULTI
specifies your mode of accessing SYSTEM 2000 software. SINGLE means the
database is in a single-user environment (that is, a database in your SAS program
environment). MULTI means the database files are in the Multi-User
environment. The default value is MULTI. The SINGLE value can be abbreviated
as SU or S. The MULTI value can be abbreviated as MU or M.

MD, S2KMD, and S2KMODE are aliases for the MODE argument. The mode is
also stored with the view.

UNIQUE

Generates unique SAS names based on item names

Optional statement

Applies to: view descriptor

Syntax

UNIQUE|UN<=> YES|NO|Y|N;

Details The UNIQUE statement specifies whether the SAS/ACCESS interface should
generate unique SAS variable names for items for which SAS variable names or
variable attributes have not been entered.

Use of the UNIQUE statement is affected by whether you specified the ASSIGN
statement when creating the access descriptor on which this view is based.

� If you specified the ASSIGN statement with a YES value, you cannot specify the
UNIQUE statement when creating a view. The YES value causes the SAS System
to generate unique names, so the UNIQUE statement is not necessary.

� If you omitted the ASSIGN statement or specified it with a NO value, you must
resolve any duplicate SAS variable names in the view descriptor. You can use the
UNIQUE statement to automatically generate unique names, or you can use the
RENAME statement to resolve these duplicate names yourself. See the RENAME
statement earlier in this chapter for information on it.

If duplicate SAS variable names exist in the access descriptor on which you are
creating a view descriptor, you can specify the UNIQUE statement to resolve the
duplication. You specify the YES (or Y) value to have the SAS/ACCESS interface append
numbers to any duplicate SAS variable names, thus making each variable name unique.

If you specify a NO (or N) value for the UNIQUE statement, the SAS/ACCESS
interface continues to allow duplicate SAS variable names to exist. You must resolve
these duplicate names before saving (and thereby creating) the view descriptor.

If you are running your SAS/ACCESS job in noninteractive or batch mode, it is
recommended that you use the UNIQUE statement. If you do not and the SAS System
encounters duplicate SAS variable names in a view descriptor, your job will fail.

UN is the alias for this statement.

90 SYSTEM 2000 Where-Clause 4 Chapter 7

SYSTEM 2000 Where-Clause

Use a SYSTEM 2000 where-clause to select particular logical entries from a
SYSTEM 2000 database. You may reference any item included in the access descriptor
on which the view descriptor is based, as long as the password you are using has
where-clause authority for each referenced item.

When you include a SYSTEM 2000 where-clause in a view descriptor, the selection
criteria are executed each time you use the view descriptor in a SAS program. When a
SYSTEM 2000 where-clause is invoked, the interface view engine

� replaces references to SAS variable names with database item component
numbers. (The SAS variable names must correspond to a database item included
in the view descriptor.)

� translates keywords to uppercase for compatibility with SYSTEM 2000 software.

� expands connecting strings to connect the SAS WHERE clause to the view
where-clause.

� preserves significant blanks in delimited textual values.

The syntax of the where-clause can include one or more of the following conditions.
Examples of these conditions are presented in “Examples” on page 92.

Note: This is a partial description of the SYSTEM 2000 where-clause. For a
complete description, see the SYSTEM 2000 QUEST Language manual. However, you
cannot include a Collect File item name or the SAME operator in a where-clause
included in a view descriptor. 4

Syntax
WHERE expression;

WHERE
is the keyword designating a where-clause. You can also use the abbreviation WH.
The keyword is optional if the where-clause is the first clause or if you do not
specify an ordering-clause.

expression
consists of one of the following:

| condition

|(expression)

|NOT expression

|expression AND expression

|expression OR expression

|record HAS expression

|expression AT n

condition [NON-KEY] item

|unaryoperator

|binaryoperator value

|ternaryoperator value * value

| CONTAINS text

|* binaryoperator item*

ACCESS Procedure Reference 4 Syntax 91

NON-KEY
allows you to change a key condition to a non-key one. This capability is not
available in a SAS WHERE clause. See “Using HAS, AT, and NON-KEY” on page
141 for information on using connecting strings to extend the function of the
NON-KEY specification to the SAS WHERE clause conditions.

You can abbreviate NON-KEY to NK.

NOT
finds the complement of specified criteria. You can also use the symbol.

AND
combines two expressions by finding data records that satisfy both expressions.
You can also use the & symbol.

OR
combines two expressions by finding data records that satisfy either expression or
both. You can also use the | symbol.

record
is a schema record name or component number.

HAS
specifies a data record by its position under its parent. This capability is not
available in a SAS WHERE clause. See “Using HAS, AT, and NON-KEY” on page
141 for information on using connecting strings to extend the function of the AT
operator to the SAS WHERE clause conditions.

n
is 0 or a positive integer indicating position of a record under its parent. Zero
means the last position.

item
is a schema item name or component number included in the access descriptor. Or
you can specify a SAS variable name if the item is included in the view descriptor.
The item can be key or non-key.

unary-operator: EXISTS or FAILS
specifies the existence or nonexistence of values. You can also specify EXIST or
EXISTING and FAIL or FAILING.

binary-operator: EQ, NE, GE, GT, LE, or LT
compares an item with a value or compares two items. You can also use these
symbols:

Table 7.2

Operator Alternate Form

EQ =

NE = or !=

GE >= or => or < or !<

GT >

92 Examples 4 Chapter 7

Operator Alternate Form

LE <= or =< or > or !>

LT <

ternary-operator: EQ, NE, or SPANS
compares an item with a range of values. Ternary operators require a low value
and a high value. You can also specify SPAN or SPANNING, and you can use
these symbols:

Table 7.3

Operator Alternate Form

EQ =

NE = or !=

value
is a literal value or the SYSTEM 2000 system string *TODAY*. Optionally, you
can enclose a value with a delimiter of your choice. Sometimes you may need
delimiters around character values, for example, to preserve a mixed case value.
Any special character that appears at the beginning and end of a character value
is assumed to be a delimiter. Consider these examples:

where c1 = ’Abc De’ looks for Abc De
where c1 = @Abc De@ looks for Abc De
where c1 = @Abc De looks for @Abc De

CONTAINS
searches for characters within an item’s values.You can also specify CONT,
CONTAIN, or CONTAINING.

text
For the syntax and explanation of CONTAINS text, see SYSTEM 2000 QUEST
Language.

Examples
This section gives examples using different forms of the SYSTEM 2000 where-clause.

Unary operators
Unary operators search for values that exist or do not exist using the EXISTS and

FAILS operators. The following where-clause qualifies data records having a value for
the item ACCRUED VACATION.

where accrued vacation exists

The following where-clause qualifies data records not having a value for the item
ACCRUED VACATION, that is, null items.

where accrued vacation fails

Note that SYSTEM 2000 unary operators are similar to SAS missing values
expressions.

ACCESS Procedure Reference 4 Examples 93

Binary operators
Binary operators compare items with a value or compare two items using the EQ,

NE, GT, GE, LT, or LE operators (or their equivalent symbols). The following
where-clause qualifies data records having the value for EMPLOYEE NUMBER equal
to 1224.

where employee number=1224

The next where-clause qualifies data records where EMPLOYEE STATUS is not
equal to FULL TIME. (It does not, however, qualify those records where EMPLOYEE
STATUS is null as FAILS would.)

where employee status ne full time

The next where-clause qualifies data records where the value for HIRE DATE is
greater than or equal to June 1, 1987.

where hire date=>06/01/1987

The next where-clause qualifies data records where the value for C105 equals the
value for C4.

where C4 * EQ C105 *

Ternary operators
Ternary operators search for values in a range of values using the SPANS, EQ, and

NE operators (or their equivalent symbols). The following where-clause qualifies data
records where BIRTHDAY spans the dates January 1, l949 and January 31, 1949,
inclusively.

wh birthday spans 01/01/1949 * 01/31/1949

CONTAINS operator
The CONTAINS operator searches for values that contain patterns of characters

within values. The item must be a CHARACTER, TEXT, or UNDEFINED item. For
example, the following where-clause qualifies data records where the values for
STREET ADDRESS contain the character string RIM ROCK.

wh street address contains /RIM ROCK/

Combining conditions with AND and OR
Using the AND and OR operators, you can combine two or more conditions. AND

combines two conditions by selecting values that satisfy both conditions, and OR
combines two conditions by selecting values that satisfy either or both conditions. For
example, the following where-clause qualifies data records having COBOL in the item
SKILL TYPE and 4 in the item YEARS OF EXPERIENCE.

where skill type=cobol & years of experience=4

Not qualifying a condition with NOT
Using the NOT operator, you can select data records where values do not match a

condition. For example, the following where-clause selects data records for the item
PAY SCHEDULE that do not equal the value HOURLY or that are null.

wh pay schedule=hourly

94 SYSTEM 2000 Ordering-clause 4 Chapter 7

Designating specific types of records with HAS
Using the HAS operator, you can specify a focal record. For example in the following

where-clause, the HAS operators specify C0 (the ENTRY record) as the focal record,
because both conditions refer to the same schema record (C201). In this case, the HAS
operators qualify C0 records that have the values COBOL and FORTRAN for C201. (If
the HAS operator were not used, no records would qualify, because there would never
be a C201 value of both COBOL and FORTRAN.)

wh C0 has c201 eq cobol and C0 has c201 eq fortran

Specifying position with AT
Using the AT operator, you can select values that are stored in a specified position in

the database. Values must satisfy the condition and occupy a specific position. A data
record’s position is its number in a left-to-right enumeration below its parent record.
For example, the following where-clause qualifies the data record in position 2 in a
logical entry.

wh position title eq programmer at 2

Processing order
The order in which SYSTEM 2000 software processes conditions can affect which

data records are selected. The software processes conditions with operators in this
order: AT, HAS, NOT, AND, and OR.

When conditions are joined by the same operator, SYSTEM 2000 software first
processes key conditions (ones that are indexed) from right to left, then non-key
conditions (ones not indexed) from right to left.

You can alter processing order by changing the order of the conditions and by using
parentheses around conditions. The software processes conditions enclosed in
parentheses first.

For example, because the software processes the AND operator prior to the OR
operator, to access those employees with an MBA degree and either a major or minor in
Marketing, the following where-clause would yield the desired results:

wh degree=mba &
(major field=marketing|minor field=marketing)

On the other hand, if you use the following where-clause, SYSTEM 2000 software
would also select those employees who have a minor in Marketing and degrees other
than MBAs.

wh degree=mba &
major field=marketing|minor field=marketing

SYSTEM 2000 Ordering-clause

When you define a view descriptor, you can also include a SYSTEM 2000
ordering-clause to specify data order. You can reference only the items selected for the
view descriptor. Without an ordering-clause or a SAS BY statement, the data order is
determined by SYSTEM 2000 software.

A SAS BY statement automatically issues an ordering-clause to SYSTEM 2000
software. If a view descriptor already contains an ordering-clause, the BY statement
overrides the ordering-clause for that program. An exception is when the SAS

ACCESS Procedure Reference 4 Creating and Using View Descriptors Efficiently 95

procedure includes the NOTSORTED option. Then, the SAS BY statement is ignored,
and the view descriptor ordering-clause is used.

Note: When you include a SYSTEM 2000 ordering-clause in a view descriptor, you
can specify a terminator (either a colon or a semicolon). But if you specify both a
where-clause and an ordering-clause, do not use a terminator between them. 4

Syntax
ORDERED BY sortkeys;

ORDERED BY
is the keyword designating an ordering-clause. You can also use ORDER BY, OB,
and SORT.

sortkeys
is a component name, component number, or SAS variable name of a SYSTEM
2000 item included in the view descriptor. Use commas to separate sort keys. You
can also specify either ascending or descending order for each sort key.

ASCENDING|ASCEND|ASC|LOW|LO
specifies that you want the data ordered by ascending values of the sortkey.
Ascending is the default.

DESCENDING|DESCEND|DESC|HIGH|HI
specifies that you want the data ordered by descending values of the sortkey.

If you specify more than one SYSTEM 2000 component, the values are ordered by the
first named component, then the second, and so on. See SYSTEM 2000 QUEST
Language for more details on the ordering-clause.

Example
The following ordering-clause causes the values to be presented in ascending order

based on the values in item DEPARTMENT, then within departments in descending
order based on the values in item SALARY:

order by department, desc salary

Creating and Using View Descriptors Efficiently

Follow these guidelines to minimize the use of SYSTEM 2000 software and system
resources and to reduce the time SYSTEM 2000 software takes to access data.

� Select only the items your program needs. Selecting unnecessary items adds extra
processing time.

� Use an ordering-clause or a SAS BY statement to specify the order in which logical
entries are presented to the SAS System only if the SAS System needs the data in
a particular order for subsequent processing. (The SAS BY statement issues an
ordering-clause to SYSTEM 2000 software and overrides any existing
ordering-clause for the view descriptor.) If you decide to use an ordering-clause or
a SAS BY statement, order by an indexed item when possible.

As an alternative to using an ordering-clause, which consumes CPU time each
time you access the SYSTEM 2000 database, you could use the SORT procedure

96 ACCESS Procedure Data Conversions 4 Chapter 7

with the OUT= option to create a sorted SAS data file. This is a better approach
for data you want to use many times.

� If a view descriptor describes a large SYSTEM 2000 database and you will use the
view descriptor often, it may be more efficient to extract the data and place them
in a SAS data file. (Of course, the extracted data file will be very large but only
created once. Also, the extracted data will not reflect any subsequent updates to
the database.)

� When possible, specify selection criteria to subset the number of logical entries
SYSTEM 2000 software returns to the SAS System.

� Write selection criteria that allow SYSTEM 2000 software to use available indexes
when possible. This applies whether you specify the selection criteria as part of
the view descriptor or use a SAS WHERE clause.

This is especially important when accessing large databases. When SYSTEM
2000 software cannot use an index, it sequentially scans the entire database.

You cannot guarantee that SYSTEM 2000 software will use an index to process
a condition on a key item, but you can write selection criteria that allow SYSTEM
2000 software to use available indexes effectively. See SYSTEM 2000 QUEST
Language and System Commands for a complete set of where-clause optimization
guidelines.

ACCESS Procedure Data Conversions
The following table shows the default SAS System variable formats and informats

that are assigned by the ACCESS procedure to each SYSTEM 2000 item type.

Table 7.4 Default SAS System Variable Formats and Informats for SYSTEM 2000
Item Types

SYSTEM 2000 Item Type and Picture SAS Format and Informat

CHAR X(n) $n

TEXT X(n) $CHARn.

DATE DATE7.

INTEGER 9(n) n.

DECIMAL 9(n).9(d) n+d+1.d

MONEY 9(n).9(d) n+d+1.d

REAL BEST12.

DOUBLE BEST12.

UNDEFINED X(n) $HEXn*2.

If SYSTEM 2000 data fall outside valid SAS data ranges, you get an error message
in the SAS LOG when you try to read the data. For example, a SYSTEM 2000 date
may not fall in the valid SAS date range.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Interface to SYSTEM 2000 ® Data Management Software: Reference,
Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/ACCESS® Interface to SYSTEM 2000® Data Management Software:
Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–549–3
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

