
59

C H A P T E R

5
Macro Variables and System
Options

Introduction 59
About the Macro Facility 59

Automatic Macro Variables 59

System Options 60

Introduction
This topic describes the macro variables and system options that are available to use

with SAS/ACCESS software.

About the Macro Facility
Most features of the SAS macro facility are portable. This section describes only

those components of the macro facility that depend on the SAS/ACCESS engine. For
more information, refer to the SAS Macro Language: Reference and the online help for
the macro facility.

Automatic Macro Variables
The following automatic macro variables are portable, but their values are

determined by the SAS/ACCESS engine and your DBMS. Initially, the macro variables
SYSDBMSG and SQLXMSG are blank, whereas SYSDBRC and SQLXRC are set to 0.
Two of the macro variables that can be used anywhere while accessing DBMS data are
SYSDBMSG and SYSDBRC.

SYSDBMSG
contains DBMS-specific error messages that are generated when you use SAS/
ACCESS to access your DBMS data.

SYSDBRC
contains DBMS-specific error codes that are generated when you use SAS/ACCESS
to access your DBMS data. Error codes that are returned are text, not numbers.

Because only one set of macro variables is provided, it is possible that, if tables from
two different DBMSs are accessed, it might not be clear from which DBMS the error
message originated. To address this problem, the name of the DBMS is inserted into
the value of the SYSDBMSG macro variable.

60 System Options 4 Chapter 5

For example, if you try to connect to ORACLE and use the incorrect password, you
would receive the messages shown in Output 5.1 on page 60.

Output 5.1 SAS Log for an ORACLE Error

2? libname mydblib oracle user=pierre pass=paris path="orav7";

ERROR: ORACLE error trying to establish connection. ORACLE error is
ORA-01017: invalid username/password; logon denied

ERROR: Error in the LIBNAME or FILENAME statement.
3? %put &sysdbmsg;

ORACLE: ORA-01017: invalid username/passsword; logon denied
4? %put &sysdbrc;

-1017
5?

The contents of the SYSDBMSG and SYSDBRC macro variables can be printed in
the SAS log by using the %PUT macro. The automatic macro variables SYSDBMSG
and SYSDBRC are reset after each SAS/ACCESS LIBNAME statement, DATA step, or
procedure has been executed.

The SQL Procedure Pass-Through Facility generates return codes and messages that
are available to you through the following two SAS macro variables:

SQLXMSG
contains DBMS specific error messages. See “SQL Procedure Pass-Through
Facility Return Codes” on page 83.

SQLXRC
contains DBMS specific error codes. See “SQL Procedure Pass-Through Facility
Return Codes” on page 83.

SQLXMSG and SQLXRC can be used only with the SQL Procedure Pass-Through
Facility.

The contents of the SQLXMSG and SQLXRC macro variables can be printed in the
SAS log by using the %PUT macro. SQLXMSG is reset to a blank string and SQLXRC
is reset to a “0” when any SQL Procedure Pass-Through statement is executed.

System Options
SASTRACE and VALIDVARNAME are SAS system options that have SAS/

ACCESS-specific applications.

Note: The SAS system option, REPLACE, which is not described here, is not
supported and will be ignored by the SAS/ACCESS engines. 4

SASTRACE
Generates trace information from a DBMS engine

Default: NONE
Valid in: Wherever SAS sytem options are valid: OPTIONS statement, configuration
file, SAS invocation.

Macro Variables and System Options 4 SASTRACE 61

Syntax
SASTRACE= ’,,,d’

’,,,d’
gives information about SAS/ACCESS engine calls to a relational DBMS.

SAS/ACCESS Specific Details
SASTRACE is a SAS system option that has SAS/ACCESS-specific behavior.
SASTRACE is a very powerful tool to use when you want to see the commands sent to
your DBMS by the SAS/ACCESS engine. SASTRACE output is DBMS-specific; however,
most SAS/ACCESS engines will show you statements like SELECT or COMMIT as the
DBMS processes them for the SAS application. It replaces the DBDEBUG option from
Version 6; this option name might be different for your DBMS or operating environment.

See Chapter 7, “Advanced Topics in SAS/ACCESS,” on page 85 for more information.

Note: Output from SASTRACE differ depending on your DBMS. 4

Example

The following example generates several messages from the SASTRACE= system
option. Output 5.2 on page 61 was written to the SAS log, as specified by the
SASTRACELOC=SASLOG option.

data work.winter_birthdays;
input empid birthdat date9. lastname $18.;
format birthdat date9.;

datalines;
678999 28DEC1966 PAVEO JULIANA 3451
456788 12JAN1977 SHIPTON TIFFANY 3468
890123 20FEB1973 THORSTAD EDVARD 3329
;
run;

libname mydblib oracle user=dmitry password=elvis schema=bday_data;

options sastrace=’,,,d’ sastraceloc=saslog;
data mydblib.snow_birthdays;

set work.winter_birthdays;
run;

libname mydblib clear;

62 SASTRACELOC 4 Chapter 5

Output 5.2 SAS Log Output from the SASTRACE= and SASTRACELOC= System Options

50 data work.winter_birthdays;

51 input empid birthdat date9. lastname $18.;

52 format birthdat date9.;

53 datalines;

NOTE: The data set WORK.WINTER_BIRTHDAYS has 3 observations and 3 variables.

NOTE: DATA statement used:

real time 0.08 seconds

cpu time 0.03 seconds

...

57 ;

58 run;

59

60 libname mydblib oracle user=dmitry password=XXXXX schema=bday_dat;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name:

61

62 options sastrace=’,,,d’ sastraceloc=saslog;

63 data mydblib.snow_birthdays;

64 set work.winter_birthdays;

65 run;

DEBUG: Open Cursor - CDA=2060054152 49 923702189 orusti 296 DATASTEP

DEBUG: PREPARE SQL statement: 50 923702189 orprep 63 DATASTEP

SELECT * FROM SNOW_BIRTHDAYS 51 923702189 orprep 64 DATASTEP

DEBUG: Close Cursor - CDA=2060054152 52 923702189 orustt 365 DATASTEP

DEBUG: PHYSICAL connect. 53 923702190 orcon 372 DATASTEP

DEBUG: USER=scott 54 923702190 orcon 373 DATASTEP

DEBUG: Open Cursor - CDA=2057325192 55 923702190 orusti 296 DATASTEP

DEBUG: Open Cursor - CDA=2057332360 56 923702190 orusti 296 DATASTEP

NOTE: SAS variable labels, formats, and lengths are not written to DBMS

tables.

DEBUG: EXECUTE SQL statement: 57 923702190 orexec 75 DATASTEP

CREATE TABLE SNOW_BIRTHDAYS(empid NUMBER ,birthdat DATE,lastname VARCHAR2

(18)) 58 923702190 orexec 76 DATASTEP

DEBUG: PREPARE SQL statement: 59 923702190 orins 330 DATASTEP

INSERT INTO SNOW_BIRTHDAYS (empid,birthdat,lastname) VALUES

(:empid,TO_DATE(:birthdat,’DDMONYYYY’,’NLS_DATE_LANGUAGE=American’),:lastnam

e) 60 923702190 orins 331 DATASTEP

NOTE: There were 3 observations read from the dataset WORK.WINTER_BIRTHDAYS.

DEBUG: *-*-*-*-*-*-* COMMIT *-*-*-*-*-*-* 61 923702190 orforc 102 DATASTEP

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3

variables.

DEBUG: *-*-*-*-*-*-* COMMIT *-*-*-*-*-*-* 62 923702190 orforc 102 DATASTEP

DEBUG: Close Cursor - CDA=2057325192 63 923702190 orustt 365 DATASTEP

DEBUG: Close Cursor - CDA=2057332360 64 923702190 orustt 365 DATASTEP

DEBUG: PHYSICAL disconnect. 65 923702190 ordcon 445 DATASTEP

DEBUG: USER=scott 66 923702191 ordcon 446 DATASTEP

NOTE: DATA statement used:

real time 1.30 seconds

cpu time 0.18 seconds

SASTRACELOC

Prints SASTRACE information to a specified location

Default: stdout

Macro Variables and System Options 4 VALIDVARNAME 63

Valid in: OPTIONS statement, configuration file, SAS invocation.

Syntax
SASTRACELOC=stdout | SASLOG

Details
SASTRACELOC is a SAS system option that enables you to specify where to put the
trace messages that are generated by SASTRACE. By default, the output goes to stdout
or the default for your operating environment. You can send the output to a SASLOG
by specifying SASTRACELOC=SASLOG. See “SASTRACE” on page 60 for an example
of SASTRACELOC=.

Note: This option and its values may differ for each host. 4

VALIDVARNAME

Controls the type of SAS variable names that can be used and/or created during a SAS session

Default: V7 (for Version 7 and later)
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window.

Syntax
VALIDVARNAME=V7 | V6 | UPCASE | ANY

SAS/ACCESS Specific Details
VALIDVARNAME is a SAS system option that interacts with SAS/ACCESS
applications. It enables you to control which rules apply for SAS variable names. For
more information about the VALIDVARNAME= system option, see the SAS Language
Reference: Dictionary. The settings are as follows:

VALIDVARNAME=V7
indicates that a DBMS column name will be mapped to a valid SAS name by using
the following rules:

� Up to 32 mixed case alphanumeric characters are allowed.
� Names must begin with alphabetic characters or an underscore.
� Non SAS characters are mapped to underscores.
� Any column name that is not unique when normalized is made unique by

appending a counter (0,1,2,...) to the name.

V7 is the default value for Version 7 and later of SAS software.

VALIDVARNAME=V6
indicates that only those variable names considered valid SAS variable names in
Version 6 are considered valid. When V6 is specified in SQL Pass-Through code,

64 VALIDVARNAME 4 Chapter 5

the DBMS engine truncates column names to 8 characters as it did in Version 6. If
required, numbers are appended to the end of the truncated name to make it
unique.

VALIDVARNAME=UPCASE
indicates that a DBMS column name will be mapped to a valid SAS name as
described in VALIDVARNAME=V7 except that variable names are in uppercase.

VALIDVARNAME=ANY
allows any characters in DBMS column names to appear as valid characters in
SAS variable names. Symbols, such as "=" and "*", must be contained in a
’varname’n construct. ANY is required whenever you want to read DBMS column
names that don’t follow the SAS naming conventions.

For more information on SAS naming conventions, see Chapter 2, “SAS Names and
Support for DBMS Names,” on page 9 and system options in the SAS Language
Reference: Dictionary.

Example

The following example shows how the PROC SQL Pass-Through Facility works with
VALIDVARNAME=V6.

options validvarname=v6;
proc sql;

connect to oracle (user=testuser pass=testpass);
create view myview as
select amount_b, amount_s
from connection to oracle

(select "Amount Budgeted$", "Amount Spent$"
from mytable);

quit;

proc contents data=myview;
run;

The output from this example would show that "Amount Budgeted$" becomes
AMOUNT_B and "Amount Spent$" becomes AMOUNT_S.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–558–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

