
151

C H A P T E R

12
Using DBMS Data in Version 7
and Version 8

Introduction 151
Running the Examples in This Section 152

Creating SAS Data Sets from DBMS Data 152

Using the PRINT Procedure with DBMS Data 152

Combining DBMS Data and SAS Data 153

Reading Data from Multiple DBMS Tables 154
Using the DATA Step’s UPDATE Statment with DBMS Data 155

Using the SQL Procedure with DBMS Data 156

Querying a DBMS Table 156

Querying Multiple DBMS Tables 159

Updating DBMS Data 162

Creating a DBMS Table 164
Using Other SAS Procedures with DBMS Data 165

Using the MEANS Procedure 165

Using the DATASETS Procedure 166

Using the CONTENTS Procedure 167

Using the RANK Procedure 168
Using the TABULATE Procedure 169

Using the APPEND Procedure 170

Charting Data 171

Using the GCHART Procedure with Descriptors 171

Using the GCHART Procedure with a SAS/ACCESS LIBNAME 172
Calculating Statistics 172

Using the FREQ Procedure with Descriptors 172

Using the FREQ Procedure with a SAS/ACCESS LIBNAME 173

Selecting and Combining Data 174

Using the WHERE Statement with Descriptors 174

Using the WHERE Statement with a SAS/ACCESS LIBNAME 175
Joining DBMS and SAS Data 176

Combining a PROC SQL View with a SAS Data Set By Using the Pass-Through Facility 176

Combining a PROC SQL View with a SAS Data Set By Using a SAS/ACCESS LIBNAME 177

Introduction
This topic contains examples of easier and more direct ways of using data stored in

your database management system (DBMS), beginning in Version 7 of SAS/ACCESS
software. These examples use ORACLE and DB2, but SAS/ACCESS also provides
interfaces to many other widely used database management systems.

152 Running the Examples in This Section 4 Chapter 12

Refer to Chapter 13, “Using DBMS Data with the SQL Pass-Through Facility,” on
page 179 for SAS/ACCESS examples that use the SQL Procedure Pass-Through Facility,
access descriptors, view descriptors, and the ACCESS and DBLOAD procedures.

Running the Examples in This Section
The examples in this section all use the SAS/ACCESS LIBNAME statement to

associate a libref directly with DBMS objects. When you assign a libref in
SAS/ACCESS, you can customize the way your data is processed by using SAS
LIBNAME statement options, including the new SAS/ACCESS LIBNAME options listed
in “SAS/ACCESS LIBNAME Statement” on page 27 as well as additional
DBMS-specific LIBNAME statement options listed in your DBMS chapter.

When you use the LIBNAME statement to create a libref that refers to DBMS data,
you can refer to the DBMS objects within the libref, such as tables and views, by using
the libref.object-name syntax. Because these objects are treated by SAS software as
SAS data sets, you can specify how they are processed by using SAS data set options,
including the new SAS/ACCESS data set options listed in “SAS/ACCESS Data Set
Options” on page 43 and additional DBMS-specific data set options listed in your DBMS
chapter.

If you specify a data set option that has the same name as a LIBNAME option that
was specified during LIBNAME assignment, the data set option overrides the
LIBNAME option.

The files that create the DBMS tables, descriptors, and the examples are shipped
with your SAS/ACCESS software. See “Sample Data in This Book” on page 8 for more
information about these files.

Note: The examples in this chapter use the SAS/ACCESS Interface to DB2 and the
SAS/ACCESS Interface to ORACLE. Because the connection arguments, such as
USER=, PASSWORD=, and DATABASE= vary depending on which DBMS you use, you
must substitute the appropriate connection arguments for your DBMS if you run these
examples on your DBMS. 4

Creating SAS Data Sets from DBMS Data
Once you have associated a SAS/ACCESS libref with your DBMS data, you can use

the libref just as you would use any SAS libref. The following examples illustrate basic
uses of the DATA step with librefs that refer to DBMS data.

Using the PRINT Procedure with DBMS Data
In the following example, the libref MYDB2LIB is assigned with the DB2 engine to

associate the libref with tables and views that reside on DB2. The PRINT procedure
prints a phone list containing information for staff in New Jersey from the DB2 table
STAFF. Information for staff from states other than New Jersey is not printed. The
DB2 table STAFF is not modified.

Note that you can specify a libref that references DBMS data in the DATA= option.

libname mydb2lib db2 ssid=db2;

proc print data=mydb2lib.staff
(keep=lname fname hphone state);
where state = ’NJ’;

Using DBMS Data in Version 7 and Version 8 4 Combining DBMS Data and SAS Data 153

title ’New Jersey Phone List’;
run;

Output for this example is shown in Output 12.1 on page 153.

Output 12.1 Output Listing from the PRINT Procedure

New Jersey Phone List 1

Obs LNAME FNAME STATE HPHONE

1 ALVAREZ CARLOS NJ 201/732-8787
2 BAREFOOT JOSEPH NJ 201/812-5665
3 DACKO JASON NJ 201/732-2323
4 FUJIHARA KYOKO NJ 201/812-0902
5 HENDERSON WILLIAM NJ 201/812-4789
6 JOHNSON JACKSON NJ 201/732-3678
7 LAWRENCE KATHY NJ 201/812-3337
8 MURPHEY JOHN NJ 201/812-4414
9 NEWKIRK SANDRA NJ 201/812-3331

10 NEWKIRK WILLIAM NJ 201/732-6611
11 PETERS RANDALL NJ 201/812-2478
12 RHODES JEREMY NJ 201/812-1837
13 ROUSE JEREMY NJ 201/732-9834
14 VICK THERESA NJ 201/812-2424
15 YANCEY ROBIN NJ 201/812-1874

Combining DBMS Data and SAS Data

The following example shows how to read DBMS data into SAS and create
additional variables to perform calculations or subsetting operations on the data.

This example creates the SAS data set WORK.HIGHWAGE from the DB2 table
PAYROLL and adds a new variable, CATEGORY. The CATEGORY variable is based on
the value of the salary column in the DB2 table PAYROLL. The PAYROLL table is not
modified.

libname mydb2lib db2 ssid=db2;

data highwage;
set mydb2lib.payroll(drop=sex birth hired);
if salary>60000 then

CATEGORY="High";
else if salary<30000 then

CATEGORY="Low";
else

CATEGORY="Avg";
run;

options obs=20;

proc print data=highwage;
title "Salary Analysis";
format salary dollar10.2;

run;

Partial output for this example is shown in Output 12.2 on page 153.

154 Reading Data from Multiple DBMS Tables 4 Chapter 12

Output 12.2 Combining DBMS Data and SAS Data

Salary Analysis 1

OBS IDNUM JOBCODE SALARY CATEGORY

1 1919 TA2 $34,376.00 Avg
2 1653 ME2 $35,108.00 Avg
3 1400 ME1 $29,769.00 Low
4 1350 FA3 $32,886.00 Avg
5 1401 TA3 $38,822.00 Avg
6 1499 ME3 $43,025.00 Avg
7 1101 SCP $18,723.00 Low
8 1333 PT2 $88,606.00 High
9 1402 TA2 $32,615.00 Avg
10 1479 TA3 $38,785.00 Avg
11 1403 ME1 $28,072.00 Low
12 1739 PT1 $66,517.00 High
13 1658 SCP $17,943.00 Low
14 1428 PT1 $68,767.00 High
15 1782 ME2 $35,345.00 Avg
16 1244 ME2 $36,925.00 Avg
17 1383 BCK $25,823.00 Low
18 1574 FA2 $28,572.00 Low
19 1789 SCP $18,326.00 Low
20 1404 PT2 $91,376.00 High

Reading Data from Multiple DBMS Tables
You can use the DATA step to read data from multiple data sets, in this case, two

DBMS tables. This example merges data from the two ORACLE tables STAFF and
SUPERV in the SAS data set WORK.COMBINED. Notice that the PATH= statement
includes an alias to the database, as required by ORACLE SQL*NET software.

libname myoralib oracle user=karin password=haggis
path=’airhrdata’ schema=airport
preserve_col_names=yes;

data combined;
merge myoralib.staff myoralib.superv(in=super
rename=(supid=idnum));

by idnum;
if super;

run;

proc print data=combined;
title "Supervisor Information";

run;

Note: The PRESERVE_COL_NAMES=YES LIBNAME option retains the lowercased
column names from ORACLE when creating the corresponding SAS variable names.
For information on additional new LIBNAME and data set options, see “SAS/ACCESS
LIBNAME Statement” on page 27 and “SAS/ACCESS Data Set Options” on page 43. 4

Output for this example is shown in Output 12.3 on page 154.

Using DBMS Data in Version 7 and Version 8 4 Using the DATA Step’s UPDATE Statment with DBMS Data 155

Output 12.3 Reading Data from Multiple DBMS Tables

Supervisor Information 1

Obs idnum lname fname city state hphone jobcat

1 1106 MARSHBURN JASPER STAMFORD CT 203/781-1457 PT
2 1118 DENNIS ROGER NEW YORK NY 718/383-1122 PT
3 1126 KIMANI ANNE NEW YORK NY 212/586-1229 TA
4 1352 RIVERS SIMON NEW YORK NY 718/383-3345 NA
5 1385 RAYNOR MILTON BRIDGEPORT CT 203/675-2846 ME
6 1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787 TA
7 1405 DACKO JASON PATERSON NJ 201/732-2323 SC
8 1417 NEWKIRK WILLIAM PATERSON NJ 201/732-6611 NA
9 1420 ROUSE JEREMY PATERSON NJ 201/732-9834 ME

10 1431 YOUNG DEBORAH STAMFORD CT 203/781-2987 FA
11 1433 YANCEY ROBIN PRINCETON NJ 201/812-1874 FA
12 1442 NEWKIRK SANDRA PRINCETON NJ 201/812-3331 PT
13 1564 WALTERS ANNE NEW YORK NY 212/587-3257 SC
14 1639 CARTER-COHEN KAREN STAMFORD CT 203/781-8839 TA
15 1677 KRAMER JACKSON BRIDGEPORT CT 203/675-7432 BC
16 1834 LEBLANC RUSSELL NEW YORK NY 718/384-0040 BC
17 1882 TUCKER ALAN NEW YORK NY 718/384-0216 ME
18 1935 FERNANDEZ KATRINA BRIDGEPORT CT 203/675-2962 NA
19 1983 DEAN SHARON NEW YORK NY 718/384-1647 FA

Using the DATA Step’s UPDATE Statment with DBMS Data
You can also use the DATA step’s UPDATE statement to create a SAS data set with

DBMS data. This example creates the SAS data set WORK.PAYROLL with data from
the ORACLE tables PAYROLL and PAYROLL2. The ORACLE tables are not modified.

Note that the columns in the two ORACLE tables must match; however, PAYROLL2
may have additional columns. Any additional columns in PAYROLL2 are added to the
PAYROLL data set. Also, the UPDATE statement requires unique values for IDNUM to
correctly merge the data from PAYROLL2.

libname myoralib oracle user=scott password=tiger path=’myorapath’;

data payroll;
update myoralib.payroll

myoralib.payroll2;
by idnum;

proc print data=payroll;
format birth datetime9. hired datetime9.;
title ’Updated Payroll Data’;

run;

Partial output from this example is shown in Output 12.4 on page 155.

156 Using the SQL Procedure with DBMS Data 4 Chapter 12

Output 12.4 Creating a SAS Data Set with DBMS Data by Using the UPDATE Statement

Updated Payroll Data 1

Obs IDNUM SEX JOBCODE SALARY BIRTH HIRED

1 1009 M TA1 28880 02MAR1959 26MAR1992
2 1017 M TA3 40858 28DEC1957 16OCT1981
3 1036 F TA3 42465 19MAY1965 23OCT1984
4 1037 F TA1 28558 10APR1964 13SEP1992
5 1038 F TA1 26533 09NOV1969 23NOV1991
6 1050 M ME2 35167 14JUL1963 24AUG1986
7 1065 M ME3 38090 26JAN1944 07JAN1987
8 1076 M PT1 69742 14OCT1955 03OCT1991
9 1094 M FA1 22268 02APR1970 17APR1991

10 1100 M BCK 25004 01DEC1960 07MAY1988
11 1101 M SCP 18723 06JUN1962 01OCT1990
12 1102 M TA2 34542 01OCT1959 15APR1991
13 1103 F FA1 23738 16FEB1968 23JUL1992
14 1104 M SCP 17946 25APR1963 10JUN1991
15 1105 M ME2 34805 01MAR1962 13AUG1990
16 1106 M PT3 94039 06NOV1957 16AUG1984
17 1107 M PT2 89977 09JUN1954 10FEB1979
18 1111 M NA1 40586 14JUL1973 31OCT1992
19 1112 M TA1 26905 29NOV1964 07DEC1992
20 1113 F FA1 22367 15JAN1968 17OCT1991

Using the SQL Procedure with DBMS Data
The previous examples showed how to read DBMS data and perform operations on

the data in SAS. You can also perform operations on data directly in your DBMS by
using the SQL procedure.

The following examples use the SQL procedure to query, update, and create DBMS
tables.

Querying a DBMS Table
This example uses the SQL procedure to query the ORACLE table PAYROLL. The

PROC SQL query retrieves all job codes and provides a total salary amount for each job
code.

libname myoralib oracle user=karin password=haggis
path=’airhrdata’ schema=airport;

proc sql;
select jobcode label=’Jobcode’,

sum(salary) as total
label=’Total for Group’
format=dollar11.2

from myoralib.payroll
group by jobcode;

quit;

Output for this example is shown in Output 12.5 on page 157.

Using DBMS Data in Version 7 and Version 8 4 Querying a DBMS Table 157

Output 12.5 Querying a DBMS Table

The SAS System 1

Total for
Jobcode Group

BCK $232,148.00
FA1 $253,433.00
FA2 $447,790.00
FA3 $230,537.00
ME1 $228,002.00
ME2 $498,076.00
ME3 $296,875.00
NA1 $210,161.00
NA2 $157,149.00
PT1 $543,264.00
PT2 $879,252.00
PT3 $21,009.00
SCP $128,162.00
TA1 $249,492.00
TA2 $671,499.00
TA3 $476,155.00

The next example uses the SQL procedure to query flight information from the
ORACLE table DELAY. The WHERE clause specifies that only flights to London and
Frankfurt are retrieved.

libname myoralib oracle user=kurt password=freude
path=’fltdata’ schema=airport;

title ’Flights to London and Frankfurt’;

proc sql;
select dates format=date9.,
dest from myoralib.delay

where (dest eq "FRA") or
(dest eq "LON")

order by dest;
quit;

Note: Interaction between the SQL procedure and the SAS/ACCESS engine ensures
that both the WHERE clause and the ORDER BY clause are processed by the DBMS
for optimized performance. 4

Output for this example is shown in Output 12.6 on page 157.

158 Querying a DBMS Table 4 Chapter 12

Output 12.6 Querying a DBMS Table

Flights to London and Frankfurt

DATES DEST

01MAR1998 FRA
04MAR1998 FRA
07MAR1998 FRA
03MAR1998 FRA
05MAR1998 FRA
02MAR1998 FRA
04MAR1998 LON
07MAR1998 LON
02MAR1998 LON
06MAR1998 LON
05MAR1998 LON
03MAR1998 LON
01MAR1998 LON

The next example uses the SQL procedure to query the DB2 table INTERNAT for
information on international flights with over 200 passengers. Note that output can be
sorted by using a PROC SQL query and that the TITLE, LABEL, and FORMAT key
words are not ANSI standard SQL; they are SAS extensions that you can use in PROC
SQL.

libname mydb2lib db2 ssid=db2;

proc sql;
title ’International Flights by Flight Number’;
title2 ’with Over 200 Passengers’;
select flight label="Flight Number",

dates label="Departure Date"
format DATE9.,

dest label="Destination",
boarded label="Number Boarded"

from mydb2lib.internat
where boarded > 200
order by flight;

quit;

Output for this example is shown in Output 12.7 on page 158.

Output 12.7 Querying a DBMS Table

International Flights by Flight Number
with Over 200 Passengers

Flight Departure Number
Number Date Destination Boarded
--
219 04MAR1998 LON 232
219 07MAR1998 LON 241
622 07MAR1998 FRA 210
622 01MAR1998 FRA 207

The next example uses the SQL procedure to query the DB2 table PAYROLL for
information on all flight attendants, ordered by JOBCODE and SERVICE.

Using DBMS Data in Version 7 and Version 8 4 Querying Multiple DBMS Tables 159

libname mydb2lib db2 ssid=db2;

proc sql;
title ’Service Years and Salary’;
title2 ’for Flight Attendants’;
select idnum label=’ID Number’,

jobcode label=’Job Code’,
salary label=’Salary’

format dollar7.,
(today()-HIRED)/365.25 as service

label=’Years Service’
format 4.1,

hired label=’Hire Date’
format date9.

from mydb2lib.payroll
where jobcode like ’FA%’
order by jobcode, service;

quit;

Partial output for this example is shown in Output 12.8 on page 159.

Output 12.8 Querying a DBMS Table

Service Years and Salary
for Flight Attendants

ID Job Years
Number Code Salary Service Hire Date

1132 FA1 $22,413 3.9 22OCT1993
1425 FA1 $23,979 4.6 28FEB1993
1103 FA1 $23,738 5.2 23JUL1992
1130 FA1 $23,916 5.3 05JUN1992
1414 FA1 $23,644 5.4 12APR1992
1113 FA1 $22,367 5.9 17OCT1991
1094 FA1 $22,268 6.4 17APR1991
1422 FA1 $22,454 6.5 06APR1991
1116 FA1 $22,862 6.5 21MAR1991
1970 FA1 $22,615 6.5 12MAR1991

Querying Multiple DBMS Tables
You can also retrieve data from multiple DBMS tables in a single query by using the

SQL procedure. This example joins the ORACLE tables STAFF and PAYROLL to query
salary information for employees earning more than $40,000.

libname myoralib oracle user=michelle password=toys
path=’airhrdata’ schema=hrdept;

title ’Employees with salary greater than $40,000’;

options obs=20;

proc sql;
select a.lname, a.fname, b.salary

format=dollar10.2
from myoralib.staff a, myoralib.payroll b

160 Querying Multiple DBMS Tables 4 Chapter 12

where (a.idnum eq b.idnum) and
(b.salary gt 40000);

quit;

Note: For optimized performance, the SAS/ACCESS engine passes the entire join to
the DBMS for processing. 4

Output for this example is shown in Output 12.9 on page 160.

Output 12.9 Querying Multiple DBMS Tables

Employees with salary greater than $40,000

LNAME FNAME SALARY

BAREFOOT JOSEPH $43,025.00
BANADYGA JUSTIN $88,606.00
BRANCACCIO JOSEPH $66,517.00
BRADY CHRISTINE $68,767.00
COHEN LEE $91,376.00
CARTER-COHEN KAREN $40,260.00
CASTON FRANKLIN $41,690.00
FERNANDEZ KATRINA $51,081.00
GRAHAM ALVIN $65,111.00
GREGORSKI DANIEL $68,096.00
HARRIS CHARLES $84,685.00
HASENHAUER CHRISTINA $70,736.00
HAVELKA RAYMOND $41,551.00
HERRERO CLYDE $66,130.00
KIMANI ANNE $40,899.00
MARSHBURN JASPER $89,632.00
MORGAN ALFRED $42,264.00
NEWKIRK SANDRA $84,536.00
NEWKIRK WILLIAM $52,270.00
NEWTON JAMES $84,203.00

The next example uses the SQL procedure to join and query the DB2 tables MARCH,
DELAY, and FLIGHT. The query retrieves information on delayed international flights
during the month of March.

libname mydb2lib db2 ssid=db2;

title "Delayed International Flights in March";

proc sql;
select distinct march.flight, march.dates,

delay format=2.0
from mydb2lib.march, mydb2lib.delay,

mydb2lib.internat
where march.flight=delay.flight and

march.dates=delay.dates and
march.flight=internat.flight and
delay>0

order by delay descending;
quit;

Note: For optimized performance, the SAS/ACCESS engine passes the entire join to
the DBMS for processing. 4

Using DBMS Data in Version 7 and Version 8 4 Querying Multiple DBMS Tables 161

Output for this example is shown in Output 12.10 on page 161.

Output 12.10 Querying Multiple DBMS Tables

Delayed International Flights in March

FLIGHT DATES DELAY

622 04MAR1998 30
219 06MAR1998 27
622 07MAR1998 21
219 01MAR1998 18
219 02MAR1998 18
219 07MAR1998 15
132 01MAR1998 14
132 06MAR1998 7
132 03MAR1998 6
271 01MAR1998 5
132 02MAR1998 5
271 04MAR1998 5
271 05MAR1998 5
271 02MAR1998 4
219 03MAR1998 4
271 07MAR1998 4
219 04MAR1998 3
132 05MAR1998 3
219 05MAR1998 3
271 03MAR1998 2

The next example uses the SQL procedure to retrieve the combined results of two
queries to the ORACLE tables PAYROLL and PAYROLL2. An OUTER UNION in
PROC SQL concatenates the data.

libname myoralib oracle user=charles password=mazyar
path=’airhrdept’ schema=hrdept;

title "Payrolls 1 & 2";

proc sql;
select *

from myoralib.payroll
outer union corr

select *
from myoralib.payroll2
order by idnum, jobcode, salary;

quit;

Partial output for this example is shown in Output 12.11 on page 161.

162 Updating DBMS Data 4 Chapter 12

Output 12.11 Querying Multiple DBMS Tables

Payrolls 1 & 2 1

IDNUM SEX JOBCODE SALARY BIRTH HIRED

1009 M TA1 28880 02MAR1959 26MAR1992
1017 M TA3 40858 28DEC1957 16OCT1981
1036 F TA3 39392 19MAY1965 23OCT1984
1036 F TA3 42465 19MAY1965 23OCT1984
1037 F TA1 28558 10APR1964 13SEP1992
1038 F TA1 26533 09NOV1969 23NOV1991
1050 M ME2 35167 14JUL1963 24AUG1986
1065 M ME2 35090 26JAN1944 07JAN1987
1065 M ME3 38090 26JAN1944 07JAN1987
1076 M PT1 66558 14OCT1955 03OCT1991
1076 M PT1 69742 14OCT1955 03OCT1991
1094 M FA1 22268 02APR1970 17APR1991
1100 M BCK 25004 01DEC1960 07MAY1988
1101 M SCP 18723 06JUN1962 01OCT1990
1102 M TA2 34542 01OCT1959 15APR1991
1103 F FA1 23738 16FEB1968 23JUL1992
1104 M SCP 17946 25APR1963 10JUN1991
1105 M ME2 34805 01MAR1962 13AUG1990

Updating DBMS Data
In addition to querying data, you can also update data directly in your DBMS. You

can update rows, columns, and tables by using the SQL procedure.
The following example adds a new row to the DB2 table SUPERV.

libname mydb2lib db2 ssid=db2;

proc sql;
insert into mydb2lib.superv

values(’1588’,’NY’,’FA’);
quit;

proc print data=mydb2lib.superv;
title "New Row in AIRLINE.SUPERV";

run;

Note: Depending on how your DBMS processes inserts, the new row might not be
added as the last physical row of the table. 4

Output for this example is shown in Output 12.12 on page 162.

Using DBMS Data in Version 7 and Version 8 4 Updating DBMS Data 163

Output 12.12 Updating DBMS Data

New Row in AIRLINE.SUPERV 1

OBS SUPID STATE JOBCAT

1 1677 CT BC
2 1834 NY BC
3 1431 CT FA
4 1433 NJ FA
5 1983 NY FA
6 1385 CT ME
7 1420 NJ ME
8 1882 NY ME
9 1935 CT NA
10 1417 NJ NA
11 1352 NY NA
12 1106 CT PT
13 1442 NJ PT
14 1118 NY PT
15 1405 NJ SC
16 1564 NY SC
17 1639 CT TA
18 1401 NJ TA
19 1126 NY TA
20 1588 NY FA

The next example deletes all employees who work in Connecticut from the DB2 table
STAFF.

libname mydb2lib db2 ssid=db2;

proc sql;
delete from mydb2lib.staff

where state=’CT’;
quit;

options obs=20;

proc print data=mydb2lib.staff;
title "AIRLINE.STAFF After Deleting

Connecticut Employees";
run;

Note: If you omit a WHERE clause when you delete rows from a table, all rows in
the table are deleted. 4

Output for this example is shown in Output 12.13 on page 163.

164 Creating a DBMS Table 4 Chapter 12

Output 12.13 Updating DBMS Data

AIRLINE.STAFF After Deleting Connecticut Employees 1

OBS IDNUM LNAME FNAME CITY STATE HPHONE

1 1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
2 1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
3 1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
4 1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
5 1101 BAUCOM WALTER NEW YORK NY 212/586-8060
6 1402 BLALOCK RALPH NEW YORK NY 718/384-2849
7 1479 BALLETTI MARIE NEW YORK NY 718/384-8816
8 1739 BRANCACCIO JOSEPH NEW YORK NY 212/587-1247
9 1658 BREUHAUS JEREMY NEW YORK NY 212/587-3622
10 1244 BUCCI ANTHONY NEW YORK NY 718/383-3334
11 1383 BURNETTE THOMAS NEW YORK NY 718/384-3569
12 1574 CAHILL MARSHALL NEW YORK NY 718/383-2338
13 1789 CARAWAY DAVIS NEW YORK NY 212/587-9000
14 1404 COHEN LEE NEW YORK NY 718/384-2946
15 1065 COPAS FREDERICO NEW YORK NY 718/384-5618
16 1876 CHIN JACK NEW YORK NY 212/588-5634
17 1129 COUNIHAN BRENDA NEW YORK NY 718/383-2313
18 1988 COOPER ANTHONY NEW YORK NY 212/587-1228
19 1405 DACKO JASON PATERSON NJ 201/732-2323
20 1983 DEAN SHARON NEW YORK NY 718/384-1647

Creating a DBMS Table
You can create new tables in your DBMS by using the SQL procedure.

This example uses the SQL procedure to create the ORACLE table GTFORTY by
using data from the ORACLE STAFF and PAYROLL tables.

libname myoralib oracle user=charles password=mazyar
path=’airhrdept’ schema=hrdept;

proc sql;
create table myoralib.gtforty as
select lname as lastname,

fname as firstname,
salary as salary

format=dollar10.2
from myoralib.staff a,

myoralib.payroll b
where (a.idnum eq b.idnum) and

(salary gt 40000);

options obs=20;

proc print data=myoralib.gtforty noobs;
title ’Employees with salaries over $40,000’;

run;

Output for this example is shown in Output 12.14 on page 164.

Using DBMS Data in Version 7 and Version 8 4 Using the MEANS Procedure 165

Output 12.14 Creating a DBMS Table

Employees with salaries over $40,000 1

LASTNAME FIRSTNAME SALARY

BAREFOOT JOSEPH $43,025.00
BANADYGA JUSTIN $88,606.00
BRANCACCIO JOSEPH $66,517.00
BRADY CHRISTINE $68,767.00
COHEN LEE $91,376.00
CARTER-COHEN KAREN $40,260.00
CASTON FRANKLIN $41,690.00
FERNANDEZ KATRINA $51,081.00
GRAHAM ALVIN $65,111.00
GREGORSKI DANIEL $68,096.00
HARRIS CHARLES $84,685.00
HASENHAUER CHRISTINA $70,736.00
HAVELKA RAYMOND $41,551.00
HERRERO CLYDE $66,130.00
KIMANI ANNE $40,899.00
MARSHBURN JASPER $89,632.00
MORGAN ALFRED $42,264.00
NEWKIRK SANDRA $84,536.00
NEWKIRK WILLIAM $52,270.00
NEWTON JAMES $84,203.00

Using Other SAS Procedures with
DBMS Data

The following examples illustrate basic uses of other SAS procedures with librefs
that refer to DBMS data.

Using the MEANS Procedure
This example uses the PRINT and MEANS procedures on a SAS data set created

from the ORACLE table INTERNAT. The MEANS procedure provides information on
the largest number of passengers on each flight.

libname myoralib oracle user=anita password=traveler
path=’fltdata’ schema=airport;

title ’Number of Passengers per
Flight by Date’;

proc print data=my_data noobs;
var date boarded;
by flight dest;
sumby flight;
sum boarded;

run;

title ’Maximum Number of
Passengers per Flight’;

proc means data=my_data fw=5 maxdec=1 max;
var boarded;

166 Using the DATASETS Procedure 4 Chapter 12

class flight;
run;

Partial output for this example is shown in Output 12.15 on page 166.

Output 12.15 Using the PRINT and MEANS Procedures

Number of Passengers per Flight by Date

----------------------------- FLIGHT=132 DEST=YYZ ------------------------------

DATE BOARDED

01MAR1998 115
02MAR1998 106
03MAR1998 75
04MAR1998 117
05MAR1998 157
06MAR1998 150
07MAR1998 164
--------- -------

FLIGHT 884

----------------------------- FLIGHT=219 DEST=LON ------------------------------

DATE BOARDED

01MAR1998 198
02MAR1998 147
03MAR1998 197
04MAR1998 232
05MAR1998 160
06MAR1998 163
07MAR1998 241
--------- -------

FLIGHT 1338

Maximum Number of Passengers per Flight

The MEANS Procedure

Analysis Variable : BOARDED

N
FLIGHT Obs MAXIMUM
132 7 164.0

219 7 241.0

271 6 177.0

622 6 210.0

Using the DATASETS Procedure
This example uses the DATASETS procedure to view a list of DBMS tables, in this

case, in a DB2 database.

Note: The MODIFY and ALTER statements in PROC DATASETS are not available
for use with librefs that refer to DBMS data. 4

Using DBMS Data in Version 7 and Version 8 4 Using the CONTENTS Procedure 167

libname mydb2lib db2 ssid=db2;

title "Table Listing for DB2";

proc datasets lib=mydb2lib;
contents data=_all_ nods;

run;

Partial output for this example is shown in Output 12.16 on page 167.

Output 12.16 Using the DATASETS Procedure

Table Listing for DB2

DATASETS PROCEDURE

-----Directory-----

Libref: MYDB2LIB
Engine: DB2
Filefmt:
Physical Name: DB2

Name Memtype

1 DELAY DATA
2 INTERNAT DATA
3 MARCH DATA
4 PAYROLL DATA
5 PAYROLL2 DATA
6 SCHEDULE DATA
7 STAFF DATA
8 SUPERV DATA

Using the CONTENTS Procedure
These examples show output from the CONTENTS procedure when it is run on a

DBMS table. Note that PROC CONTENTS shows all of the SAS metadata derived from
the DBMS table by the SAS/ACCESS engine.

libname mydb2lib db2 ssid=db2;

proc contents data=mydb2lib.delay;
run;

Output from this example is shown in Output 12.17 on page 167.

168 Using the RANK Procedure 4 Chapter 12

Output 12.17 Using the CONTENTS Procedure

CONTENTS PROCEDURE

Data Set Name: AIRLINE.DELAY Observations: .
Member Type: DATA Variables: 7
Engine: DB2 Indexes: 0
Created: . Observation Length: 0
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

2 DATES Num 8 8 DATE9. DATE9. DATES
7 DELAY Num 8 64 DELAY
5 DELAYCAT Char 15 32 $15. $15. DELAYCAT
4 DEST Char 3 24 $3. $3. DEST
6 DESTYPE Char 15 48 $15. $15. DESTYPE
1 FLIGHT Char 3 0 $3. $3. FLIGHT
3 ORIG Char 3 16 $3. $3. ORIG

Using the RANK Procedure
This example uses the RANK procedure to rank flights in the DB2 table DELAY by

number of minutes delayed.

libname mydb2lib db2 ssid=db2;

options obs=20;

proc rank data=mydb2lib.delay descending
ties=low out=ranked;

var delay;
ranks RANKING;

run;

proc print data=ranked;
title "Ranking of Delayed Flights";
format delay 2.0;

run;

Output for this example is shown in Output 12.18 on page 168.

Using DBMS Data in Version 7 and Version 8 4 Using the TABULATE Procedure 169

Output 12.18 Using the RANK Procedure

Ranking of Delayed Flights 1

OBS FLIGHT DATES ORIG DEST DELAYCAT DESTYPE DELAY RANKING

1 114 01MAR1998 LGA LAX 1-10 Minutes Domestic 8 9
2 202 01MAR1998 LGA ORD No Delay Domestic -5 42
3 219 01MAR1998 LGA LON 11+ Minutes International 18 4
4 622 01MAR1998 LGA FRA No Delay International -5 42
5 132 01MAR1998 LGA YYZ 11+ Minutes International 14 8
6 271 01MAR1998 LGA PAR 1-10 Minutes International 5 13
7 302 01MAR1998 LGA WAS No Delay Domestic -2 36
8 114 02MAR1998 LGA LAX No Delay Domestic 0 28
9 202 02MAR1998 LGA ORD 1-10 Minutes Domestic 5 13

10 219 02MAR1998 LGA LON 11+ Minutes International 18 4
11 622 02MAR1998 LGA FRA No Delay International 0 28
12 132 02MAR1998 LGA YYZ 1-10 Minutes International 5 13
13 271 02MAR1998 LGA PAR 1-10 Minutes International 4 19
14 302 02MAR1998 LGA WAS No Delay Domestic 0 28
15 114 03MAR1998 LGA LAX No Delay Domestic -1 32
16 202 03MAR1998 LGA ORD No Delay Domestic -1 32
17 219 03MAR1998 LGA LON 1-10 Minutes International 4 19
18 622 03MAR1998 LGA FRA No Delay International -2 36
19 132 03MAR1998 LGA YYZ 1-10 Minutes International 6 12
20 271 03MAR1998 LGA PAR 1-10 Minutes International 2 25

Using the TABULATE Procedure
This example uses the TABULATE procedure on the ORACLE table PAYROLL to

display a chart of the number of employees for each job code.

libname myoralib oracle user=antonio password=porsche
path=’airhrdept’ schema=hrdept;

title "Number of Employees by Jobcode";

proc tabulate data=myoralib.payroll format=3.0;
class jobcode;
table jobcode*n;
keylabel n="#";

run;

Output for this example is shown in Output 12.19 on page 169.

Output 12.19 Using the TABULATE Procedure

Number of Employees by Jobcode 1

jobcode
BCK
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---
#
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---
9

170 Using the APPEND Procedure 4 Chapter 12

Using the APPEND Procedure
In this example, the DB2 table PAYROLL2 is appended to the DB2 table PAYROLL

with the APPEND procedure. The PAYROLL table is updated on DB2.

Note: When you append data to a DBMS table, you are actually inserting rows into
a table. The rows can be inserted into the DBMS table in any order. 4

libname mydb2lib db2 ssid=db2;

proc append base=mydb2lib.payroll
data=mydb2lib.payroll2;

run;

proc print data=mydb2lib.payroll;
title ’PAYROLL After Appending

PAYROLL2’;
run;

Note: In cases where a DBMS table that you are using is in the same database
space as a table that you are creating or updating, you must use the
CONNECTION=SHARED LIBNAME option to prevent a deadlock. See “SAS/ACCESS
LIBNAME Statement” on page 27 for more information on SAS/ACCESS LIBNAME
options. 4

Partial output for this example is shown in Output 12.20 on page 170.

Output 12.20 Using the APPEND Procedure

PAYROLL After Appending PAYROLL2 1

OBS IDNUM SEX JOBCODE SALARY BIRTH HIRED

1 1919 M TA2 34376 12SEP1960 04JUN1987
2 1653 F ME2 35108 15OCT1964 09AUG1990
3 1400 M ME1 29769 05NOV1967 16OCT1990
4 1350 F FA3 32886 31AUG1965 29JUL1990
5 1401 M TA3 38822 13DEC1950 17NOV1985
6 1499 M ME3 43025 26APR1954 07JUN1980
7 1101 M SCP 18723 06JUN1962 01OCT1990
8 1333 M PT2 88606 30MAR1961 10FEB1981
9 1402 M TA2 32615 17JAN1963 02DEC1990
10 1479 F TA3 38785 22DEC1968 05OCT1989
11 1403 M ME1 28072 28JAN1969 21DEC1991
12 1739 M PT1 66517 25DEC1964 27JAN1991
13 1658 M SCP 17943 08APR1967 29FEB1992
14 1428 F PT1 68767 04APR1960 16NOV1991
15 1782 M ME2 35345 04DEC1970 22FEB1992
16 1244 M ME2 36925 31AUG1963 17JAN1988
17 1383 M BCK 25823 25JAN1968 20OCT1992
18 1574 M FA2 28572 27APR1960 20DEC1992
19 1789 M SCP 18326 25JAN1957 11APR1978
20 1404 M PT2 91376 24FEB1953 01JAN1980

Using DBMS Data in Version 7 and Version 8 4 Using the GCHART Procedure with Descriptors 171

Charting Data
This example shows two ways to use the GCHART procedure with DBMS data. The

first method uses descriptors. The second method uses the new SAS/ACCESS
LIBNAME statement to accomplish the same task in an easier and more direct way.
Note that descriptor names and variables are still limited to eight characters, but the
LIBNAME statement accommodates member names and variable names up to 32
characters.

Using the GCHART Procedure with Descriptors
The following example uses the view descriptor VLIB.ALLORDR to create a vertical

bar chart of the number of orders per product. VLIB.ALLORDR describes the data in
the Oracle Rdb table ORDERS.

proc access dbms=rdb;

/* create access descriptor */

create adlib.order.access;
database=’atlanta::disk1:[root]textile.rdb’;
table=orders;
assign=yes;
rename dateorderd = dateord

processdby = procesby;
format dateorderd datetime9.

shipped datetime9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

list all;

/* create vlib.allordr view descriptor */

create vlib.allordr.view;
select all;

run;

proc gchart data=vlib.allordr;
vbar stocknum / discrete;

title ’Data Described by VLIB.ALLORDER’;
run;

Output for both of these examples is shown in Display 12.1 on page 172. STOCKNUM
represents each product. The number of orders for each product is represented by the
height of the bar. (In some operating environments, the increments on the vertical axis
may be different.)

172 Using the GCHART Procedure with a SAS/ACCESS LIBNAME 4 Chapter 12

Using the GCHART Procedure with a
SAS/ACCESS LIBNAME

This example uses the SQL and GCHART procedures to chart data from the PROC
SQL view WORK.ALLORDR, created from the ORACLE table ORDERS. This example
differs from the previous example in that the SAS/ACCESS LIBNAME statement is
used to define a SAS libref that references DBMS data. Descriptors are not used.
Output from this example is identical to the previous example, except for the column
names, which are limited to eight characters when you use descriptors but can be up to
32 characters when you use the SAS/ACCESS LIBNAME statement.

libname myoralib oracle user=dmitry pass=elvis
path=’txtdata’ schema=textile;

proc gchart data=myoralib,orders;
vbar stocknum / discrete;
title ’Data Described by VLIB.ALLORDER’;

run;

Display 12.1 Output from PROC GCHART

Calculating Statistics

This example shows two ways to use the FREQ procedure with DBMS data. The first
method uses descriptors. The second method uses the new SAS/ACCESS LIBNAME
statement, which fully supports the new Version 7 and Version 8 features, such as long
names up to 32 characters, and accomplishes the same task in an easier and more
direct way.

Using the FREQ Procedure with Descriptors
The following example uses the view descriptor VLIB.INV to calculate the

percentage of invoices for each country that appears in the table SASDEMO.INVOICE.

Using DBMS Data in Version 7 and Version 8 4 Using the FREQ Procedure with a SAS/ACCESS LIBNAME 173

proc access dbms=oracle;

/* create access descriptor */

create adlib.invoice.access;
user=scott orapw=tiger;
path=’myorapath’;
table=invoice;

/* create vlib.inv view */

create vlib.inv.view;
select invoicenum amtbilled

country
billedby paidon;

rename invoicenum = invnum
amtbilled = amtbilld;

format paidon date9.
invoicenum 5.0
billedby 6.0;

list all;
run;

proc freq data=vlib.inv;
tables country;
title ’Data Described by INV’;

run;

Using the FREQ Procedure with a
SAS/ACCESS LIBNAME

This example uses the FREQ procedure to calculate statistics on the PROC SQL
view WORK.INV, created from the DB2 table INVOICE. This example differs from the
previous example in that the SAS/ACCESS LIBNAME statement is used to define a
SAS libref that references DBMS data. Descriptors are not used. Output from this
example is identical to the previous example, except for the column names, which are
limited to eight characters when you use descriptors but can be up to 32 characters
when you use the SAS/ACCESS LIBNAME statement.

libname mydb2lib db2 ssid=db2;

proc freq data=mydb2lib.invoice(keep=invoicenum amtbilled country
billedby paidon);
tables country;
title ’Data Described by INV’;

run;

Output 12.21 on page 173 shows the one-way frequency table that these examples
generate.

174 Selecting and Combining Data 4 Chapter 12

Output 12.21 Using the FREQ Procedure

Data Described by INV 1
The FREQ Procedure

COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent

Argentina 2 11.76 2 11.76
Australia 1 5.88 3 17.65
Brazil 4 23.53 7 41.18
USA 10 58.82 17 100.00

Selecting and Combining Data
This example shows two ways to use the WHERE statement to subset DBMS data.

The first method uses descriptors. The second method uses the new SAS/ACCESS
LIBNAME statement to accomplish the same task in an easier and more direct way.

Using the WHERE Statement with Descriptors
The view descriptor VLIB.ALLINV lists invoices for all customers and is based on

the table INVOICE. You can use a DATA step to create a SAS data file that contains
information on customers who have not paid their bills and whose bills amount to at
least $300,000.

proc access dbms=oracle;

/* create access descriptor */

create adlib.invoice.access;
user=scott; password=tiger;
path=’myorapath’
table=invoice;
assign=yes;
rename invoicenum = invnum

amtbilled = amtbilld
amountinus = amtinus;

format paidon date9.
billedon date9.
invoicenum 5.0
billedby 6.0
amtbilled 15.2
amountinus 15.2;

list all;

/* create vlib.allinv view */

create vlib.allinv.view;
select all;

run;

Using DBMS Data in Version 7 and Version 8 4 Using the WHERE Statement with a SAS/ACCESS LIBNAME 175

data work.notpaid(keep=invnum billedto amtinus billedon);
set vlib.allinv;
where paidon is missing and amtinus>=300000.00;

run;

proc print data=work.notpaid;
format amtinus dollar20.2;
title ’High Bills--Not Paid’;

run;

In the DATA step’s WHERE statement, be sure to use SAS variable names, not
DBMS column names. The DATA statement uses the KEEP= data set option. This
option specifies that you want to include only the listed variables in the new SAS data
file WORK.NOTPAID. However, you can still reference the other view descriptor
variables in other statements within the DATA step.

The SAS WHERE statement includes two conditions to be met. First, it specifies to
select only observations that have a missing value for the PAIDON variable. Second,
the SAS WHERE statement requires that the amount in each bill be higher than a
certain figure. You must be familiar with the DBMS data so that you can determine
reasonable values for these expressions.

When you are referencing a view descriptor in a SAS procedure or DATA step, it is
more efficient to use a SAS WHERE statement rather than a subsetting IF statement.
When possible, a WHERE statement’s selection criteria is passed to the DBMS for
processing and returns a subset of rows to the SAS System for further processing. In
contrast, when you use a subsetting IF statement, every row is returned to the SAS
System to be evaluated by the IF statement. For more information about how WHERE
clauses are passed to the DBMS for processing, see “Using a Subset of the DBMS Data”
on page 127.

Output for both of these examples is shown in Output 12.22 on page 175.

Using the WHERE Statement with a
SAS/ACCESS LIBNAME

This example uses a WHERE statement directly in the PRINT procedure to print
only unpaid bills over $300,000. This example differs from the previous example in that
the SAS/ACCESS LIBNAME statement is used to define a SAS libref that references
the DBMS data. Descriptors are not used. Output from this example is identical to the
previous example, except for the column names, which are limited to eight characters
when you use descriptors but can be up to 32 characters when you use the SAS/
ACCESS LIBNAME statement.

libname myoralib oracle user=dmitry pass=elvis
path=’txtdata’ schema=textile;

proc sql;
create view allinv as

select paidon, billedon, invoicenum, amountinus, billedto
from myoralib.invoice
where paidon is null and amountinus>=300000.00;

quit;

proc print data=allinv(drop=paidon);
format amountinus dollar20.2;
title ’High Bills--Not Paid’;

run;

176 Joining DBMS and SAS Data 4 Chapter 12

Output 12.22 Using the WHERE Statement

High Bills--Not Paid 1

Obs billedon invoicenum amountinus billedto

1 05OCT1998 11271 $11,063,836.00 18543489
2 10OCT1998 11286 $11,063,836.00 43459747
3 02NOV1998 12051 $2,256,870.00 39045213
4 17NOV1998 12102 $11,063,836.00 18543489
5 27DEC1998 12471 $2,256,870.00 39045213
6 24DEC1998 12476 $2,256,870.00 38763919

Joining DBMS and SAS Data

This example shows two ways to combine SAS and DBMS data. The first method
uses the SQL Procedure Pass-Through Facility. The second method uses the new
SAS/ACCESS LIBNAME statement to accomplish the same task in an easier and more
direct way.

Combining a PROC SQL View with a SAS Data Set By Using the
Pass-Through Facility

This example joins SAS data with CA-OpenIngres data that is retrieved by using a
Pass-Through query in a PROC SQL SELECT statement.

In this example’s PROC SQL CONNECT statement, the database name is textile
and it is located on a remote network node named atlanta; the CA-OpenIngres server
is specified by star.

Information on student interns is stored in the SAS data file, DLIB.TEMPEMPS.
The CA-OpenIngres data is joined with DLIB.TEMPEMPS to determine whether any of
the student interns have a family member who works in the CSR departments.

To join the data from DLIB.TEMPEMPS with the data from the Pass-Through query,
you assign a table alias (QUERY1) to the query. Doing so enables you to qualify the
query’s column names in the WHERE clause.

options ls=120;

title ’Interns Who Are Family Members of
Employees’;

proc sql;
connect to ingres

(database=’atlanta::textile/star’);
%put &sqlxmsg;

select tempemps.lastname, tempemps.firstnam,
tempemps.empid, tempemps.familyid,
tempemps.gender, tempemps.dept,
tempemps.hiredate

from connection to ingres
(select * from employees) as query1, dlib.tempemps

where query1.empid=tempemps.familyid;
%put &sqlxmsg;

Using DBMS Data in Version 7 and Version 8 4 Combining a PROC SQL View with a SAS Data Set 177

disconnect from ingres;
quit;

Note: When SAS data is joined to DBMS data by using a Pass-Through query,
PROC SQL cannot optimize the query. In this case it is much more efficient to use a
SAS/ACCESS LIBNAME statement, as shown in the next example. Another way to
increase efficiency is to extract the DBMS data and place it in a new SAS data file,
assign SAS indexes to the appropriate variables, then to join the two SAS data files. 4

Output for both of these examples is shown in Output 12.23 on page 177.

Combining a PROC SQL View with a SAS Data Set By Using a SAS/
ACCESS LIBNAME

This example creates a PROC SQL view, MYSASLIB.EMP_CSRALL, from the DB2
table EMPLOYEES and joins the view with a SAS data set to select only interns who
are family members of existing employees.

libname mydb2lib db2 ssid=db2;
libname mysaslib "sas-data-library";
title ’Interns Who Are Family

Members of Employees’;

create view mysaslib.emp_csrall as
select * from mydblib.employees
where dept in (’CSR010’, ’CSR011’, ’CSR004’);

proc sql;
select tempemps.lastname, tempemps.firstnam,

tempemps.empid, tempemps.familyid,
tempemps.gender, tempemps.dept,
tempemps.hiredate

from mydb2lib.employees as emp,
mysaslib.tempemps as temps

where emp.empid=temps.familyid;

quit;

Output 12.23 Combining a PROC SQL View with a SAS Data Set

Interns Who Are Family Members of Employees 1

lastname firstnam empid familyid gender dept hiredate

SMITH ROBERT 765112 234967 M CSR010 04MAY1998
NISHIMATSU-LYNCH RICHARD 765111 677890 M CSR011 04MAY1998

178 Combining a PROC SQL View with a SAS Data Set 4 Chapter 12

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–558–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

