249

APPENDIX

DBMS Overview and Information
for the Database Administrator

Overview of Relational Database Management Systems 249
Databases 249
Tables 250
Table Privileges 250
Views 250
Indexes 251
Stored Procedures 251
Triggers 251
Constraints 252
Information for the Database Administrator 252
How SAS/ACCESS Works 252
Using the ACCESS Procedure to Create an Access Descriptor 253
Reading Data 253
Updating Data 254
Using the DBLOAD Procedure to Create DBMS Tables 254
Using the SQL Procedure Pass-Through Facility to Read and Update DBMS Data 255
Ensuring Data Security 255
Using Triggers to Enhance Security 256
SAS System Security 256

Overview of Relational Database Management Systems

A relational DBMS organizes and accesses data according to relationships among
data items. The relationships among data items are expressed by tables consisting of
columns and rows. The order of the rows and columns is not significant. Each column
can contain one type of data, and each row can hold one data value for each column.
See Figure A2.1 on page 250 for a conceptual picture of a table.

In a relational DBMS, you use a high-level language to operate on the data managed
by the DBMS. In many cases, that language is SQL. A DBMS enables you, or an
application program such as the SAS System, to use SQL statements to read, modify,
create, and protect the data it manages.

Databases

A database is a collection of objects that includes tables, views, stored procedures,
triggers, and indexes. Each database contains several database system files and data
files. Databases are usually created by a database administrator with the SQL
command CREATE DATABASE. In most databases, you use the GRANT statement to
give users privileges on database objects to users. You can create SAS/ACCESS



250

Tables A Appendix 2

descriptor files to access the data in the objects, or access the objects directly by using
the SAS/ACCESS LIBNAME statement.

Tables

A table is a named object that consists of a specific number of columns and some
number of rows. The rows have no inherent order, unlike observations in a SAS data set.

In many databases, tables are created with the SQL statement CREATE TABLE. This
statement names the table and the columns and defines the data type of each column.

Figure A2.1 on page 250 illustrates four columns from the CUSTOMERS table and
highlights a column and a row.

Figure A2.1 A DBMS Table

column
CUSTOMER CITY STATE COUNTRY
14324742 San Jose CA USA
14569877 Memphis N USA row
14898029 Rockville MD USA
26422096 La Rochelle France
38763919 Buenos Aires Argentina
46783280 Singapore Singapore

Table Privileges
In a database, when you create a table or other database object, you own it. The
owner of the table can do the following, depending on his or her privileges:
o select columns and rows from the table for viewing
add or remove columns from the table
insert, delete, or update rows
create other objects (indexes and views) based on the table
alter or drop the table

O 0o o o o

grant privileges to other users and applications programs.

If you want to use a table that you do not own, the table’s owner must grant you
privileges to the table.

Views

A view is a named object that usually consists of an SQL SELECT statement that
defines a group of data derived from one or more DBMS tables or views. The view itself
contains no data. Views are usually created with the SQL statement CREATE VIEW,
which names the view and includes an SQL SELECT statement that retrieves the data.

When you reference a view in an SQL statement, the DBMS accesses the table(s) or
view(s) on which the view is based. Certain restrictions might apply when a view
derives its data from multiple tables or other views. For example, updates, inserts, and
deletes might not be allowed. For more information on view restrictions, refer to your
DBMS documentation.



DBMS Overview and Information for the Database Administrator /A Triggers 251

Note: To access a view owned by another user, you must be granted privileges on
the view and on its underlying tables and views. Having privileges on the table(s) from
which a view derives its data does not automatically give you privileges on the view. A

Note: If a table from which a view derives its data is dropped, the view itself is also
dropped. A

Indexes

An index is a database object that speeds data retrieval by directing the DBMS to
the location in storage of a particular row for a given column. Indexes are usually
created with the SQL statement CREATE INDEX, which assigns the index a name and
identifies the table and column(s) on which the index is created. In many DBMSs, the
CREATE INDEX statement enables you to specify the keyword UNIQUE to define a
unique index on one or more columns. In some DBMSs, you can also use a
CONSTRAINT clause with an ALTER TABLE statement to specify the keywords
UNIQUE and USING INDEX, which define a unique index on one or more columns.
Unique indexes prevent duplicate values in the column, or combination of columns, on
which they are created. Some DBMSs allow you to create different types of indexes,
such as sorted or hashed indexes. See your DBMS documentation for details.

An index is keyed on all specified columns unless the KEY option is used. Keys
provide a way to identify rows and relate (or join) rows in one table to rows in another
table. A primary key is the column or combination of columns that uniquely identify a
row. A foreign key is a column or combination of columns in one table that reference the
primary key in another table. The foreign key must have the same attributes as the
primary key it references.

If the table on which an index is created is dropped, the index is also dropped.

Most DBMSs automatically determine the most efficient way to process an SQL
statement and uses the appropriate indexes if they are available. In addition, the way
you specify criteria for selecting rows can affect whether the DBMS can use the indexes.
Your database administrator can help you determine whether your selection criteria
enable the DBMS to use your tables’ indexes.

Stored Procedures

Stored procedures are another type of named object. They usually consist of SQL
statements, except for CREATE statements, and include control-of-flow keywords such
as IF, ... ELSE, BEGIN, and ...END. Because stored procedures are precompiled, they
are more efficient than submitting the same SQL statements individually or in batches.

Stored procedures can generally take parameters, return status values and
parameters, and call other procedures. They can also be executed on remote servers.
Stored procedures are often created to execute groups of SQL statements that are
submitted repeatedly. For example, a stored procedure might be created to list all the
orders that were backordered for a particular stock number and to remove the
back-order status from that stock number. The stored procedure could then be used
whenever a formerly out-of-stock product is back in stock.

See your DBMS documentation for information on whether your DBMS supports
stored procedures and how to create them.

Triggers

A trigger is a stored procedure that is associated with a table. They are often used to
help maintain referential integrity—that is, consistency among related data that is



252

Constraints A Appendix 2

stored in different tables—or to maintain business constraints. Triggers are executed
whenever data modification operations (UPDATE, INSERT, or DELETE) are performed
on a specified column. You use the CREATE TRIGGER statement to create a trigger.
You can use triggers to

o enforce security authorizations or business-specific constraints
O provide auditing and transparent event-logging

O generate derived column values automatically

O maintain replicated asynchronous tables.

A trigger is automatically executed, or "fired," by the DBMS when a specified SQL
statement is issued against a table. You can define triggers for SQL DELETE, INSERT,
and UPDATE statements. You also define whether a trigger fires before or after a
specified SQL statement is executed or once for each row affected by the statement.

The SAS/ACCESS interface view engine generally supports all actions and
constraints specified by triggers. For more information, refer to your DBMS
documentation.

Constraints

A constraint restricts the values that can be stored in a table. A constraint checks
the values you insert or update in a table against the conditions specified by the
constraint. For example, a constraint could ensure that the value entered for the
column GENDER is only M or F. Constraints help ensure the referential integrity in a
database. See your DBMS documentation for additional information on how your
DBMS supports referential integrity.

Information for the Datahase Administrator

This section explains how SAS/ACCESS works so you can decide how to administer
its use at your site.

How SAS/ACCESS Works

When you use the ACCESS procedure to create an access descriptor, the interface
issues a SELECT statement to the data dictionary tables in your DBMS. The ACCESS
procedure then issues the equivalent of a DESCRIBE statement to gather information
about the columns in the specified table. The access descriptor’s information about the
table and its columns is then copied into the view descriptor when it is created.
Therefore, it is not necessary for the SAS System to call the DBMS when it creates a
view descriptor.

When you use the DBLOAD procedure to create a table, the procedure issues
dynamic SQL statements to create the table and insert data from a SAS data file,
DATA step view, PROC SQL view, or view descriptor into the DBMS table.

PROC SQL Pass-Through statements and the CONNECTION TO component are
passed directly to the DBMS as soon as they are submitted. They are passed by using
Pass-Through functions in the SAS/ACCESS interface view engine.

When you use the DATA step or any SAS procedure with a view descriptor, the SAS/
ACCESS interface view engine issues SQL calls to the DBMS.

The following sections explain the calls that the SAS System makes to the DBMS
when you use the ACCESS and DBLOAD procedures or the SQL Procedure



DBMS Overview and Information for the Database Administrator /A Create an ACCESS Descriptor with PROC ACCESS 253

Pass-Through Facility. The connection between the SAS System and the DBMS is
illustrated in Figure A2.2 on page 253.

Note: Currently, the SAS/ACCESS Interface to Informix does not support the
ACCESS and DBLOAD procedures. A

Note: Currently, the SAS/ACCESS Interface to Oracle Rdb does not support the
SAS/ACCESS LIBNAME statement.

Figure A2.2 How the SAS System Connects to the DBMS

SAS/ACCESS

engine

interface
view engine

LIBNAME

Statement vendor-supplied vendor

«— callable > DBMS
libraries

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Client* Client* Server*

* In some cases, both client and server software can reside on the same machine.

Using the ACCESS Procedure to Create an Access Descriptor

When you create an access descriptor, the SAS/ACCESS interface view engine
requests the DBMS to execute an SQL SELECT statement dynamically by using
DBMS-specific calling routines or interface software. The following steps are completed:

1 When you supply the connection information to PROC ACCESS, the SAS/ACCESS
interface calls the DBMS to connect to the database.

2 The SAS System constructs a SELECT * FROM table-name statement and passes
it to the DBMS to retrieve information about the table from the DBMS data
dictionary. This SELECT statement is based on the information you supplied to
PROC ACCESS. Using a SELECT statement enables the SAS System to
determine whether the table exists and can be accessed.

3 The SAS/ACCESS interface calls the DBMS to get table description information,
such as the column names, data types (including width, precision, and scale), and
whether the columns accept null values.

4 The SAS System closes the connection with the DBMS.

Reading Data

When you use a view descriptor, DATA step, or procedure to read DBMS data, the
SAS/ACCESS interface view engine requests the DBMS to execute an SQL SELECT
statement. The interface view engine follows these steps:



254

Using the DBLOAD Procedure to Create DBMS Tables A Appendix 2

4

Using the connection information provided during creation of the access descriptor,
the SAS/ACCESS interface calls the DBMS to connect to the database.

The SAS System constructs a SELECT statement that is based on the information
stored in the view descriptor (table name and selected columns and their
characteristics) and passes this information to the DBMS.

The SAS System fetches the data from the DBMS table and passes it back to the
SAS procedures as if it were observations in a SAS data set.

The SAS System closes the connection with the DBMS.

For example, if you execute the following SAS program using a view descriptor, the
previous steps are executed once for the PRINT procedure, then a second time for the
GCHART procedure. (The data used for the two procedures is not necessarily the same
because the table might have been updated by another user between procedure
executions.)

proc print data=vlib.allemp;

run;

proc gchart data=vlib.allemp;

vbar jobcode;

run;

Updating Data

You use a view descriptor, DATA step, or procedure to update DBMS data in much
the same way as when reading data. In addition, the following steps might occur:

1

Using the connection information provided during creation of the access descriptor,
the SAS/ACCESS interface calls the DBMS to connect to the database.

When rows are added to a table, the SAS System constructs an SQL INSERT
statement and passes it to the DBMS. When you reference a view descriptor, you
can use the ADD command in FSEDIT and FSVIEW, the APPEND procedure, or
an INSERT statement in PROC SQL to add data to a DBMS table. (Or, you can
use the SQL Procedure Pass-Through Facility’s EXECUTE statement to add,
delete, or modify DBMS data directly. Literal values must be used when inserting
data by using the Pass-Through Facility.)

When rows are deleted from a DBMS table, the SAS System constructs an SQL
DELETE statement and passes it to the DBMS. (When you reference a view
descriptor, you can use the DELETE command in FSEDIT and FSVIEW or a
DELETE statement in PROC SQL to delete rows from a DBMS table.)

When data in the rows is modified, the SAS System constructs an SQL UPDATE
statement and passes it to the DBMS. (When you reference a view descriptor, you
can use FSEDIT, the MODIFY command in FSVIEW, or an INSERT statement in
PROC SQL to update data in a DBMS table. You can also reference a view
descriptor in the DATA step’s UPDATE, MODIFY, and REPLACE statements.)

The SAS System closes the connection with the DBMS.

Using the DBLOAD Procedure to Create DBMS Tables

You create DBMS tables from SAS data sets by using the DBLOAD procedure. The
SAS/ACCESS interface view engine follows these steps:

1

When you supply the connection information to PROC DBLOAD, the
SAS/ACCESS interface calls the DBMS to connect to the database.



DBMS Overview and Information for the Database Administrator /A Ensuring Data Security 255

2 The SAS System uses information that is provided by the DBLOAD procedure to
construct a SELECT * FROM table-name statement, and it passes the information
to the DBMS to determine if the table already exists. PROC DBLOAD continues
only if a table with that name does not exist, unless you use the DBLOAD
APPEND option.

3 The SAS System uses information that is provided by the DBLOAD procedure to
construct an SQL. CREATE TABLE statement and passes it to the DBMS.

4 The SAS System constructs an SQL INSERT statement for the current
observation and passes it to the DBMS. New INSERT statements are constructed
and then executed repeatedly until all of the observations from the input SAS data
set are passed to the DBMS. Some DBMSs have a bulkcopy capability that allows
a group of observations to be inserted at once. See your DBMS documentation to
determine if your DBMS has this capability.

5 Additional nonquery SQL statements specified in the DBLOAD procedure are
executed as submitted by the user. The DBMS returns an error message if a
statement does not execute successfully.

6 The SAS System closes the connection with the DBMS.

Using the SQL Procedure Pass-Through Facility to Read and Update
DBMS Data

To read and update data with the SQL Procedure Pass-Through Facility, the
SAS/ACCESS interface view engine passes SQL statements directly to the DBMS for
processing. Here are the steps:

0 You pass a PROC SQL CONNECT statement to the SAS/ACCESS interface view
engine to establish a connection with the specified database.

0 You use a CONNECTION TO component in a PROC SQL SELECT statement to
read data from a DBMS table or view. The SELECT statement (that is, PROC
SQL query) can be stored as a PROC SQL view.

0 You use a PROC SQL EXECUTE statement to pass any dynamic, non-query SQL
statements (such as INSERT, DELETE, and UPDATE) to a database. INSERT
statements must contain literal values.

0 In the EXECUTE statement and CONNECTION TO component, all statements
are passed to the DBMS exactly as you have typed and submitted them.

O You terminate the connection with the DISCONNECT statement.

Ensuring Data Security

The SAS System preserves the data security provided by your DBMS and the
operating system. The DBA controls who has privileges to access or update DBMS
objects. The DBA also controls who can create objects, and creators of the objects
control who can access the objects. A user cannot use DBMS facilities through the SAS/
ACCESS LIBNAME statement, the SAS/ACCESS interface view engine, the ACCESS
procedure, or the DBLOAD procedure, unless the user has the appropriate DBMS
privileges or authority on those objects. For example, only users who have object
privileges for a DBMS table can create an access descriptor on that table.

To secure data from accidental update or deletion, you can take precautionary
measures in both your DBMS and the SAS System.

On the DBMS, give users only the privileges they must have. Privileges are granted
on whole tables or views. A user must explicitly be granted privileges on the DBMS
tables or views underlying a view to use that view.



256

Ensuring Data Security A Appendix 2

You can grant privileges on the DBMS side by using the SQL Procedure
Pass-Through Facility to submit an SQL GRANT statement, or issue a GRANT
statement from the DBLOAD procedure SQL statement.

Using Triggers to Enhance Security

If your DBMS supports triggers, you can use them to enforce security authorizations
or business-specific security considerations. When and how triggers are executed is
determined by when the SQL statement is executed and how often the trigger executes.
Triggers can be executed before an SQL statement is executed, after an ORACLE SQL
statement is executed, or can be executed for each row of an SQL statement. Also,
triggers can be defined for DELETE, INSERT, and UPDATE statement execution.

Enabling triggers can provide more specific security for delete, insert, and update
operations. The SAS/ACCESS interface view engine abides by all constraints and
actions that are specified by a trigger. For more information, see your DBMS
documentation.

SAS System Security

To secure DBMS data from accidental update or deletion, you can follow these steps
on the SAS System side of the interface:

0 Create access descriptors yourself and drop columns from the display that contain
sensitive data by using the DROP statement.

0 Give users read-only access to the SAS data library in which you store the access
descriptors.

0 Create all view descriptors yourself and control their use.

O Assign SAS System passwords to access descriptors and view descriptors. For
more information, see Chapter 9, "ACCESS Procedure Reference".

Note: On CA-Openlngres, databases are created as public databases, unless the -p
flag is used with the CREATEDB command to create a private database. When creating
access descriptors, the interface view engine issues PREPARE and DESCRIBE
statements to gather information about the table. The DESCRIBE statement uses
CA-Openlngres system catalogs to retrieve the information, and CA-Openlngres does
not check permissions. Therefore, users can create access descriptors and view
descriptors on tables on which they have no privileges. This is not caused by any
security circumvention by the SAS System; this is the way CA-OpenlIngres operates.
However, users cannot use the view descriptors to view or extract the data. »

In the SAS/ACCESS LIBNAME statement, you can specify the DBPROMPT= option
to defer providing connection information until connection time. When you use
DBPROMPT=, you do not need to save connection information in your code.

SAS provides the ability to create SQL views that can be protected from
unauthorized access by applying passwords. Also, you can use the DBMS security
provided by the DBMS to restrict table access by user ID. See your DBMS
documentation for more details.

When you create an access descriptor, the connection information that you provide is
stored in the access descriptor and in any view descriptors based on that access
descriptor. The password is stored in an encrypted form. When these descriptors are
accessed, the connection information that was stored is also used to access the DBMS
table or view. To ensure data security, you might want to change the protection on the
descriptors to prevent others from seeing the connection information stored in the
descriptors.

An alternative is to leave the user name, password, and other connection arguments
blank when you create descriptors. In this case, access to the DBMS is denied unless



DBMS Overview and Information for the Database Administrator /A Ensuring Data Security 257

the correct user and password information is stored in a local environment variable.
See your DBMS chapter to determine if this alternative is supported.

You can also use the ACCESS procedure to create access descriptors in which you
specify that particular columns be dropped from the descriptor. Columns that are
dropped from an access descriptor do not affect the DBMS table and can be reselected
for later use.

Note: SAS/ACCESS does not override your DBMS’s security. A



258 Ensuring Data Security A Appendix 2



The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-558-2

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.



