
103

C H A P T E R

9
ACCESS Procedure Reference

Introduction 103
Naming Limits in the ACCESS Procedure 104

Case Sensitivity in the ACCESS Procedure 104

ACCESS Procedure Syntax 104

Description 105

PROC ACCESS Statement Options 105
Options 105

SAS System Passwords for SAS/ACCESS Descriptors 106

Assigning Passwords 107

Procedure Statements 108

Performance and Efficient View Descriptors 125

General Information 125
Sorting DBMS Data 125

Extracting Data Using a View 126

Using a Subset of the DBMS Data 127

Using Multiple WHERE Clauses 127

Writing Efficient WHERE Clauses for View Descriptors 128

Introduction

In most of the interfaces that are provided in Version 6 of SAS/ACCESS software, the
ACCESS procedure enabled you to create descriptor files that are used to access and
update DBMS data in SAS. The ACCESS procedure continues to be supported in
Version 7 and later. However, there are some changes in the support, as described in
“Version 8 Compatibility for Version 6 Procedures” on page 99.

This chapter provides general reference information for the ACCESS procedure. The
PROC ACCESS statement and its options are presented first, followed by the procedure
statements. The last section, “Performance and Efficient View Descriptors” on page 125,
presents several efficiency considerations for using SAS/ACCESS software.

See your DBMS chapter to determine whether the ACCESS procedure is supported
for your DBMS, and for DBMS-specific information pertaining to the ACCESS
procedure. Refer to the SAS Language Reference: Dictionary and to the SAS
Companion for your operating system environment for information about SAS data
sets, SAS data libraries, and their naming conventions. If you are using this
documentation from a book, remember that help is available from the Help menu.

Note: It is recommended that you use the new SAS/ACCESS LIBNAME statement
instead of PROC ACCESS in order to access your DBMS data more directly and to take
full advantage of the Version 7 and later enhancements. See “SAS/ACCESS LIBNAME
Statement” on page 27 for more information about the new LIBNAME statement. 4

104 Naming Limits in the ACCESS Procedure 4 Chapter 9

Naming Limits in the ACCESS Procedure
In Version 7 and later, the ACCESS procedure still limits descriptor and SAS

variable names to a maximum of eight characters in length. If you need to use
32–character names in SAS, it is recommended that you use the SAS/ACCESS
LIBNAME statement or the SQL Procedure Pass-Through Facility to access your
DBMS data instead of PROC ACCESS.

If you attempt to use long names in PROC ACCESS, you will get an error message
advising you that long names are not supported. Long member names, such as access
descriptor and view descriptor names, are truncated to eight characters. Long DBMS
column names are truncated to eight–character SAS variable names within the SAS
access descriptor. As in previous versions, you can use the PROC ACCESS RENAME=
statement to specify eight–character SAS variable names, or accept the default
truncated SAS variable names that are assigned by PROC ACCESS.

Case Sensitivity in the ACCESS Procedure
SAS names can be entered in either uppercase or lowercase. However, some

host-operating environments and some DBMSs are case sensitive and therefore, special
consideration should be used when the names of DBMS objects (such as tables and
columns) are used in the SAS System. See the "Naming Conventions" section in your
DBMS chapter for more information on case sensitivity.

The ACCESS procedure generally converts DBMS object names to uppercase unless
they are enclosed in quotes. Any DBMS objects that were given lowercase names when
they were created, or whose names contain special or national characters, must be
enclosed in quotes.

ACCESS Procedure Syntax
The statements for your DBMS may differ from those listed below. See your DBMS

chapter for details.

PROC ACCESS<statement-options>;

Creating and Updating Statements

CREATE libref.member-name.ACCESS | VIEW <password-option>;

UPDATE libref.member-name.ACCESS | VIEW <password-option>;

Database Connection Statements
These statements are used to connect to your DBMS and they vary depending on

which SAS/ACCESS interface you are using. See your DBMS chapter for details.
Examples include USER=, PASSWORD=, and DATABASE=.

Table Statement

TABLE= < ’>table-name< ’>;

Editing Statements

ASSIGN <=>YES | NO | Y | N;

DROP < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;

ACCESS Procedure Reference 4 PROC ACCESS Statement Options 105

FORMAT < ’>column-identifier-1< ’> <=>SAS-format-name-1
<…< ’>column-identifier-n< ’> <=> SAS-format-name-n>;

LIST <ALL | VIEW |< ’>column-identifier< ’>>;

QUIT;

RENAME < ’>column-identifier-1< ’> <=> SAS-variable-name-1
<…< ’>column-identifier-n< ’> <=> SAS-variable-name-n>;

RESET ALL |< ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;

SELECT ALL |< ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;

SUBSET selection-criteria;

UNIQUE <=> YES | NO | Y | N;

RUN;

Description
You can use the ACCESS procedure to create and update access descriptors, view

descriptors, and SAS data files. Descriptor files describe DBMS data so that you can
read, update, or extract the DBMS data directly from within a SAS session or in a SAS
program.

The following sections provide complete information on PROC ACCESS options and
statements.

PROC ACCESS Statement Options
The ACCESS procedure statement takes the following sets of options:

PROC ACCESS <statement-options>;

Depending on which options you use, the ACCESS procedure statement performs
several tasks. You use the PROC ACCESS statement with database connection
statements and certain procedure statements to create and update descriptors or SAS
data files from DBMS data. The following sections describe PROC ACCESS options in
greater detail.

Options
This section describes the options that you use to create and update access

descriptors or to create and update a view descriptor.
See Table 9.2 on page 108 for examples of options and statements. To invoke the

ACCESS procedure, you use the options and certain procedure statements. The options
and statements that you choose are determined by your task.

ACCDESC=libref.access-descriptor
specifies an access descriptor.

ACCDESC= is used with the DBMS= option to create or update a view
descriptor that is based on the specified access descriptor. You use a CREATE or
UDPATE statement to name and create or update the view. You can also use a
SAS data set option on the ACCDESC= option to specify any passwords that have
been assigned to the access descriptor. The ACCDESC= option has two aliases:
AD= and ACCESS=.

106 SAS System Passwords for SAS/ACCESS Descriptors 4 Chapter 9

DBMS=database-management-system
specifies which database management system you want to use. DBMS= can be
used with the ACCDESC= option to create or update a view descriptor, which is
then named in the CREATE or UPDATE statement. This option is required. See
your DBMS chapter for the value to enter for your DBMS.

OUT=libref.member-name
specifies the SAS data file to which DBMS data is output. OUT= is used with the
VIEWDESC= option. VIEWDESC= specifies the view descriptor through which
you extract the DBMS data.

Note: This option cannot be specified when you create or update a view
descriptor. 4

VIEWDESC=libref.view-descriptor
specifies a view descriptor through which you extract the DBMS data.
VIEWDESC= is used with the OUT= option.

For example:

proc access viewdesc=mydblib.newstaff
out=dlib.newstaff;

run;

SAS System Passwords for SAS/ACCESS Descriptors

The SAS System enables you to control access to SAS data sets and access
descriptors by associating one or more SAS System passwords with them. You must
first create the descriptor files before you assign SAS passwords to them, as described
in “Assigning Passwords” on page 107.

Table 9.1 on page 106 summarizes the levels of protection that SAS System
passwords have and their effects on access descriptors and view descriptors:

Table 9.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor
from being read or
edited

view descriptor protects DBMS data
from being read or
updated

protects DBMS data
from being updated

protects descriptor
from being read or
edited

When you create or update view descriptors, you can use a SAS data set option after
the ACCDESC= option to specify the access descriptor’s password (if one exists). In this
case, you are not assigning a password to the view descriptor that is being created or
updated; rather, using the password grants you permission to use the access descriptor
to create or update the view descriptor. For example:

proc access dbms=sybase accdesc=adlib.customer
(alter=rouge);

create vlib.customer.view;
select all;

ACCESS Procedure Reference 4 Assigning Passwords 107

run;

By specifying the ALTER level of password, you can read the ADLIB.CUSTOMER
access descriptor and create the VLIB.CUSTOMER view descriptor.

Assigning Passwords
To assign, change, or delete a SAS password, you can also use the DATASETS

procedure’s MODIFY statement or the global SETPASSWORD command, which opens a
dialog box. Here is the basic syntax for using PROC DATASETS to assign a password
to an access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;
MODIFY member-name (password-level = password-modification);

RUN;

In this syntax statement, the password-level argument can have one or more of the
following values: READ=, WRITE=, ALTER=, or PW=. PW= assigns read, write, and
alter privileges to a descriptor or data file. The password-modification argument
enables you to assign a new password or to change or delete an existing password. For
example, this PROC DATASETS statement assigns the password MONEY with the
ALTER level of protection to the access descriptor ADLIB.SALARIES.

proc datasets library=adlib memtype=access;
modify salaries (alter=money);

run;

In this case, users are prompted for the password whenever they try to browse or
update the access descriptor or to create view descriptors that are based on
ADLIB.SALARIES.

You can assign multiple levels of protection to a descriptor or SAS data file. In the
next example, the PROC DATASETS statement assigns the passwords MYPW and
MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.JOBC204:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read the DBMS
data, or try to browse or update the view descriptor VLIB.JOBC204. You need both
levels to protect the data and descriptor from being read. However, a user could still
update the data accessed by VLIB.JOBC204, for example, by using a PROC SQL
UPDATE. Assign a WRITE level of protection to prevent data updates.

Note: When you assign multiple levels of passwords, use a different password for
each level to ensure that you grant only the access privileges that you intend. 4

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw/ alter=mydept/);

run;

108 Procedure Statements 4 Chapter 9

Procedure Statements

To invoke the ACCESS procedure, you use the options described in “Options” on page
105 and certain procedure statements. The options and statements that you choose are
determined by your task, as summarized in Table 9.2 on page 108. These statements
vary per DBMS and might be optional; see your DBMS chapter for more information.
The new SAS/ACCESS data set options that are described in “SAS/ACCESS Data Set
Options” on page 43 are available for use with view descriptors, where applicable.

Table 9.2 Options and Statements Required for the ACCESS Procedure

Tasks Options and Statements You Use

create an access descriptor PROC ACCESS statement-options;
CREATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

RUN;

create an access descriptor and a
view descriptor

PROC ACCESS statement-options;
CREATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

create a view descriptor from an
existing access descriptor

PROC ACCESS statement-options, including
ACCDESC=libref.access-descriptor;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

update an access descriptor PROC ACCESSstatement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

RUN;

update an access descriptor and
a view descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

UPDATE libref.member-name.VIEW;
editing-statements;

RUN;

ACCESS Procedure Reference 4 ASSIGN 109

Tasks Options and Statements You Use

update an access descriptor and
create a view descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

update a view descriptor from an
existing access descriptor

PROC ACCESS statement-options, including
ACCDESC=libref.access-descriptor;

UPDATE libref.member-name.VIEW;
editing-statements;

RUN;

create a SAS data set from a
view descriptor

PROC ACCESS statement-options, including DBMS=dbms-name;
VIEWDESC=libref.member; OUT=libref.member;

RUN;

To review the contents of an existing view descriptor, you can use the CONTENTS
procedure. For an example, see “Reviewing Variables” on page 186.

To review the contents of an access descriptor, you can use the LIST statement in
PROC ACCESS. In this Oracle Rdb example, the LIST statement displays all of the
variables in the newly created access descriptor, ADLIB.EMPLOY.

/* create access descriptor */

proc access dbms=rdb;
create adlib.employ.access;
database=’qa:[dubois]textile’;
table=employees;
assign=no;
list all;

You can create or update one or more access descriptors and view descriptors in one
execution of PROC ACCESS, or you can create or update the descriptors in separate
executions.

To create descriptors, the procedure statements must be coded in a particular order.
See “CREATE” on page 111 for information on this order and for information on
database connection and editing statements. The PROC ACCESS statements are
described in alphabetic order in the following sections.

ASSIGN

Indicates whether SAS variable names and formats are generated.

Optional statement

110 ASSIGN 4 Chapter 9

Applies to: access descriptor

Interacts with: FORMAT, RENAME, RESET, UNIQUE
Default: NO

Syntax
ASSIGN <=>YES | NO | Y | N;

Details
The ASSIGN statement indicates whether SAS variable names are automatically

generated and whether users can change SAS variable names and formats in the view
descriptors created from this access descriptor.

An editing statement, such as ASSIGN, must be specified after the CREATE and
database connection statements when you create an access descriptor. See “CREATE”
on page 111 for more information.

Note: The ASSIGN statement cannot be used with the UPDATE statement. 4

The value NO (or N) enables you to modify SAS variable names and formats when you
create an access descriptor and when you create view descriptors that are based on this
access descriptor. During an access descriptor’s creation, you use the RENAME
statement to change SAS variable names; you use the FORMAT statement to change
SAS formats.

Specify a YES (or Y) value for this statement to generate unique SAS variable names
from the first eight characters of the DBMS column names, according to the following
rules. With YES, you can change the SAS variable names only in the access descriptor.
The SAS variable names that are saved in an access descriptor are always used when
view descriptors are created from the access descriptor; you cannot change them in the
view descriptors. Note that the ACCESS procedure only allows names up to eight
characters.

Default SAS variable names are generated according to these rules:

� If the column name is longer than eight characters, the SAS System uses only the
first eight characters. If truncating results in duplicate names, numbers are
appended to the ends of the names. For example, the DBMS names clientsname
and clientsnumber become the SAS names clientsn and clients0.

If the same descriptor has another set of columns with duplicate names, the
numeric suffix begins at the next highest number from the previous set of
duplicate names. For example, if the descriptor has the duplicate names above
and also the DBMS names customername, customernumber, and customernode,
the default SAS names would be customer, custome1, and custome2.

� If the column name contains characters that are invalid in SAS names (including
national characters), the SAS System replaces the invalid characters with
underscores (_). For example, the column name func$ becomes the SAS variable
name func_.

If you specify YES for this statement, the SAS System automatically resolves any
duplicate variable names. However, if you specify YES, you cannot specify the
RENAME, FORMAT, RESET or UNIQUE statements when you create view descriptors
that are based on the access descriptor.

ACCESS Procedure Reference 4 CREATE 111

When the SAS/ACCESS interface encounters the next CREATE statement to create
an access descriptor, the ASSIGN statement is reset to the default NO value.

AN is the alias for the ASSIGN statement.

CREATE

Creates a SAS/ACCESS descriptor file.

Required statement
Applies to: access descriptor or view descriptor

Syntax
CREATE libref.member-name.ACCESS | VIEW;

Details
The CREATE statement identifies the access descriptor or view descriptor that you

want to create. This statement is required for creating a descriptor.

To create a descriptor, use a three-level name. The first level identifies the libref of
the SAS data library where you will store the descriptor. You can store the descriptor in
a temporary (WORK) or permanent SAS data library. The second level is the
descriptor’s name (member name). The third level is the type of SAS file: specify
ACCESS for an access descriptor or VIEW for a view descriptor.

You can use the CREATE statement as many times as necessary in one procedure
execution. That is, you can create multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can create access descriptors and view descriptors in
separate executions of the procedure.

Access descriptors
When you create an access descriptor, you must place statements or groups of
statements in a certain order after the PROC ACCESS statement and its options, as
listed below:

1 CREATE statement for the access descriptor: this statement must always follow
the PROC ACCESS statement if a descriptor is being created.

2 Database connection statements: DBMS-specific statements for your DBMS.
Information from database connection statements is stored in an access descriptor.
Therefore, you do not repeat this information when you create view descriptors.
See your DBMS chapter for information on database connection statements for
your DBMS.

3 TABLE statement and/or editing statements: ASSIGN, DROP, FORMAT, LIST,
RENAME, RESET.

4 Specify the RUN statement to execute the ACCESS procedure. If you specify
QUIT instead of RUN, PROC ACCESS terminates without creating your
descriptor. Alternately, you can specify another CREATE or UPDATE statement to

112 CREATE 4 Chapter 9

execute the previous CREATE or UPDATE statement; your changes are saved
when a new CREATE, UPDATE, RUN, or other SAS statement is executed.

The order of the statements within the database connection group does not matter.
The order of the statements within the editing group sometimes matters; see the
individual statement descriptions for any restrictions.

Note: Altering a DBMS table that has descriptor files defined on it might invalidate
these files or cause them to be outdated. If you re-create a table, add a new column to a
table, or delete an existing column from a table, use the UDPATE statement to modify
your descriptors to use the new information. 4

View descriptors
You can create view descriptors and access descriptors in the same execution of the
ACCESS procedure or in separate executions.

To create a view descriptor and the access descriptor on which it is based within the
same PROC ACCESS execution, you must place the statements or groups of statements
in a particular order after the PROC ACCESS statement and its options, as listed below:

1 Create the access descriptor as described in “Access descriptors” on page 111, but
do not include the RUN statement.

2 CREATE statement for the view descriptor: this statement must follow the PROC
ACCESS statements that created the access descriptor.

3 Editing statements: SELECT, SUBSET, and UNIQUE are used only when
creating view descriptors. FORMAT, LIST, RENAME, and RESET are used when
creating both view and access descriptors. FORMAT, RENAME, and UNIQUE can
be specified only when ASSIGN=NO is specified in the access descriptor referenced
by this view descriptor. QUIT is also an editing statement but using it terminates
PROC ACCESS without creating your descriptor.

The order of the statements within this group usually does not matter; see the
individual statement descriptions for any restrictions.

Note: You cannot use the DROP statement when you create a view descriptor.
Instead, use SELECT to specify the columns you want. 4

4 Specify the RUN statement to execute the ACCESS procedure. If you specify
QUIT instead of RUN, PROC ACCESS terminates without creating your
descriptor. Alternately, you can specify another CREATE or UPDATE statement to
execute the previous CREATE or UPDATE statement; your changes are saved
when a new CREATE, UPDATE, RUN, or other SAS statement is executed.

To create a view descriptor based on an access descriptor that was created in a
separate PROC ACCESS step, you specify the access descriptor’s name in the
ACCDESC= option in the new PROC ACCESS statement. You must specify the
CREATE statement before any of the editing statements for the view descriptor.

If you create only one descriptor in a PROC step, the CREATE statement and its
accompanying statements are checked for errors when you submit PROC ACCESS for
processing. If you create multiple descriptors in the same PROC step, each CREATE
statement (and its accompanying statements) is checked for errors as it is processed.

When the RUN statement is processed, all descriptors are saved if no errors are
found. If errors are found, error messages are written to the SAS log, processing is
terminated, and the descriptors are not saved. After you correct the errors, resubmit
your statements.

ACCESS Procedure Reference 4 DROP 113

Example

The following example creates an access descriptor ADLIB.EMPLOY on the Oracle
Rdb table EMPLOYEES and a view descriptor VLIB.EMP1204 based on
ADLIB.EMPLOY in the same PROC ACCESS step.

proc access dbms=rdb;

/* create access descriptor */

create adlib.employ.access;
database=’qa:[dubois]textile’;
table=employees;
assign=no;
list all;

/* create view descriptor */

create vlib.emp1204.view;
select empid lastname hiredate salary dept
gender birthdate;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime9.
birthdate datetime9.;

subset where jobcode=1204;
run;

The following example creates a view descriptor VLIB.BDAYS from the
ADLIB.EMPLOY access descriptor, which was created in the previous PROC ACCESS
step.

proc access dbms=rdb accdesc=adlib.employ;
create vlib.bdays.view;
select empid lastname birthdate;
format empid 6.

birthdate datetime7.;
run;

DROP

Drops a column so that it cannot be selected in a view descriptor.

Optional statement
Applies to: access descriptor
Interacts with: RESET, SELECT

Syntax
DROP < ’>column-identifier-1< ’>

<…< ’>column-identifier-n< ’>>;

114 FORMAT 4 Chapter 9

Details
The DROP statement drops the specified column from an access descriptor.

Therefore, the column cannot be selected by a view descriptor that is based on the
access descriptor. However, the specified column in the DBMS table remains unaffected
by this statement.

An editing statement, such as DROP, must follow the CREATE or UPDATE and
database connection statements when you create or update an access descriptor. See
“CREATE” on page 111 for more information on the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to drop the third and fifth columns, submit
the following statement:

drop 3 5;

If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotes. You can drop as many columns as you want in
one DROP statement.

To display a column that was previously dropped, specify that column name in the
RESET statement. However, doing so also resets all the column’s attributes (such as
SAS variable name, format, and so on) to their default values.

FORMAT

Changes a SAS format for a DBMS column.

Optional statement

Applies to: access descriptor or view descriptor

Interacts with: ASSIGN, DROP, RESET

Syntax
FORMAT < ’>column-identifier-1< ’>

<=>SAS-format-name-1
<…< ’>column-identifier-n< ’>
<=>SAS-format-name-n>;

Details
The FORMAT statement changes a SAS variable format from its default format; the

default SAS variable format is based on the data type of the DBMS column. (See your
DBMS chapter for information on the default formats that the SAS System assigns to
your DBMS data types.)

An editing statement, such as FORMAT, must follow the CREATE or UPDATE
statement and the database connection statements when you create or update a
descriptor. See “CREATE” on page 111 for more information on the order of statements.

ACCESS Procedure Reference 4 LIST 115

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to associate the DATE9. format with the
BIRTHDATE column and with the second column in the access descriptor, submit the
following statement:

format 2=date9. birthdate=date9.;

The column identifier is specified on the left and the SAS format on the right of the
expression. The equal sign (=) is optional. If the column name contains lowercase
characters, special characters, or national characters, enclose the name in quotes. You
can enter formats for as many columns as you want in one FORMAT statement.

The following example creates the access descriptor ADLIB.PRODUCT on the DB2
table SASDEMO.SPECPROD. The FORMAT statement is used to specify new SAS
variable formats for four columns from the DBMS table.

proc access dbms=db2;
create adlib.product.access;
ssid=db2a;
table=sasdemo;
assign=yes;
rename productid prodid

fibername fiber;
format productid 4.

weight e16.9
fibersize e20.13
width e16.9;

run;

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

FMT is the alias for the FORMAT statement.

Note: When you use the FORMAT statement with access descriptors, the FORMAT
statement also reselects columns that were previously dropped with the DROP
statement. 4

LIST

Lists columns in the descriptor and gives information about them.

Optional statement

Applies to: access descriptor or view descriptor

Default: ALL

Syntax
LIST <ALL | VIEW |< ’>column-identifier< ’>>;

116 QUIT 4 Chapter 9

Details

The LIST statement lists columns in the descriptor along with information about the
columns. The LIST statement can be used when creating an access descriptor or a view
descriptor. The LIST information is written to your SAS log.

If you use an editing statement, such as LIST, it must follow the CREATE or
UPDATE statement and the database connection statements when you create or update
a descriptor. You can specify LIST as many times as you want while creating or
updating a descriptor; specify LIST last in your PROC ACCESS code to see the entire
descriptor. Or, if you are creating or updating multiple descriptors, specify LIST before
the next CREATE or UPDATE statement in order to list all the information about the
descriptor you are creating or updating.

The LIST statement can take one or more of the following arguments:

ALL
lists all the DBMS columns in the table, the positional equivalents, the SAS variable
names, and the SAS variable formats that are available for a descriptor. When you
are creating an access descriptor, *NON-DISPLAY* appears next to the column
description for any column that has been dropped; *UNSUPPORTED* appears next to
any column whose data type is not supported by your DBMS interface view engine.
When you are creating a view descriptor, *SELECTED* appears next to the column
description for columns that you have selected for the view.

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with their
positional equivalents, their SAS names and formats, and any subsetting clauses.
Any columns that were dropped in the access descriptor are not displayed. The
VIEW argument is valid only for a view descriptor.

column-identifier
lists the specified DBMS column name, its positional equivalent, its SAS variable
name and format, and whether the column has been selected. If the column name
contains lowercase characters, special characters, or national characters, enclose the
name in quotes.

The column-identifier argument can be either the column name or the positional
equivalent, which is the number that represents the column’s place in the descriptor.
For example, to list information about the fifth column in the descriptor, submit the
following statement:

list 5;

You can use one or more of these previously described arguments in a LIST
statement, in any order.

QUIT

Terminates the procedure.

Control statement

Applies to: access descriptor or view descriptor

ACCESS Procedure Reference 4 RENAME 117

Syntax
QUIT;

Details
The QUIT statement terminates the ACCESS procedure without any further

descriptor creation. Changes made since the last CREATE, UPDATE, or RUN
statement are not saved; changes are saved only when a new CREATE, UPDATE, or
RUN statement is submitted.

EXIT is an alias for the QUIT statement.

RENAME

Modifies the SAS variable name.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, RESET

Syntax
RENAME < ’>column-identifier-1< ’><=> SAS-variable-name-1

<…< ’>column-identifier-n< ’><=> SAS-variable-name-n>;

Details
The RENAME statement sets or modifies the SAS variable name that is associated

with a DBMS column. The RENAME statement can be used when creating an access
descriptor or a view descriptor.

An editing statement, such as RENAME, must follow the CREATE or UPDATE
statement and the database connection statements when you create or update a
descriptor. See “CREATE” on page 111 for more information on the order of statements.

Two factors affect the use of the RENAME statement: whether you specify the
ASSIGN statement when you are creating an access descriptor, and the kind of
descriptor you are creating.

� If you omit the ASSIGN statement or specify it with a NO value, the renamed SAS
variable names that you specify in the access descriptor are retained throughout
an ACCESS procedure execution. For example, if you rename the CUSTOMER
column to CUSTNUM when you create an access descriptor, that column continues
to be named CUSTNUM when you select it in a view descriptor unless a RESET
statement or another RENAME statement is specified.

When creating a view descriptor that is based on this access descriptor, you can
specify the RESET statement or another RENAME statement to rename the
variable again, but the new name applies only in that view. When you create other
view descriptors, the SAS variable names are derived from the access descriptor.

118 RESET 4 Chapter 9

� If you specify the YES value in the ASSIGN statement, you can use the RENAME
statement to change SAS variable names only while creating an access descriptor.
As described earlier in the ASSIGN statement, SAS variable names and formats
that are saved in an access descriptor are always used when creating view
descriptors that are based on it.

The column-identifier argument can be either the DBMS column name or the
positional equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor. For example, to rename the SAS variable names that
are associated with the seventh column and the nine-character FIRSTNAME column in
a descriptor, submit the following statement:

rename 7 birthdy ’firstname’=fname;

The DBMS column name (or positional equivalent) is specified on the left side of the
expression, with the SAS variable name on the right side. The equal sign (=) is
optional. If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotes. You can rename as many columns as
you want in one RENAME statement.

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS variable
associated with a DBMS column, you do not have to issue a SELECT statement for that
column.

RESET
Resets DBMS columns to their default settings.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, DROP, FORMAT, RENAME, SELECT

Syntax
RESET ALL |< ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;

Details
The RESET statement resets either the attributes of all the columns or the attributes

of the specified columns to their default values. The RESET statement can be used
when creating an access descriptor or a view descriptor. However, this statement has
different effects on access and view descriptors, as described in the following sections.

If you use an editing statement, such as RESET, it must follow the CREATE
statement and the database connection statements when you create a descriptor. See
“CREATE” on page 111 for more information on the order of statements.

Note: The RESET statement cannot be used with the UPDATE statement. 4

Access descriptors
When you create an access descriptor, the default setting for a SAS variable name is a
blank. However, if you have previously entered or modified any of the SAS variable

ACCESS Procedure Reference 4 SELECT 119

names, the RESET statement resets the modified names to the default names that are
generated by the ACCESS procedure. How the default SAS variable names are set
depends on whether you included the ASSIGN statement. If you omitted ASSIGN or
set it to NO, the default names are blank. If you set ASSIGN=YES, the default names are
the first eight characters of each DBMS column name.

The current SAS variable format is also reset to the default SAS format, which was
determined from the column’s data type. Any columns that were previously dropped,
but that are specified in the RESET statement, become available; they can be selected
in view descriptors that are based on this access descriptor.

View descriptors
When you create a view descriptor, the RESET statement clears any columns that were
included in the SELECT statement (that is, it "de-selects" the columns).

When creating the view descriptor, if you reset a SAS variable and then select it
again within the same procedure execution, the SAS variable names and formats are
reset to their default values, which are generated from the column names and data
types. This applies only if you have omitted the ASSIGN statement or set the value to
NO when you created the access descriptor on which the view descriptor is based. If you
specified ASSIGN=YES when you created the access descriptor, the RESET statement
has no effect on the view descriptor.

The RESET statement can take ALL or column identifiers as arguments:

ALL
for access descriptors, resets all the DBMS columns that have been defined to
their default names and format settings and reselects any dropped columns.

For view descriptors, ALL resets all the columns that have been selected so that
no columns are selected for the view; you can then use the SELECT statement to
select new columns. See “SELECT” on page 119 for more information on that
statement.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor. For example, to reset the SAS variable name and format associated
with the third column, submit the following statement:

reset 3;

If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotes. You can reset as many columns as
you want in one RESET statement, or use the ALL option to reset all the columns.

When creating or updating an access descriptor, the column-identifier is reset to
its default name and format settings. When creating a view descriptor, the
specified column is no longer selected for the view.

SELECT

Selects DBMS columns for the view descriptor.

Optional statement

Applies to: view descriptor

Interacts with: RESET

120 SUBSET 4 Chapter 9

Syntax
SELECT ALL |< ’>column-identifier-1< ’>

<…< ’>column-identifier-n< ’>>;

Details
The SELECT statement specifies which DBMS columns in the access descriptor to

include in the view descriptor. This is a required statement and is used only when
defining view descriptors.

If you use an editing statement, such as SELECT, it must follow the CREATE
statement when you create a view descriptor. See “CREATE” on page 111 for more
information on the order of statements.

Note: The SELECT statement cannot be used with the UPDATE statement. 4

The SELECT statement can take ALL or column identifiers as arguments:

ALL
includes in the view descriptor all the columns that were defined in the access
descriptor and that were not dropped.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor on which the view is based. For example, to select the first three columns,
submit the following statement:

select 1 2 3;

If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotes. You can select as many columns as you want
in one SELECT statement.

SELECT statements are cumulative within the same view creation. That is, if you
submit the following two SELECT statements, columns 1, 5, and 6 are selected, not just
columns 5 and 6:

select 1;
select 5 6;

To clear all your current selections when creating a view descriptor, use the RESET
ALL statement; you can then use another SELECT statement to select new columns.

SUBSET

Adds or modifies selection criteria for a view descriptor.

Optional statement

Applies to: view descriptor

ACCESS Procedure Reference 4 TABLE= 121

Syntax
SUBSET selection-criteria;

Details
You use the SUBSET statement to specify selection criteria when you create a view

descriptor. This statement is optional; if you omit it, the view retrieves all the data
(that is, all the rows) in the DBMS table.

An editing statement, such as SUBSET, must follow the CREATE or UPDATE
statement when you create or update a view descriptor. See “CREATE” on page 111 for
more information on the order of statements.

The selection-criteria argument can be one or more DBMS-specific SQL expressions
that are accepted by your DBMS, such as WHERE, ORDER BY, HAVING, and GROUP
BY. You use DBMS column names, not SAS variable names, in your selection criteria.
For example, for a view descriptor that retrieves rows from a DBMS table, you could
submit the following SUBSET statement:

subset where firstorder is not null;

If you have multiple selection criteria, enter them all in one SUBSET statement, as
in the following example:

subset where firstorder is not null
and country = ’USA’
order by country;

Unlike other ACCESS procedure statements, the SUBSET statement may be case
sensitive. The SQL statement is sent to the DBMS exactly as you type it. Therefore,
you must use the correct case for any DBMS object names. See your DBMS chapter for
details.

The SAS System does not check the SUBSET statement for errors. The statement is
verified only when the view descriptor is used in a SAS program.

If you specify more than one SUBSET statement per view descriptor, the last
SUBSET overwrites the earlier SUBSETs. To delete the selection criteria, submit a
SUBSET statement without any arguments.

TABLE=

Identifies the DBMS table on which the access descriptor is based.

Required statement with the CREATE statement; optional with the UPDATE
statement

Table statement: varies with each DBMS

Applies to: access descriptor

122 UNIQUE 4 Chapter 9

Syntax
TABLE= < ’>table-name< ’>;

Details
The TABLE= statement specifies the name of the DBMS table on which the access

descriptor is based. The table-name argument must be a valid DBMS table name. If it
contains lowercase characters, special characters, or national characters, you must
enclose it in quotes. See your DBMS chapter for details on the TABLE= statement.

When you use database connection statements or the TABLE= statement to create or
update an access descriptor, you must specify them after the CREATE or UPDATE
statement. See “CREATE” on page 111 for more information on the order of statements.

UNIQUE

Generates SAS variable names based on DBMS column names.

Optional statement
Applies to: view descriptor
Interacts with: ASSIGN

Syntax
UNIQUE <=> YES | NO | Y | N;

Details
The UNIQUE statement specifies whether the SAS/ACCESS interface should

generate unique SAS variable names for DBMS columns for which SAS variable names
have not been entered.

An editing statement, such as UNIQUE, must follow the CREATE statement when
you create a view descriptor. See “CREATE” on page 111 for more information on the
order of statements.

Note: The UNIQUE statement cannot be used with the UPDATE statement. 4

The UNIQUE statement is affected by whether you specified the ASSIGN statement
when you created the access descriptor on which the view is based, as follows:

� If you specified the ASSIGN=YES statement, you cannot specify UNIQUE when
creating a view descriptor. YES causes the SAS System to generate unique names,
so UNIQUE is not necessary.

� If you omitted the ASSIGN statement or specified ASSIGN=NO, you must resolve
any duplicate SAS variable names in the view descriptor. You can use UNIQUE to
generate unique names automatically, or you can use the RENAME statement to
resolve duplicate names yourself. See “RENAME” on page 117 for information on
that statement.

ACCESS Procedure Reference 4 UPDATE 123

If duplicate SAS variable names exist in the access descriptor on which you are
creating a view descriptor, you can specify UNIQUE to resolve the duplication. When
you specify UNIQUE=YES, the SAS/ACCESS interface appends numbers to any duplicate
SAS variable names, thus making each variable name unique. (See the rules for default
SAS names in “ASSIGN” on page 109.)

If you specify UNIQUE=NO, the SAS/ACCESS interface continues to allow duplicate
SAS variable names to exist. You must resolve these duplicate names before saving
(and thereby creating) the view descriptor.

Note: It is recommended that you use the UNIQUE statement and specify
UNIQUE=YES . If you omit it or specify UNIQUE=NO and the SAS System encounters
duplicate SAS variable names in a view descriptor, your job fails. 4

The equals sign (=) is optional in the UNIQUE statement. UN is the alias for
UNIQUE.

UPDATE

Updates a SAS/ACCESS descriptor file.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
UPDATE libref.member-name.ACCESS | VIEW;

Details
The UPDATE statement identifies an existing access descriptor or view descriptor

that you want to update. UPDATE is normally used to update database connection
information, such as user names and passwords; if your descriptor requires many
changes, it might be easier to use the CREATE statement to overwrite the old
descriptor with a new one.

The descriptor that you update can exist in either a temporary (WORK) or
permanent SAS data library. If the descriptor has been protected with a SAS password
that prohibits editing of the ACCESS or VIEW descriptor, then the password must be
specified on the UPDATE statement.

To update a descriptor, use its three-level name. The first level identifies the libref of
the SAS data library where you stored the descriptor. The second level is the
descriptor’s name (member name). The third level is the type of SAS file.

You can use the UPDATE statement as many times as necessary in one procedure
execution. That is, you can update multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can update access descriptors and view descriptors in
separate executions of the procedure.

124 UPDATE 4 Chapter 9

Rules that applied to the CREATE statement under Version 6 of SAS/ACCESS
software apply to the UPDATE statement. For example, the SUBSET statement is
valid only for updating view descriptors and it is not valid for access descriptors.

Note: The following statements are not supported when using the UPDATE
statement: ASSIGN, RESET, SELECT, and UNIQUE. 4

Updating access and view descriptors
You can update view descriptors and access descriptors in the same execution of the
ACCESS procedure or in separate executions.

When you update an access or view descriptor, you must place statements or groups
of statements in a certain order after the PROC ACCESS statement and its options, as
listed below:

1 UPDATE is usually the first statement after the PROC ACCESS statement or in a
code block within a PROC ACCESS statement. Usually, you update a descriptor
that already exists; however, you can create and update a descriptor in the same
PROC ACCESS step.

2 Next, specify any information that you want to update, including any database
connection statements, the TABLE statement, or any editing statements. If you
are updating an access descriptor, you can use the DROP, FORMAT, LIST, or
RENAME editing statements. If you are updating a view descriptor, you can use
the DROP, FORMAT, LIST, RENAME, and SUBSET editing statements. FORMAT
and RENAME can be specified only when ASSIGN=NO is specified in the access
descriptor referenced by the view descriptor you are updating. The order of the
statements within this group usually does not matter; see the individual
statement descriptions for any restrictions.

The following editing statements are not allowed when you specify the UPDATE
statement: SELECT, RESET, ASSIGN, and UNIQUE. LIST can only be used with
views.

3 Specify the RUN statement to execute the ACCESS procedure. If you specify
QUIT instead of RUN, PROC ACCESS terminates without updating your
descriptor. Alternately, you can specify another CREATE or UPDATE statement to
execute the previous CREATE or UPDATE statement; your changes are saved
when a new CREATE, UPDATE, or RUN statement is entered.

Note: Altering a DBMS table that has descriptor files defined on it might invalidate
these files or cause them to be outdated. If you recreate a table, add a new column to a
table, or delete an existing column from a table, use the UDPATE statement to modify
your descriptors to use the new information. 4

Examples

The following example updates an access descriptor ADLIB.EMPLOY on the Oracle
Rdb table EMPLOYEES and then re-creates a view descriptor VLIB.EMP1204, which
was based on ADLIB.EMPLOY. The original access descriptor included all of the
columns in the table. Using the LIST statement enables you to write all of the variables
to the SAS log so you can see the complete access descriptor before you update it.

In this example, the SALARY and BIRTHDATE columns are dropped from the access
descriptor so that users cannot see this data. Because SELECT and RESET are not
supported when UPDATE is used, the view descriptor VLIB.EMP1204 must be
re-created to omit the SALARY and BIRTHDATE columns.

ACCESS Procedure Reference 4 Sorting DBMS Data 125

proc access dbms=rdb;

/* update access descriptor */

update adlib.employ.access;
drop salary birthdate;
list all;

/* re-create view descriptor */

create vlib.emp1204.view;
select empid hiredate dept jobcode gender

lastname firstname middlename phone;
format empid 6.

jobcode 5.
hiredate datetime9.;

subset where jobcode=1204;
run;

The following example updates a view descriptor VLIB.BDAYS from the
ADLIB.EMPLOY access descriptor, which was created previously. In this example, the
WHERE clause replaces the WHERE clause that was specified in the original view
descriptor. The SUBSET statement contains an ORACLE-specific SQL statement.

proc access dbms=oracle;
update vlib.bdays.view;
subset where hiredate=

to_date(’10OCT1988’,’ddmonyyyy’);
run;

Performance and Efficient View Descriptors
When you create, update, and use view descriptors, follow these guidelines to

minimize the use of SAS System resources and to reduce the time it takes the DBMS to
access data.

General Information
When you create or update view descriptors, select only the columns that your

program needs. Selecting unnecessary columns adds extra processing time due to data
conversions.

When you use a view descriptor in a DATA step or SAS procedure, columns that you
specified in the VAR and KEEP statements are passed to the DBMS for processing.
Columns that you specified in DROP statements are not passed to the DBMS.
Therefore, only a subset of the columns is returned to the SAS System, and
performance is usually enhanced. (This approach can be applied in some of DBMSs,
such as CA-OpenIngres, ORACLE, Oracle Rdb, and SYBASE.)

Sorting DBMS Data
Sorting DBMS data can be resource-intensive, whether it is done using the SORT

procedure, a BY statement, or an ORDER BY clause in a view descriptor or SQL

126 Extracting Data Using a View 4 Chapter 9

procedure. You should sort data only when sorted data are needed for your program.
The following list includes guidelines and information about sorting data:

� If you specify a BY statement in a DATA or PROC step that references a view
descriptor, be sure that the BY variable is associated with an indexed DBMS
column.

If you reference a view descriptor in a SAS program and the program includes a
BY statement for a variable that corresponds to a column in the DBMS table, the
SAS/ACCESS interface view engine automatically generates an ORDER BY clause
for that variable. Thus, the ORDER BY clause causes the DBMS to sort the data
before the SAS procedure or DATA step uses the data in a SAS program. If the
DBMS table is very large, this sorting can adversely affect your performance. Use
a BY variable that is based on an indexed DBMS column to help reduce this
negative impact.

� The outermost BY or ORDER BY clause overrides any embedded BY or ORDER
BY clauses, including those specified in the selection criteria.

For example, if the view descriptor has an ORDER BY clause and you have
specified a BY statement in your SAS program, the BY statement overrides the
view descriptor’s ORDER BY clause. If you use an ORDER BY clause in an SQL
procedure statement that references a view descriptor, this ORDER BY clause also
overrides the view descriptor’s ORDER BY clause.

Extracting Data Using a View
In some cases, it might be more efficient to use a view descriptor to extract (that is,

copy) DBMS data and place it in a SAS data file instead of using the view descriptor to
read the data directly.

A DBMS table is read every time a view descriptor is referred to in a SAS program
and the program is executed; the program’s output reflects the latest updated level of
the DBMS table. If many users are reading the same DBMS table repeatedly, DBMS
performance may decrease. If you create several reports during the same SAS session,
they may not be based on the same DBMS data due to updating by other users.
Therefore, in the following circumstances, it is better to extract data:

� Extract DBMS data if the table is large and you use the data repeatedly in SAS
programs.

If a view descriptor describes a large DBMS table and you plan to use the same
DBMS data in several procedures or DATA steps during the same SAS session,
you might improve performance by extracting the data. Placing the data into a
SAS data file requires a certain amount of disk space to store the data and I/O to
write the data. However, SAS data files are organized to provide optimal
performance with PROC and DATA steps. Programs that use SAS data files are
often more efficient than programs that read DBMS data directly.

(Exception: If you are using a SAS WHERE statement to create small subsets of
data and you are reading the subsets based on indexed columns, it may be better
not to extract the data from a large DBMS table. In this case, the DBMS can
probably retrieve subsets of data based on indexed columns faster.)

� Extract DBMS data if you use sorted data several times in a SAS program.
If you intend to use DBMS data in a particular sorted order several times, run

the SORT procedure on the view descriptor by using the OUT= option to extract
the data. This OUT= option is required whenever PROC SORT references a view
descriptor. PROC SORT sends an ORDER BY clause to the DBMS so that the
data is returned in sorted order to the SAS data file. PROC SORT does not
perform any additional sorting of the data. Extracting the data in this way is more

ACCESS Procedure Reference 4 Using a Subset of the DBMS Data 127

efficient than requesting the same sort repeatedly (with an ORDER BY clause) on
the DBMS data.

� Extract DBMS data for added security.
If you are the owner of a DBMS table and do not want anyone else to read the

data, you might want to extract the data (or a subset of the data) and not
distribute information about either the access descriptor or view descriptor. Or,
you might want to assign DBMS security features to your DBMS tables to prevent
unauthorized reading or writing to them.

On the SAS System side, you might also want to assign SAS System passwords
to your descriptors for additional security. If a view descriptor has a password
assigned to it and you extract the data, the new SAS data file is automatically
assigned the same password. If a view descriptor does not have a password, you
can assign a password to the extracted SAS data file. You can assign a password
by using PROC DATASETS on your descriptor. See the SAS Procedures Guide for
more information.

Using a Subset of the DBMS Data
When you create or update view descriptors, you should specify selection criteria

(where possible) to subset the number of rows that the DBMS returns to the SAS
System.

As a general rule, a view descriptor’s WHERE clause is passed to the DBMS for
processing. Table 9.3 on page 127 and the explanation afterwards describe this process
in more detail.

Table 9.3 How WHERE Clauses Are Processed with View Descriptors

View descriptor with a WHERE clause System that processes the WHERE clause

used in a DATA step, PROC step, or PROC SQL query

without additional WHERE clause DBMS

with additional WHERE clause DBMS: compound WHERE clause built with AND; otherwise, SAS
System1

used with a PROC SQL Pass-Through query2

without additional WHERE clause DBMS

with additional WHERE clause SAS System. Each DBMS table in the join is processed by the
DBMS and then returned to the SAS System for final processing.
PROC SQL cannot optimize a join of this kind.

1 The interface view engine builds a compound WHERE clause using AND operator(s) if the clauses are valid for the DBMS.
Otherwise, only the valid part of the WHERE clause is sent to the DBMS for processing and the SAS System processes the
remaining part(s). See "Using Multiple WHERE Clauses" below for more information.

2 When a view descriptor and a Pass-Through query are used within the same PROC SQL query, they are usually joined in the
FROM clause.

Note: See Chapter 6, “SQL Procedure’s Interaction with SAS/ACCESS Software,” on
page 65 for more information on Pass-Through queries. 4

Using Multiple WHERE Clauses
When a view descriptor that includes a DBMS-specific SQL WHERE clause is used

in a DATA step or procedure that includes a SAS WHERE statement, the SAS/ACCESS

128 Using a Subset of the DBMS Data 4 Chapter 9

interface view engine tries to pass both WHERE conditions to the DBMS for processing.
If all or part of the WHERE clause is valid for the DBMS, SAS/ACCESS software uses
one or more logical AND operators to build a compound WHERE clause.

However, if a WHERE clause contains SAS enhancements or features that are not
supported by the DBMS, the WHERE conditions are split up, and only the valid
condition (that is, valid DBMS-specific syntax) is sent to the DBMS. The SAS System
processes the remaining part(s) of the WHERE clause.

For example, a DBMS-specific SQL cannot parse a colon modifier on a comparison
operator, and therefore, the first half of the following WHERE clause cannot be passed
to the DBMS.

The second half of the WHERE clause is passed to the DBMS, and the DBMS
returns to the SAS System all the rows in the INVOICE table for which PAIDON is on
or after 01JAN94. The SAS System must then process the first half of the WHERE
clause to subset the rows that were returned from the DBMS for the countries
Argentina and Australia:

where country =: ’A’ and paidon >= ’01JAN94’d;

It is more efficient to use a LIKE operator that is valid in both the DBMS-specific
SQL and the SAS System:

where country like ’A%’ and paidon >= ’01JAN94’d;

In this case, the DBMS can process both halves of the WHERE clause.
Note that the SAS/ACCESS interface view engine can translate certain SAS

conventions, such as datetime formats or the IS MISSING operator, to their
DBMS-specific SQL equivalents and pass these clauses to the DBMS.

In most cases it is more efficient for the DBMS to process the WHERE conditions.
Therefore, write WHERE conditions using features (such as SQL operators) that are
valid in both the SAS System and the DBMS so that the DBMS can process the entire
WHERE clause.

It is also more efficient to use a SAS WHERE statement instead of a subsetting IF
statement. As just described, a WHERE clause is passed to the DBMS for processing
and returns a subset of rows to the SAS System for further processing. In contrast,
when you use a subsetting IF statement, every row is returned to the SAS System to be
evaluated by the IF statement. Therefore, using a SAS WHERE statement often
improves performance.

Writing Efficient WHERE Clauses for View Descriptors
You should write WHERE clauses that enable the DBMS to use its indexes, where

possible. This is a good practice whether you specify the WHERE clause in the view
descriptor’s selection criteria or you use a SAS WHERE statement in a DATA step that
references a view descriptor. This practice is especially important when you are
accessing large DBMS tables.

You cannot tell the DBMS to use an index, but you can write WHERE clauses that
enable it to use its DBMS indexes effectively. Here are some guidelines for writing
WHERE clauses that enable the DBMS to use indexes effectively.

Note: The guidelines for each specific DBMS may vary. 4

� Avoid the NOT operator when you can use an equivalent form:
Inefficient: where zipcode not>8000

Efficient: where zipcode<=8000

� Avoid the >= and <= operators when you can use the BETWEEN predicate.
Inefficient: where ZIPCODE>=70000 and ZIPCODE<=80000

ACCESS Procedure Reference 4 Using a Subset of the DBMS Data 129

Efficient: where ZIPCODE between 70000 and 80000

� Avoid using LIKE predicates that begin with % or _ .
Inefficient: where COUNTRY like ’%INA’

Efficient: where COUNTRY like ’A%INA’

� Avoid arithmetic expressions in a predicate.
Inefficient: where SALARY>12*4000.00

Efficient: where SALARY>48000.00

For a list of operators that are generally accepted by the SQLs of most DBMSs, see
the SAS Procedures Guide.

130 Using a Subset of the DBMS Data 4 Chapter 9

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–558–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

