
131

C H A P T E R

10
DBLOAD Procedure Reference

Introduction 131
Naming Limits in the DBLOAD Procedure 131

Case Sensitivity in the DBLOAD Procedure 132

DBLOAD Procedure Syntax 132

Details 133

PROC DBLOAD Statement Options 133
Options 133

Procedure Statements 134

Introduction

In most of the interfaces that are provided in Version 6 of SAS/ACCESS software, the
DBLOAD procedure enabled you to create and load (that is, transfer data to) a database
management system table from a SAS data set. It also enabled you to submit
non-query, DBMS-specific SQL statements to the DBMS without leaving your SAS
session. The DBLOAD procedure continues to be supported in Version 7 and later.
However, there are some changes in the support, as described in “Version 8
Compatibility for Version 6 Procedures” on page 99.

This chapter provides general reference information for the DBLOAD procedure,
including its options and statements. See your DBMS chapter to determine whether the
DBLOAD procedure is supported for your DBMS, and for DBMS-specific information
that pertains to the DBLOAD procedure.

Refer to SAS Language Reference: Dictionary and to the SAS Companion for your
operating environment for information on SAS data sets, SAS data libraries, and their
naming conventions. If you are using this documentation from a book, remember that
help is available from the Help menu.

Note: It is recommended that you use the SQL Procedure Pass-Through Facility
with its new options to take full advantage of Version 7 and later enhancements. For
more information, see “SQL Procedure Pass-Through Facility Statements” on page 74.
4

Naming Limits in the DBLOAD Procedure

In Version 8, the DBLOAD procedure still limits SAS variable names to a maximum
of eight characters in length. If you need to load 32–character column names into the
DBMS, it is recommended that you use the SAS/ACCESS LIBNAME statement or the
SQL Procedure Pass-Through Facility instead of PROC DBLOAD.

132 Case Sensitivity in the DBLOAD Procedure 4 Chapter 10

You can use long member names in the PROC DBLOAD DATA= option, such as the
name of a SAS data set that you want to load into a DBMS table. However, if you
attempt to use long SAS variable names, you will get an error message advising you
that long variable names are not supported in PROC DBLOAD. As in previous versions,
you can use the PROC DBLOAD RENAME statement to rename the eight–character
SAS variable names to long DBMS column names when you load the data into a DBMS
table. You can also use the RENAME data set option to rename the columns after they
are loaded into the DBMS.

Case Sensitivity in the DBLOAD Procedure
Most DBLOAD procedure statements convert lowercase characters in user-specified

values and default values to uppercase. If your host or database is case sensitive and
you want to specify a value that includes lowercase alphabetic characters (for example,
a user ID or password), you should enclose the entire value in quotation marks. You
must also put quotation marks around any value that contains special characters or
national characters.

The only exception is the DBLOAD SQL statement. The DBLOAD SQL statement is
passed to the DBMS exactly as you type it, with case preserved.

DBLOAD Procedure Syntax
The statements for your DBMS may differ from those listed here. See your DBMS

chapter for details.

PROC DBLOAD <statement-options>;

Database Connection Statements
These statements are used to connect to your DBMS and vary depending on which

SAS/ACCESS interface you are using. See your DBMS chapter for details.
Examples include USER=, PASSWORD=, and DATABASE=.

Table Statement

TABLE= < ’>table-name < ’>;

Editing Statements

ACCDESC= <libref.>access-descriptor;

COMMIT= commit-frequency;

DELETE variable-identifier-1
<…variable-identifier-n>;

ERRLIMIT= error-limit;

LABEL;

LIMIT= load-limit;

LIST <ALL | COLUMN | variable-identifier>;

NULLS variable-identifier-1 = Y | N
<…variable-identifier-n = Y | N>;

QUIT;

DBLOAD Procedure Reference 4 PROC DBLOAD Statement Options 133

RENAME variable-identifier-1 = < ’>column-name-1< ’>
<…variable-identifier-n = < ’>column-name-n< ’>>;

RESET ALL | variable-identifier-1<…variable-identifier-n>;

SQL DBMS-specific SQL-statement;

TYPE variable-identifier-1 = ’column-type-1’ <…variable-identifier-n =
’column-type-n’>;

WHERE SAS-where-expression;

Creating and Loading Statement

LOAD;

RUN;

Details
The DBLOAD procedure enables you to create and load a DBMS table, append rows

to an existing table, and submit non-query DBMS-specific SQL statements to the DBMS
for processing without leaving your SAS session. The procedure constructs
DBMS-specific SQL statements to create and load or append to a DBMS table by using
any one of the following:

� a SAS data file

� a PROC SQL view or DATA step view

� a view descriptor that was created with the SAS/ACCESS interface to your DBMS
or with another SAS/ACCESS interface product

� another DBMS table referenced by a SAS libref created with the Version 8 SAS/
ACCESS LIBNAME statement.

The DBLOAD procedure associates each SAS variable with a DBMS column and
assigns a default name and data type to each column. It also specifies whether each
column accepts null values. You can use the default information or change it as
necessary. When you are finished customizing the columns, the procedure creates the
DBMS table and loads or appends the input data.

PROC DBLOAD Statement Options
The following options can be used in the PROC DBLOAD statement.

Options

DBMS=database-management-system
specifies which database management system you want to access. The DBMS=
option is required. See your DBMS chapter for the value to enter for your DBMS.

DATA=<libref.>SAS-data-set
specifies the input data set. The input data can be retrieved from a SAS data file,
a PROC SQL view, a DATA step view, a SAS/ACCESS view descriptor, or another
DBMS table referenced by a SAS/ACCESS libref. If the SAS data set is
permanent, you must use its two-level name, libref.SAS-data-set. If you omit the
DATA= option, the default is the last SAS data set that was created.

134 Procedure Statements 4 Chapter 10

APPEND
appends data to an existing DBMS table that you identify by using the TABLE=
statement. When you specify APPEND, the input data specified with the DATA=
option is inserted into the existing DBMS table. Your input data can be in the
form of a SAS data set, PROC SQL view, or SAS/ACCESS view (view descriptor).

Note: When you use APPEND, you must ensure that your input data
corresponds exactly to the columns in the DBMS table. If your input data does not
include values for all columns in the DBMS table, you might corrupt your DBMS
table by inserting data into the wrong columns. You can use the COMMIT,
ERRLIMIT, and LIMIT statements to help safeguard against data corruption. The
ERRLIMIT statement defaults to 10 when used with APPEND. 4

The DELETE and RENAME statements can be used with APPEND to drop and
rename SAS input variables that do not have corresponding DBMS columns. The
RENAME statement indicates the column name in the DBMS table for the SAS
data set variable that you specify. For example, this statement loads data that is
associated with the SAS variable COUNTRY into the DBMS column named
ORIGIN:

rename country=origin;

All PROC DBLOAD statements and options can be used with APPEND, except for
the NULLS and TYPE statements, which have no effect when used with APPEND.
The LOAD statement is required.

The following example appends new employee data from the SAS data set
NEWEMP to the DBMS table EMPLOYEES. The COMMIT statement causes a
DBMS commit to be issued after every 100 rows are inserted. The ERRLIMIT
statement causes processing to stop after 10 errors occur.

proc dbload dbms=oracle data=newemp append;
user=testuser;
password=testpass;
path=’myorapath’;
table=employees;
commit=100;
errlimit=5;
load;

run;

Note: By omitting the APPEND option from the DBLOAD statement, you can
use the PROC DBLOAD SQL statements to create a DBMS table and append to it
in the same PROC DBLOAD step. 4

Procedure Statements
To invoke PROC DBLOAD, you use the options listed in “Options” on page 133 along

with certain statements. The statements that you choose are determined by your task
and your database. These statements vary per DBMS and might be optional; see your
DBMS chapter for more information.

Table 10.1 on page 135 summarizes the PROC DBLOAD options and statements.

DBLOAD Procedure Reference 4 COMMIT= 135

Table 10.1 Options and Statements Required for the DBLOAD Procedure

Tasks Options and Statements You Use

create and load a DBMS table PROC DBLOAD
statement-options;
database-connection-options;

TABLE= < ’>table-name< ’>;
LOAD;
RUN;

submit a dynamic, non-query DBMS-SQL
statement to DBMS (without creating a
table)

PROC DBLOAD
statement-options;
database-connection-options;

SQL DBMS-specific-SQL-statements;
RUN;

The PROC DBLOAD statements are described in alphabetic order in the following
sections.

ACCDESC=

Creates an access descriptor based on the new DBMS table.

Optional statement

Syntax
ACCDESC=< libref.>access-descriptor;

Details
The ACCDESC= statement creates an access descriptor based on the DBMS table

that you are creating and loading. After the new table is created and loaded, the access
descriptor is automatically created. You must specify an access descriptor that does not
already exist.

An editing statement, such as ACCDESC=, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

The ACCDESC= statement has two aliases: ACCESS= and AD=.

COMMIT=

Issues a commit or saves rows after a specified number of inserts.

Optional statement

136 DELETE 4 Chapter 10

Default: 1000

Syntax
COMMIT=commit-frequency;

Details
The COMMIT= statement issues a commit (that is, generates a DBMS-specific SQL

COMMIT statement) after the specified number of rows has been inserted.

The commit-frequency argument must be a nonnegative integer. To commit or save
observations only after all the rows have been inserted, specify COMMIT=0.

Using this statement might improve performance by releasing DBMS resources each
time the specified number of rows has been inserted.

If you omit the COMMIT= statement, a commit is issued (or a group of rows is saved)
after each 1,000 rows are inserted and after the last row is inserted.

An editing statement, such as COMMIT=, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

DELETE

Does not load specified variables into the new table.

Optional statement

Syntax
DELETE variable-identifier-1 <…variable-identifier-n>;

Details
The DELETE statement drops the specified SAS variables before the DBMS table is

created. The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to drop
the third variable, submit the following statement:

delete 3;

You can drop as many variables as you want in one DELETE statement. If you drop
more than one variable, separate the identifiers with spaces, not commas.

Even if you drop a variable from the list of variables, the positional equivalents of
the variables do not change. For example, if you drop the second variable, the third
variable is still referenced by the number 3, not 2.

DBLOAD Procedure Reference 4 LABEL 137

An editing statement, such as DELETE, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

ERRLIMIT=

Stops the loading of data after a specified number of errors.

Optional statement
Default: 100; see your DBMS chapter for possible exceptions.

Syntax
ERRLIMIT=error-limit;

Details
The ERRLIMIT= statement stops the loading of data after the specified number of

DBMS SQL errors has occurred. Errors include an observation that failed to be
inserted or a commit that failed to execute.

The error-limit argument must be a nonnegative integer. To allow an unlimited
number of DBMS SQL errors to occur, specify errlimit=0. If the SQL CREATE
TABLE statement that is generated by the procedure fails, the procedure terminates.

An editing statement, such as ERRLIMIT=, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

LABEL

Causes DBMS column names to default to SAS labels.

Optional statement
Interacts with: RESET
Default: DBMS column names default to SAS variable names

Syntax
LABEL;

Details
The LABEL statement causes the DBMS column names to default to the SAS

variable labels when the new table is created. If a SAS variable has no label, the
variable name is used. If the label is too long to be a valid DBMS column name, the
label is truncated.

138 LIMIT= 4 Chapter 10

For the LABEL statement to take effect, the RESET statement must be used after
the LABEL statement.

An editing statement, such as LABEL, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

LIMIT=

Limits the number of observations that are loaded.

Optional statement

Default: 5000

Syntax
LIMIT=load-limit;

Details
The LIMIT= statement places a limit on the number of observations that can be

loaded into the new DBMS table. The load-limit argument must be a nonnegative
integer. To load all the observations from your input data set, specify limit=0.

An editing statement, such as LIMIT=, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

LIST

Lists information about the variables to be loaded.

Optional statement

Default: ALL

Syntax
LIST <ALL | FIELD | variable-identifier>;

The LIST statement lists information about all or some of the SAS variables to be
loaded into the new DBMS table. By default, the list is sent to the SAS log.

The LIST statement can take the ALL, FIELD, or variable-identifier arguments:

ALL
lists information about all the variables in the input SAS data set, whether or not
those variables are selected for the load.

DBLOAD Procedure Reference 4 LOAD 139

FIELD
lists information about only the input SAS variables that are selected for the load.

variable-identifier
lists information about only the specified variable. The variable-identifier argument
can be either the SAS variable name or the positional equivalent. The positional
equivalent is the number that represents the variable’s position in the data set. For
example, if you want to list information for the column associated with the third SAS
variable, submit the following statement:

list 3;

Details
You can specify LIST as many times as you want while creating a DBMS table; specify
LIST before the LOAD statement to see the entire table. LIST must be specified after
the database connection statements. See “LOAD” on page 139 for more information.

LOAD

Creates and loads the new DBMS table.

Required statement for loading or appending data

Syntax
LOAD;

Details
The LOAD statement informs the DBLOAD procedure to execute the action that you

request, including loading or appending data. This statement is required to create and
load a new DBMS table or to append data to an existing table.

When you create and load a DBMS table, you must place statements or groups of
statements in a certain order after the PROC DBLOAD statement and its options, as
listed below:

1 Database connection statements: Check your DBMS chapter for the appropriate
statements for your DBMS. After the database connection statements, specify the
TABLE statement.

2 Editing statements: ACCDESC=, COMMIT=, DELETE, ERRLIMIT=, LABEL,
LIMIT=, LIST, NULLS, RENAME, RESET, SQL, TYPE, and WHERE. The order
within this group usually does not matter; see the individual statements for more
information.

3 Creating and Loading statement: LOAD must appear last before RUN to create
and load a table or append data to a table.

4 RUN statement: This statement is used to process the DBLOAD procedure. If you
specify QUIT instead of RUN, PROC DBLOAD terminates without completing
your request.

140 NULLS 4 Chapter 10

Sending a DBMS-specific, Nonquery Statement
If you use the DBLOAD procedure only to submit DBMS-specific, nonquery SQL
statements to the DBMS (and not to load a table), omit the LOAD statement. The order
of the statements listed above is the same. See “SQL” on page 143 for more information
on this process.

Example

The following example creates the SUMMERTEMPS table in ORACLE based on the
DLIB.TEMPEMPS data file. See Appendix 1, “Sample Data,” on page 217 for a
description of this file.

proc dbload dbms=oracle data=dlib.tempemps;
user=testuser; password=testpass;
path=’testpath’;
table=summertemps;
rename firstnam=firstname

middlena=middlename;
type hiredate ’date’

empid ’number(6,0)’
familyid ’number(6,0)’;

nulls 1=n;
list;
load;

run;

NULLS
Specifies whether DBMS columns accept null values.

Optional statement
Default: DBMS specific

Syntax
NULLS variable-identifier-1 = Y | N<…variable-identifier-n = Y | N>;

Details
The NULLS statement specifies whether the DBMS columns that are associated

with the listed input SAS variables allow null values. Specify Y to accept null values.
Specify N to reject null values and to require data in that column. The default is DBMS
specific, although for most DBMSs the default is Y.

If you specify N for a numeric column, none of the observations that contain missing
values in the corresponding SAS variable are loaded into the table, and a message is
written to the SAS log. The current error count is increased by one for each observation
that is not loaded. See “ERRLIMIT=” on page 137 for more information.

If a character column contains blanks (the SAS missing value) and you have specified
N for the DBMS column, then blanks are inserted. If you specify Y, null values are
inserted.

DBLOAD Procedure Reference 4 RENAME 141

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want the
column that is associated with the third SAS variable to accept null values, submit the
following statement:

nulls 3=y;

If you omit the NULLS statement, the DBMS default action occurs. You can list as
many variables as you want in one NULLS statement. If you have previously defined a
column as NULLS=N, you can use the NULLS statement to redefine it to accept null
values.

An editing statement, such as NULLS, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

QUIT

Terminates the procedure.

Control statement

Syntax
QUIT;

Details
The QUIT statement terminates the DBLOAD procedure without further processing.

EXIT is an alias for the QUIT statement.

RENAME

Renames DBMS columns.

Optional statement
Interacts with: DELETE, LABEL, RESET

Syntax
RENAME variable-identifier-1 = < ’>column-name-1< ’>

<…variable-identifier-n = < ’>column-name-n< ’>>;

Details
The RENAME statement changes the names of the DBMS columns that are

associated with the listed SAS variables. If you omit the RENAME statement, all the

142 RESET 4 Chapter 10

DBMS column names default to the corresponding SAS variable names (unless the
LABEL statement is specified).

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to rename
the column associated with the third SAS variable, submit the following statement:

rename 3=employeename;

Note: The column-name argument must be a valid DBMS column name. If the
column name includes lowercase characters, special characters, or national characters,
you must enclose the column name in single or double quotes. If no quotes are used, the
DBMS column name is created in uppercase. To preserve case, use the following syntax:

rename 3=’’’employeename’’’

4

The RENAME statement enables you to include variables that you have previously
deleted. For example, suppose you submit the following statements:

delete 3;
rename 3=empname;

The DELETE statement first drops the third variable. The RENAME statement
includes the third variable and assigns the name EMPNAME and the default column type
to it.

You can list as many variables as you want in one RENAME statement. The
RENAME statement overrides the LABEL statement for columns that are renamed.
COLUMN is an alias for the RENAME statement.

An editing statement, such as RENAME, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

RESET

Resets column names and data types to their default values.

Optional statement
Interacts with: DELETE, LABEL, RENAME, TYPE

Syntax
RESET ALL | variable-identifier-1

<…variable-identifier-n>;

Details
The RESET statement resets the columns that are associated with the listed SAS

variables to the default DBMS column name, column data type, and ability to accept

DBLOAD Procedure Reference 4 SQL 143

null values. If you specify ALL, all columns are reset to their default values, and any
dropped columns are restored with their default values. The default values are as
follows:

column name defaults to the SAS variable name, or to the SAS variable label (if
you have used the LABEL statement).

column type is generated from the SAS variable format.

nulls uses the DBMS default value.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to reset
the column associated with the third SAS variable, submit the following statement:

reset 3;

You can reset as many columns as you want in one RESET statement.

The RESET statement must be used after the LABEL statement for the LABEL
statement to take effect.

An editing statement, such as RESET, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

SQL

Submits a DBMS-specific SQL statement to the DBMS.

Optional statement

Syntax
SQL DBMS-specific SQL-statement;

Details
The SQL statement submits a dynamic, nonquery DBMS-specific SQL statement to

the DBMS. You can use the DBLOAD statement to submit these DBMS-specific SQL
statements whether or not you create and load a DBMS table.

You must enter the keyword SQL before each DBMS-specific SQL statement you
submit. The SQL-statement argument can be any valid dynamic DBMS-specific SQL
statement except the SELECT statement. However, you can enter a SELECT statement
as a substatement within another statement, such as in a CREATE VIEW statement.
You use DBMS-specific SQL object names and syntax in the DBLOAD SQL statement.

You cannot create a DBMS table and reference it in your DBMS-specific SQL
statements within the same PROC DBLOAD step. The new table is not created until
the RUN statement is processed.

144 TABLE= 4 Chapter 10

To submit dynamic, nonquery DBMS-specific SQL statements to the DBMS without
creating a DBMS table, you use the DBMS= option, any database connection
statements, and the SQL statement.

The SQL statement might be case sensitive; see your DBMS chapter for details.

An editing statement, such as SQL, must be specified after the database connection
statements.

Example

The following PROC DBLOAD example grants UPDATE privileges to user MARURI
on the DB2 SASDEMO.ORDERS table.

proc dbload dbms=db2;
in sample;
sql grant update on sasdemo.orders to maruri;

run;

TABLE=

Names the DBMS table to be created and loaded.

Table statement: varies with each DBMS

Required statement

Syntax

TABLE= < ’>table-name< ’>;

Details

The TABLE= statement specifies the name of the DBMS table to be created and
loaded into a DBMS database. The table name must be a valid table name for the
DBMS. (See the naming conventions for your DBMS listed in your DBMS chapter.) If it
contains lowercase characters, special characters, or national characters, it must be
enclosed in quotes.

In addition, you must specify a table name that does not already exist. If a table by
that name exists, an error message is written to the SAS log, and the table specified in
this statement is not loaded.

When you create and load or append to a DBMS table, the TABLE= statement is
required. It must follow other database connection statements such as DATABASE= or
USER=.

When you are submitting dynamic DBMS-specific SQL statements to the DBMS
without creating and loading a table, this statement is not used.

DBLOAD Procedure Reference 4 WHERE 145

TYPE

Changes default DBMS data types in the new table.

Optional statement

Syntax
TYPE variable-identifier-1 = ’column-type-1’

<…variable-identifier-n = ’column-type-n’>;

Details
The TYPE statement changes the default DBMS column data types that are

associated with the corresponding SAS variables.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to change
the data type of the DBMS column associated with the third SAS variable, submit the
following statement:

type 3=’char(17)’;

The argument column-type must be a valid data type for the DBMS and must be
enclosed in quotes.

If you omit the TYPE statement, the column data types are generated with default
DBMS data types that are based on the SAS variable formats. You can change as many
data types as you want in one TYPE statement. See your DBMS chapter for a complete
list of the default conversion data types for the DBLOAD procedure.

An editing statement, such as TYPE, must be specified after the database connection
statements when you create and load a DBMS table. See “LOAD” on page 139 for more
information.

WHERE

Loads a subset of data into the new table.

Optional statement

Syntax
WHERE SAS-where-expression;

Details
The WHERE statement causes a subset of observations to be loaded into the new

DBMS table. The SAS-where-expression must be a valid SAS WHERE statement that

146 WHERE 4 Chapter 10

uses SAS variable names (not DBMS column names) as defined in the input data set.
The following example loads only the observations in which the SAS variable
COUNTRY has the value Brazil.

where country=’Brazil’;

For more information on the syntax of the SAS WHERE statement, see SAS
Language Reference: Dictionary.

An editing statement, such as WHERE, must be specified after the database
connection statements when you create and load a DBMS table. See “LOAD” on page
139 for more information.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–558–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

