179

CHAPTER

13

Using DBMS Data with the SQL
Pass-Through Facility

Introduction 179
Retrieving DBMS Data with a Pass-Through Query 179
Using a Pass-Through Query in a Subquery 182

Introduction

This topic presents examples of accessing and updating DBMS data through the SQL
Procedure Pass-Through Facility.

Note: It is recommended that you use the new SAS/ACCESS LIBNAME statement
to access your DBMS data more easily and directly and to take full advantage of
Version 7 and Version 8 enhancements. See “SAS/ACCESS LIBNAME Statement” on
page 27 for more information about the new LIBNAME statement. A

Retrieving DBMS Data with a
Pass-Through Query

This section describes how to retrieve DBMS data by using the statements and
components of the SQL Procedure Pass-Through Facility to access DBMS data. The
Pass-Through Facility uses the SAS/ACCESS interface view engine to read and write
data between the SAS System and the DBMS. See Chapter 6, “SQL Procedure’s
Interaction with SAS/ACCESS Software,” on page 65 for detailed information.

Note: It is recommended that you use the new SAS/ACCESS LIBNAME statement
to access your DBMS data more directly and to take full advantage of Version 7 and
Version 8 enhancements. See “SAS/ACCESS LIBNAME Statement” on page 27 for
more information about the new LIBNAME statement. A

In the following example, you want just a brief listing of the companies to whom you
have sent invoices, the amount of the invoices, and the dates on which the invoices were
sent. This example accesses ORACLE data.

First, you specify a PROC SQL CONNECT statement to connect to a particular
ORACLE database that resides on a remote server. You refer to the database with the
alias MYDB.

Then you list the columns that you want to select from the ORACLE tables in the
PROC SQL SELECT clause.

Note: If desired, you can use a column-list that follows the table alias, such as as
tl(invnum,billedon,amtinus,name) to rename the columns; however, this is not

180

Retrieving DBMS Data with a Pass-Through Query A Chapter 13

necessary. If you choose to rename the columns by using a column-list, you must specify
them in the same order in which they appear in the SELECT statement in the
Pass-Through query, so that the columns map one-to-one. When you use the new names
in the first SELECT statement, you can specify the names in any order. Add the
NOLABEL option to the query to display the renamed columns. A

The PROC SQL SELECT statement uses a CONNECTION TO component in the
FROM clause to retrieve data from the ORACLE table. The Pass-Through query (in
italics) is enclosed in parentheses and uses ORACLE column names. This query joins
data from the INVOICE and CUSTOMERS tables by using the BILLEDTO column,
which references the primary key column CUSTOMERS.CUSTOMER. In this
Pass-Through query, ORACLE can take advantage of its keyed columns to join the data
in the most efficient way; it then returns the processed data to the SAS System.

Note: The order in which processing occurs is not the same as the order of the
statements in the example. The first SELECT statement (the PROC SQL query)
displays and formats the data that is processed and returned to the SAS System by the
second SELECT statement (the Pass-Through query). A

options linesize=120;

proc sql;
connect to oracle as mydb (user=scott orapw=tiger path='myorapath’);
gput &sglxmsg;

title ’'Brief Data for All Invoices'’;
select invoicenum, name, billedon format=datetime9.,
amountinus format=dollar20.2
from connection to mydb
(select *

from invoice, customers
where invoice.billedto=customers.customer
order by billedon, invoicenum);

gput &sglxmsg;

disconnect from mydb;

quit;

The SAS %PUT statement writes the contents of the &SQLXMSG macro variable to
the SAS log so that you can check it for error codes and descriptive information from
the PROC SQL Pass-Through Facility. (See Chapter 5, “Macro Variables and System
Options,” on page 59 for more information.) The DISCONNECT statement terminates

the ORACLE connection, and QUIT ends the SQL procedure. Output 13.1 on page 180
shows the results of the Pass-Through query.

Using DBMS Data with the SQL Pass-Through Facility A Retrieving DBMS Data with a Pass-Through Query

181

Output 13.1 Data Retrieved by a Pass-Through Query
Brief Data for All Invoices
INVOICENUM NAME billedon amountinus
11270 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 050CT1998 $2,256,870.00
11271 LONE STAR STATE RESEARCH SUPPLIERS 050CT1998 $11,063,836.00
11273 TWENTY-FIRST CENTURY MATERIALS 060CT1998 $252,148.50
11276 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 060CT1998 $1,934,460.00
11278 UNIVERSITY BIOMEDICAL MATERIALS 060CT1998 $1,400,825.00
11280 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 070CT1998 $2,256,870.00
11282 TWENTY-FIRST CENTURY MATERIALS 070CT1998 $252,148.50
11285 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR 100CT1998 $2,256,870.00
11286 RESEARCH OUTFITTERS 100CT1998 $11,063,836.00
11287 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 110CT1998 $252,148.50
12051 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 02NOV1998 $2,256,870.00
12102 LONE STAR STATE RESEARCH SUPPLIERS 17NOV1998 $11,063,836.00
12263 TWENTY-FIRST CENTURY MATERIALS 05DEC1998 $252,148.50
12468 UNIVERSITY BIOMEDICAL MATERIALS 24DEC1998 $1,400,825.00
12476 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR 24DEC1998 $2,256,870.00
12478 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 24DEC1998 $252,148.50
12471 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 27DEC1998 $2,256,870.00

To change the Pass-Through query into a PROC SQL view, you add a PROC SQL
CREATE VIEW statement to the query. You also remove the ORDER BY clause from
the CONNECTION TO component and add it to a separate SELECT statement that
prints only the new PROC SQL view. Generally, it is more efficient to sort data only

when needed by the program.*

libname slib ‘Your-SAS-data-library’;

proc sql;

connect to oracle as mydb (user=scott

gput &sglxmsg;

create view slib.brief as

select invoicenum, name billedon

format=dollar20.2
from connection to mydb
(select *

from invoice, customers

orapw=tiger path='myorapath’);

format=datetime9.,

where invoice.billedto=customers.customer);

gput &sglxmsg;

disconnect from mydb;

options 1s=120;

title ’'Brief Data for All Invoices’;

select * from slib.brief
order by billedon, invoicenum;

quit;

* If you have data that is usually sorted, it is more efficient to keep the ORDER BY clause in the Pass-Through query and let
the DBMS sort the data.

182

Using a Pass-Through Query in a Subquery A Chapter 13

The output from the SLIB.BRIEF view is the same as shown in Output 13.1 on page
180.

When a PROC SQL view is created from a Pass-Through query, the query’s DBMS
connection information is stored with the view. Therefore, when you reference the
PROC SQL view in a SAS program, you automatically connect to the correct database,
and you retrieve the most current data in the DBMS tables.

Using a Pass-Through Query in a Subquery

The next example shows how to use a subquery that contains a Pass-Through query.
A subquery is a nested query and is usually part of a WHERE or HAVING clause. A
subquery is contained in parentheses and returns one or more values to the outer query
for further processing.

Note: This example uses a Version 6 view descriptor with the Pass-Through Facility
to access DBMS data. Beginning in Version 7, you can associate a libref directly with
your DBMS data and use the libref in your Pass-Through query just as you would use
any SAS data set. As a result, you can now create a PROC SQL view, DATA step view,
or SAS/ACCESS view with DBMS data. A

For this example you create a view descriptor, VLIB.ALLEMP, based on SYBASE
data. The outer PROC SQL query retrieves data from the view descriptor; the subquery
uses a Pass-Through query to retrieve data. This query returns the names of employees
who earn less than the average salary for each department. You can use the macro
variable, DEPT, to substitute the department name more easily in the query.

SYBASE objects, such as table names and columns, are case sensitive. Database
identification statements and column names are converted to uppercase unless they are
enclosed in quotes.

proc access dbms=sybase;
/* create access descriptor */

create work.employee.access;
server=serverl;
database=personnel;
user=carmen;

password=aria;
table=employees;

/* create vlib.allemp view */

create vlib.allemp.view;
select all;
format empid 6.0
salary dollarl2.2
jobcode 5.0
hiredate date9.
birthdate date9. ;
list all;

run;

proc sgl stimer;
title "Employees Who Earn Below the &dept Average

Using DBMS Data with the SQL Pass-Through Facility A Using a Pass-Through Query in a Subquery 183

Salary";

connect to sybase(server=serverl
database=personnel user=carmen
password=aria);

gput &sglxmsg;

$let dept='ACC%’;

select empid, lastname, firstnam

from vlib.allemp

where dept like &dept and salary <

(select avg(salary)
from connection to sybase
(select SALARY from EMPLOYEES
where DEPT like &dept));

gput &sglxmsg;
disconnect from sybase;
quit;

When a PROC SQL query contains subqueries or inline views, the innermost query is
evaluated first. In this example, data is retrieved from the SYBASE EMPLOYEES
table and returned to the subquery for further processing. Notice that the
Pass-Through query is enclosed in parentheses (in italics) and another set of
parentheses enclose the entire subquery.

When a comparison operator such as < or > is used in a WHERE clause, the
subquery must return a single value. In this example, the AVG summary function
returns the average salary of employees in the department, $57,840.86. This value is
inserted in the query, as if the query were written:

select empid, lastname, firstnam
from vlib.allemp
where dept like &dept and salary < 57840.86;

Summary functions cannot appear in a WHERE clause, so using a subquery is often
a good technique.

Employees who earn less than the department’s average salary are returned in
Output 13.2 on page 183.

Output 13.2 OQutput from a Pass-Through Query in a Subquery

Employees Who Earn Below the ’'ACC%’ Average Salary

EMPID LASTNAME FIRSTNAME
123456 VARGAS CHRIS
135673 HEMESLY STEPHANIE
423286 MIFUNE YUKIO
457232 LOVELL WILLIAM

In this example, it might appear to be more direct to omit the Pass-Through query and
just to access VLIB.ALLEMP a second time in the subquery, as if the query were
written:

$let dept='ACC%’;

184 Using a Pass-Through Query in a Subquery A Chapter 13

proc sgl stimer;
select empid, lastname, firstnam
from vlib.allemp
where dept like &dept and salary <
(select avg(salary)
from vlib.allemp
where dept like &dept);
quit;

However, as the SAS log in Output 13.3 on page 184 indicates, the PROC SQL query
with the Pass-Through subquery performs better. (The STIMER option on the PROC
SQL statement provides statistics on the SAS System’s process.)

Output 13.3 SAS Log Comparing the Two PROC SQL Queries

213

214 %let dept='ACC%';

215

216 select empid, lastname, firstnam

217 from vlib.allemp

218 where dept like &dept and salary <

219 (select avg(salary)

220 from connection to sybase

221 (select SALARY from EMPLOYEES
222 where DEPT like &dept));

NOTE: The SQL Statement used 0:00:00.2 real 0:00:00.20 cpu.
223 s%put &sglxmsg;

224 disconnect from sybase;

NOTE: The SQL Statement used 0:00:00.0 real 0:00:00.0 cpu.
225 quit;

NOTE: The PROCEDURE SQL used 0:00:00.0 real 0:00:00.0 cpu.

226

227 %let dept='ACC%';

228

229 proc sqgl stimer;

NOTE: The SQL Statement used 0:00:00.0 real 0:00:00.0 cpu.
230 select empid, lastname, firstnam

231 from vlib.allemp

232 where dept like &dept and salary <
233 (select avg(salary)

234 from vlib.allemp

235 where dept like &dept);

NOTE: The SQL Statement used 0:00:06.0 real 0:00:00.20 cpu.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-558-2

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

