
9

C H A P T E R

2
SAS Names and Support for
DBMS Names

Introduction 9
SAS Name Literals 11

SAS/ACCESS LIBNAME and PROC SQL Options 11

DBMS Column Names to SAS Variable Names 17

SAS Variable Names to DBMS Column Names 18

Naming Examples 19

Introduction
Beginning in Version 7 of SAS software, SAS naming conventions have been

enhanced to allow longer names for SAS data sets and SAS variables. The conventions
also allow case-sensitive or mixed case names for SAS data sets and variables.

The following SAS language elements can now be up to 32 characters in length:
� members of SAS libraries, including SAS data sets, data views, catalogs, catalog

entries, and indexes
� variables in a SAS data set
� macros and macro variables.

The following SAS language elements remain unchanged with a maximum length of
8 characters:

� librefs and filerefs
� SAS engine names and passwords
� names of SAS/ACCESS access descriptors and view descriptors (in order to

maintain compatibility with Version 6 names)
� variable names in SAS/ACCESS access descriptors and view descriptors.

For a complete description of the new SAS naming conventions, see the SAS Language
Reference: Dictionary .

The following libref.dataset shows the longer name for the data set
MYDB.TEMP_EMPLOYEES_QTR4_2000. Likewise, a variable name can be longer and
defined in mixed case, such as Q4HireDates.

When you specify mixed case or case-sensitive names in SAS code, SAS displays the
names as you have specified them. In this example, the SAS variables, Flight and
dates, are defined in mixed case:

options nodate linesize=64;

data test;

10 Introduction 4 Chapter 2

input Flight $3. +3 dates date9.;
format dates date9.;

datalines;
114 01MAR2000
202 01MAR2000
204 01MAR2000
;

proc print data=test (keep=FLIGHT DATES);
run;

Output 2.1 Mixed Case Names Displayed in Output

SAS System

Obs Flight dates

1 114 01MAR2000
2 202 01MAR2000
3 204 01MAR2000

When the TEST data set is output, the variable names are stored as they are defined,
instead of automatically being stored in uppercase. However, when SAS processes the
names, it can process them as FLIGHT and DATES.

Note: Because of the way that SAS processes names, it recognizes variable names
regardless of the case in which they were created. For example, if you were to use
PROC DATASETS to rename the Flight variable, the procedure would recognize
Flight even if you input it as flight or FLIGHT. However, the new variable name is
stored as the mixed-case name All_flights. 4

proc datasets library=work memtype=data;
modify test;
rename flight=All_flights;

run;

Output 2.2 SAS Log Showing a Renamed Variable

20 proc datasets library=work memtype=data;
-----Directory-----

Libref: WORK
Engine: V8
Physical Name: /tmp/SAS_xxxxxxxxabc
File Name: /tmp/SAS_xxxxxxxxefg
Inode Number: 84111
Access Permission: rwxr-xr-x
Owner Name: marie
File Size (bytes): 1024

File
Name Memtype size Last modified

1 TEST DATA 16384 11MAY1999:18:38:31

21 modify test;
22 rename flight=All_flights;
NOTE: Renaming variable flight to All_flights.
23 run;

SAS Names and Support for DBMS Names 4 SAS/ACCESS LIBNAME and PROC SQL Options 11

SAS Name Literals
A SAS name literal is a name token that is expressed as a quoted string, followed by

the letter n. Name literals enable you to use special characters or blanks that are not
otherwise allowed in SAS names when you specify a SAS data set or variable. Name
literals are especially useful for expressing database column and tables names that
contain special characters.

Name literals are subject to certain restrictions:

� You can use a name literal only for SAS variable and data set names, statement
labels, and DBMS column and table names.

� You can use name literals only in a DATA step or in the SQL procedure.
� If a name literal contains any characters that are not allowed when

VALIDVARNAME=V7, then you must set the system option to
VALIDVARNAME=ANY. For details on using the VALIDVARNAME= system
option, see “VALIDVARNAME” on page 63.

Examples of name literals are
� data mydblib.’My Staff Table’n; ... run;

� data Budget_for_1999;
input ’$ Amount Budgeted’n ’Amount Spent’n ...run;

SAS/ACCESS LIBNAME and PROC SQL Options
Using the SAS/ACCESS LIBNAME statement and PROC SQL options, SAS

software can handle table and column names in DBMSs that are case-sensitive or
non-standard for SAS. Non-standard names includes those with blank spaces or special
characters (such as @, #, %) that are not allowed in SAS names. The following list
briefly describes these options. See your DBMS chapter for information about how SAS
processes your DBMS-specific names.

PRESERVE_COL_NAMES=YES | NO
is an option on the SAS/ACCESS LIBNAME statement. If you specify YES, this
option preserves spaces, special characters, and mixed case in DBMS column
names . The default value for this option is DBMS-specific. See for more
information about this option.

Specify the alias PRESERVE_NAMES=YES | NO, if you plan to specify both
the PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options in your
LIBNAME statement. Using this alias saves you some time when coding.

You can use the DATA step to read data from multiple data sets, in this
example, two DBMS tables. This example merges data from the two DBMS tables,
STAFF and SUPERV, and writes it to the SAS data set WORK.COMBINED.

options linesize=120 nodate;

libname mydblib oracle user=karin password=haggis
path=’airhrdata’ schema=airport
preserve_col_names=yes;

data combined;
merge mydblib.staff mydblib.superv(in=super

rename=(supid=idnum));

12 SAS/ACCESS LIBNAME and PROC SQL Options 4 Chapter 2

by idnum;
if super;

run;

proc print data=combined (outobs=10);
title "Supervisor Information";

run;

Note: The PRESERVE_COL_NAMES=YES LIBNAME option retains the case
of the column names from the DBMS–in this example, uppercase—when creating
the corresponding SAS variable names. 4

Partial output for this example is shown:

Output 2.3 Reading Data from Multiple DBMS Tables

Supervisor Information

OBS IDNUM LNAME FNAME CITY STATE HPHONE JOBCAT

1 1106 MARSHBURN JASPER STAMFORD CT 203/781-1457 PT
2 1118 DENNIS ROGER NEW YORK NY 718/383-1122 PT
3 1126 KIMANI ANNE NEW YORK NY 212/586-1229 TA
4 1352 RIVERS SIMON NEW YORK NY 718/383-3345 NA
5 1385 RAYNOR MILTON BRIDGEPORT CT 203/675-2846 ME
6 1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787 TA
7 1405 DACKO JASON PATERSON NJ 201/732-2323 SC
8 1417 NEWKIRK WILLIAM PATERSON NJ 201/732-6611 NA
9 1420 ROUSE JEREMY PATERSON NJ 201/732-9834 ME

10 1431 YOUNG DEBORAH STAMFORD CT 203/781-2987 FA

In the following example, you use the ORACLE PAYROLL table to create a new
ORACLE table, PAY1, and then print it. Both the PRESERVE_COL_NAMES=YES
and the PROC SQL DQUOTE=ANSI options are used to preserve the case and
non-standard characters in the column names. Notice that you do not need to
quote the column aliases in order to preserve the mixed case. You only need
double quotes when the column name has non-standard characters or blanks.

By default, the SAS/ACCESS engine for ORACLE uses the database’s rules for
setting the case of table and column names. Therefore, even though the new
ORACLE table name, pay1, is created in lowercase in this example, ORACLE
stores the name in uppercase as PAY1. How table and column names are stored is
DBMS-specific; see your DBMS chapter or DBMS documentation for more
information.

options linesize=120 pagesize=60 nodate;

libname mydblib oracle user=yao password=cary path=’ora8_servr’
schema=hrdept preserve_col_names=yes;

proc sql dquote=ansi;
create table mydblib.pay1 as
select idnum as "ID #", sex, jobcode, salary,
birth as BirthDate, hired as HiredDate

from mydblib.payroll
order by birth;

SAS Names and Support for DBMS Names 4 SAS/ACCESS LIBNAME and PROC SQL Options 13

title "Payroll Table with Revised Column Names";
select * from mydblib.pay1;
quit;

Recall from the description of how SAS processes columns on page 10, that SAS
recognizes a column name, regardless of how it was created. Therefore, in this
example, SAS recognizes the jobcode column name, whether you specify it in your
SAS code as lowercase, mixed case, or uppercase. In the ORACLE PAYROLL
table, the SEX, JOBCODE, and SALARY columns were created in uppercase, and
therefore, they retain this case in the new table, PAY1, unless you rename them.

A partial output from the example is shown:

Output 2.4 DBMS Table Created with Non-Standard and Standard Column Names

Payroll Table with Revised Column Names

ID # SEX JOBCODE SALARY BirthDate HiredDate
--
1118 M PT3 11379 16JAN1944:00:00:00 18DEC1980:00:00:00
1065 M ME2 35090 26JAN1944:00:00:00 07JAN1987:00:00:00
1409 M ME3 41551 19APR1950:00:00:00 22OCT1981:00:00:00
1401 M TA3 38822 13DEC1950:00:00:00 17NOV1985:00:00:00
1890 M PT2 91908 20JUL1951:00:00:00 25NOV1979:00:00:00
1777 M PT3 9630 23SEP1951:00:00:00 21JUN1981:00:00:00
1404 M PT2 91376 24FEB1953:00:00:00 01JAN1980:00:00:00

PRESERVE_TAB_NAMES=YES | NO
is an option on the SAS/ACCESS LIBNAME statement. If you specify YES, this
option preserves blank spaces, special characters, and mixed case in DBMS table
names. The default value for this option is DBMS-specific. See for more
information about this option.

In the following example, you use PROC PRINT to print the DBMS table,
PAYROLL. Because the DBMS table was created in uppercase and you set the
PRESERVE_TAB_NAMES=YES option, you must specify the table name in
uppercase in your code. A partial output follows the example.

options nodate linesize=64;
libname mydblib oracle user=yao password=cary path=’ora8_servr’
preserve_tab_names=yes;

proc print data=mydblib.PAYROLL;
title ’PAYROLL Table’;

run;

Output 2.5 DBMS Table with a Case-Sensitive Name

PAYROLL Table

Obs IDNUM SEX JOBCODE SALARY BIRTH HIRED

1 1919 M TA2 34376 12SEP1960:00:00:00 04JUN1987:00:00:00

2 1653 F ME2 35108 15OCT1964:00:00:00 09AUG1990:00:00:00

3 1400 M ME1 29769 05NOV1967:00:00:00 16OCT1990:00:00:00

4 1350 F FA3 32886 31AUG1965:00:00:00 29JUL1990:00:00:00

5 1401 M TA3 38822 13DEC1950:00:00:00 17NOV1985:00:00:00

14 SAS/ACCESS LIBNAME and PROC SQL Options 4 Chapter 2

If you had omitted the PRESERVE_TAB_NAMES= option or set it to NO in this
example, you could have specified the DBMS table name in lowercase.

In the next example, you create a PROC SQL view based on a DBMS table that
you created in the previous example on page 12. Because you set
PRESERVE_TAB_NAMES=YES in the following example, the name of the PAY1
table is case-sensitive. When you also use the PRESERVE_COL_NAMES=YES
option, you can rename the columns as well.

options nodate linesize=64;

libname mydblib oracle user=yao password=cary path=’ora8_servr’
preserve_tab_names=yes preserve_col_names=yes;

proc sql dquote=ansi outobs=5;
create view work.jobcodes as
select "ID #" as EmpID, sex, salary

from mydblib.PAY1
where Jobcode in (’TA2’,’TA3’);

proc print data=work.jobcodes;
title ’By Jobcode TA2 or TA3’;
run;

To simplify your coding, you could have also used the alias
PRESERVE_NAMES=YES instead of listing both of the options on the LIBNAME
statement.

A partial output for the example is shown:

Output 2.6 PROC SQL View Created from a Case-Sensitive DBMS Table Name

By Jobcode TA2 or TA3

Emp
Obs ID SEX SALARY

1 1401 M 38822
2 1639 F 40260
3 1480 F 39583
4 1017 M 40858
5 1876 M 39675

The SAS Explorer window has replaced the Access window in Version 7 and
later. In the next example, you submit the SAS/ACCESS LIBNAME statement
with the PRESERVE_TAB_NAMES=NO option and then open the SAS Explorer
window. The resulting window lists the ORACLE tables and views that are
referenced by the Mydblib libref. Notice that 16 members are listed and that all of
the member names are in the case (initial capitalization) that is set by the
Explorer window.

libname mydblib oracle user=jyoti pass=tiger
preserve_tab_names=no;

SAS Names and Support for DBMS Names 4 SAS/ACCESS LIBNAME and PROC SQL Options 15

Display 2.1 SAS Explorer Window Listing DBMS Tables and Views

In the next example, you submit the SAS/ACCESS LIBNAME statement with
the PRESERVE_TAB_NAMES=YES and then open the SAS Explorer window.
This time, you see a different listing of the ORACLE tables and views referenced
by the Mydblib libref. Notice that there are 18 members listed, including one that
is in lowercase and one that has a name separated by a blank space. Because of
the LIBNAME option, SAS displays the tables names in the exact case in which
they were created.

libname mydblib oracle user=jyoti pass=tiger
preserve_tab_names=yes;

Display 2.2 SAS Explorer Window Listing Case-Sensitive DBMS Tables and Views

DQUOTE=ANSI | SAS
is a PROC SQL option. This option specifies whether PROC SQL treats values
within double quotes as a character string or as a column name or table name.

16 SAS/ACCESS LIBNAME and PROC SQL Options 4 Chapter 2

When you specify DQUOTE=ANSI, your SAS code can refer to DBMS names that
contain characters and spaces that are not allowed by SAS naming conventions.

In the next example, you create a DBMS table that is specified in double quotes
and has a blank in its name, International Delays. Both of the preserve-names
LIBNAME options are specified using the options’ alias,
PRESERVE_NAMES=YES.

options linesize=64 nodate;

libname mydblib oracle user=orjan pass=mypw path=’airdata’
schema=airport preserve_names=yes;

proc sql dquote=ansi;
create table mydblib."International Delays" as

select int.flight as "FLIGHT NUMBER", int.dates,
del.orig as ORIGIN,

int.dest as DESTINATION, del.delay
from mydblib.INTERNAT as int, mydblib.DELAY as del
where int.dest=del.dest and int.dest=’LON’;

quit;

proc sql dquote=ansi outobs=10;
title "International Delays";
select * from mydblib."International Delays";

Notice that you use single-quotes to specify the data value for London (
int.dest=’LON’) in the WHERE clause. Because of the preserve-name
LIBNAME options, using double-quotes would cause SAS to interpret this data
value as a column name.

Output 2.7 DBMS Table with Non-Standard Column Names

International Delays

FLIGHT
NUMBER DATES ORIGIN DESTINATION DELAY

219 01MAR1998:00:00:00 LGA LON 18
219 02MAR1998:00:00:00 LGA LON 18
219 03MAR1998:00:00:00 LGA LON 18
219 04MAR1998:00:00:00 LGA LON 18
219 05MAR1998:00:00:00 LGA LON 18
219 06MAR1998:00:00:00 LGA LON 18
219 07MAR1998:00:00:00 LGA LON 18
219 01MAR1998:00:00:00 LGA LON 18
219 02MAR1998:00:00:00 LGA LON 18
219 03MAR1998:00:00:00 LGA LON 18

See Chapter 6, “SQL Procedure’s Interaction with SAS/ACCESS Software,” on
page 65 and the SQL Procedure chapter in the SAS Procedures Guide for more
information about the DQUOTE= option.

In the next example, you query the DBMS table and use a label to change the
FLIGHT NUMBER column name to a standard SAS name, Flight_Number. A
label—enclosed in single quotes—changes the name only in the output. Because
this column name and the table name (International Delays) each have a

SAS Names and Support for DBMS Names 4 DBMS Column Names to SAS Variable Names 17

space in their names, you have to enclose the names in double-quotes. A partial
output follows the example.

options linesize=64 nodate;

libname mydblib oracle user=orjan pass=mypw path=’airdata’
schema=airport preserve_names=yes;

proc sql dquote=ansi outobs=5;
title "Query from International Delays";
select "FLIGHT NUMBER" label=’Flight_Number’, dates, delay

from mydblib."International Delays";

Output 2.8 Query Renaming a Non-Standard Column to a Standard SAS Name

Query from International Delays

Flight_
Number DATES DELAY

219 01MAR1998:00:00:00 18
219 02MAR1998:00:00:00 18
219 03MAR1998:00:00:00 18
219 04MAR1998:00:00:00 18
219 05MAR1998:00:00:00 18

See the SAS naming conventions and “VALIDVARNAME” on page 63 for more
information.

DBMS Column Names to SAS Variable Names

The SAS system option VALIDVARNAME=V7 is the default value for your SAS
session unless you set this option to a different value. (VALIDVARNAME=V7 applies to
Version 7 and later of SAS software.) Therefore, to change the standard SAS rules for
names, you must set one of the following options: VALIDVARNAME=ANY,
PRESERVE_TAB_NAMES=YES, PRESERVE_COL_NAMES=YES, or PROC SQL
DQUOTE=ANSI.

If the aforementioned options are not set, the following rules apply when you map
DBMS column names to SAS variable names:

� Characters that are not standard in SAS names (such as @ and #) that appear in
DBMS column names are changed to underscores in SAS variable names. For
example, the DBMS column name MY$DEPT becomes SAS variable name MY_DEPT.

� SAS makes DBMS column names into unique SAS variable names by appending a
number (starting with 0) to the variable name when they are changed to conform
with SAS rules. For example, DBMS column names MY$DEPT, My$Dept, and
my$dept become SAS variable names MY_DEPT, MY_Dept0, and MY_DEPT1.

The following two tables describe how SAS processes DBMS names when it is
retrieving DBMS data. This information applies generally to the DBMS names; see
your DBMS chapter for possible exceptions. See “Naming Examples” on page 19 for
examples that illustrate the different kinds of naming actions and defaults.

18 SAS Variable Names to DBMS Column Names 4 Chapter 2

Table 2.1 DBMS Column to SAS Variable Names When Reading DBMS Data

If your DBMS column name is a... ...and you want this SAS variable
name...

...Then use these LIBNAME, PROC
SQL, or System Options 1

Case-sensitive DBMS column name,
such as Flight

Default SAS variable name
(uppercase), such as FLIGHT

preserve_col_names=no

DBMS column name with
characters that are not valid in SAS
names, such as My$Flight

Default SAS variable name
(uppercase) where an underscore
replaces the invalid characters, such
as MY_FLIGHT

preserve_col_names=no

Case-sensitive DBMS column name,
such as Flight

Case-sensitive SAS variable name,
such as Flight

preserve_col_names=yes

DBMS column name with
characters that are not valid in SAS
names, such as My$Flight

Case-sensitive SAS variable name
where an underscore replaces the
invalid characters, such as
My_Flight

preserve_col_names=yes

DBMS column name with
characters that are not valid in SAS
names, such as My$Flight

Nonstandard, case-sensitive SAS
variable name, such as My$Flight

proc sql dquote=ansi and
preserve_col_names=yes or, in a
DATA or PROC step, use a SAS
name literal such as ’My$Flight’n
and preserve_col_names=yes
validvarname=any

1 These options might not be required. Default values for these options are DBMS-specific.

Table 2.2 DBMS Table to SAS Data Set Names When Reading DBMS Data

If your DBMS table name is aAnd you want this SAS data set
name...

...Then use these LIBNAME, PROC
SQL, or System Options1

Default DBMS table name, such as
STAFF

Default SAS data set or member
name (uppercase), such as STAFF

preserve_tab_names=no

Case-sensitive DBMS table name,
such as Staff

Case-sensitive SAS data set, such as
Staff

preserve_tab_names=yes

DBMS table name with characters
that are not valid in SAS names,
such as All$Staff

Nonstandard, case-sensitive SAS
data set name, such as All$Staff

proc sql dquote=ansi and
preserve_tab_names=yes or, in a
DATA step or PROC, use a SAS
name literal such as ’All$Staff’n
and preserve_tab_names=yes

1 These options might not be required. Default values for these options are DBMS-specific.

SAS Variable Names to DBMS Column Names
The following two tables describe how SAS variable names are handled when you

use SAS/ACCESS software to create DBMS objects such as tables and views. This
information applies generally; see your DBMS chapter for possible exceptions. See
“Naming Examples” on page 19 for examples that illustrate the different kinds of
naming actions and defaults.

SAS Names and Support for DBMS Names 4 Naming Examples 19

Table 2.3 SAS Data Set to DBMS Column Names

If the SAS variable name as input is
...

...And you want this DBMS column
name...

...Then use these LIBNAME,

PROC SQL, or System Options1

Any SAS variable name, such as
Miles

Default DBMS column name
(normalized to follow the DBMS’s
naming conventions), such as

MILES

preserve_col_names=no

A case-sensitive SAS variable name,
such as Miles

Case-sensitive DBMS column name,
such as Miles

preserve_col_names=yes

A SAS variable name with
characters that are not valid in a
normalized SAS name, such as
Miles-to-Go

Case-sensitive DBMS column name
that matches the SAS name, such as
Miles-to-Go

proc sql dquote=ansi and
preserve_col_names=yes or, in
a DATA or PROC step, use a SAS
name literal and
preserve_col_names=yes
validvarname=any

1 These options might not be required. Option default values are DBMS-specific.

Table 2.4 SAS Data Set to DBMS Table Names

If the SAS data set name as input
is...

...And you want this DBMS table
name...

...Then use these LIBNAME or

PROC SQL Options1

Any SAS data set name, such as
Payroll

Default DBMS table name
(normalized to follow the DBMS’s
naming conventions), such as
PAYROLL

preserve_tab_names=no

A case-sensitive SAS data set name,
such as Payroll

Case-sensitive DBMS table name,
such as Payroll

preserve_tab_names=yes

A case-sensitive SAS data set name
with characters that are not valid in
a normalized SAS name, such as
Payroll-for-QC

Case-sensitive DBMS table name
that matches the SAS name, such as
Payroll-for-QC

proc sql dquote=ansi and
preserve_tab-names=yes or, in a
DATA or PROC step, use a SAS
name literal and
preserve_tab_names=yes

1 These options might not be required. Option default values are DBMS-specific.

Naming Examples

In this example, you create a simple table to test for yourself how the options work.
To use name literals, you must specify the SAS system option VALIDVARNAME=ANY.
Notice that you print the new DBMS table using PROC SQL because name literals
work only with PROC SQL and the DATA step.

options ls=64 validvarname=any nodate;

libname mydblib oracle user=yao password=cary path=’ora8servr’
preserve_col_names=yes preserve_tab_names=yes ;

20 Naming Examples 4 Chapter 2

data mydblib.’Sample Table’n;
’EmpID#’n=12345;
Lname=’Chen’;
’Salary in $’n=63000;

proc sql;
title "Sample Table";
select * from mydblib.’Sample Table’n;

Output 2.9 DBMS Table to Test Column Names

Sample Table

Salary
EmpID# Lname in $

12345 Chen 63000

DBMS column and table names that contain characters or blanks that are not valid
in SAS cannot be specified directly in a SAS DATA step or procedure, except if you are
using:

� the DQUOTE=ANSI option in PROC SQL

or
� SAS name literals written as

’string’n

Therefore, you must first rename these kinds of DBMS names as standard SAS names
in a PROC SQL or data set view, and then reference that view in a DATA step or SAS
procedure.

In the following example, notice that the LIBNAME statement is embedded in the
PROC SQL view. Output follows the example.

libname mysaslib ’SAS-data-library’;

proc sql dquote=ansi;
create view mysaslib.sampleview as

select "EmpID#" as Empid, "Salary in $" as Salary
from mydblib."Sample Table"

using libname mydblib oracle user=karin
password=haggis path=’ora8servr’
preserve_col_names=yes preserve_tab_names=yes;

proc print data=mysaslib.sampleview;
title ’Sample View’;

run;

SAS Names and Support for DBMS Names 4 Naming Examples 21

Output 2.10 PROC SQL View to Test Column Names

Sample View

Obs Empid Salary

1 12345 63000

For more information about embedded libnames in PROC SQL views, see the SQL
Procedure chapter in the SAS Procedures Guide.

You can then drop your sample DBMS table and PROC SQL view by using a PROC
SQL DROP statement. Notice that the VALIDVARNAME=ANY option must be set in
order for you to specify a name literal in the DROP statement:

options validvarname=any nodate;
libname mysaslib ’SAS-data-library’;
libname mydblib oracle user=yao password=cary path=’ora8servr’
preserve_tab_names=yes;

proc sql;
drop table mydblib.’Sample Table’n;
drop view mysaslib.sampleview;
quit;

In this example, you use PROC SQL to create a new DBMS table based on data from
other DBMS tables. By using PRESERVE_COL_NAMES=YES, you preserve the
case-sensitivity of the aliased column names. A partial output is displayed after the
code.

libname mydblib oracle user=shella password=moiri
path=’hrdata99’ schema=personnel preserve_col_names=yes;

proc sql;
create table mydblib.gtforty as
select lname as LAST_NAME,

fname as FIRST_NAME,
salary as ANNUAL_SALARY

from mydblib.staff a,
mydblib.payroll b

where (a.idnum eq b.idnum) and
(salary gt 40000)

order by lname;

proc print noobs;
title ’Employees with Salaries over $40,000’;

run;

22 Naming Examples 4 Chapter 2

Output 2.11 Updating DBMS Data

Employees with Salaries over $40,000

ANNUAL_
LAST_NAME FIRST_NAME SALARY

BANADYGA JUSTIN 88606
BAREFOOT JOSEPH 43025
BRADY CHRISTINE 68767
BRANCACCIO JOSEPH 66517
CARTER-COHEN KAREN 40260
CASTON FRANKLIN 41690
COHEN LEE 91376
FERNANDEZ KATRINA 51081

In the next example, you create a temporary SAS data set that has case-sensitive
names. You define your LIBNAME statement and then use a SAS DATA step to create
the new DBMS table, College-Hires-1999. Because you are using a DATA step to
create the DBMS table, you must specify the table name as a name literal and specify
the PRESERVE_TAB_NAMES= and PRESERVE_COL_NAMES= options (in this case,
by using the alias PRESERVE_NAMES=YES) .

options validvarname=any nodate;

data College_Hires_1999;
input IDnum $4. +3 Lastname $11. +2
Firstname $10. +2 City $15. +2
State $2.;

datalines;
3413 Schwartz Robert New Canaan CT
3523 Janssen Heike Stamford CT
3565 Gomez Luis Darien CT
;

libname mydblib oracle user=shella password=moiri
path=’hrdata99’ schema=hrdept
preserve_names=yes;

data mydblib.’College-Hires-1999’n;
set College_Hires_1999;

proc print;
title ’College Hires in 1999’;
run;

Output 2.12 DBMS Table with Case-Sensitive Table and Column Names

College Hires in 1999

Obs IDnum Lastname Firstname City State

1 3413 Schwartz Robert New Canaan CT
2 3523 Janssen Heike Stamford CT
3 3565 Gomez Luis Darien CT

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–558–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

