
185

C H A P T E R

14
Using DBMS Data with SAS/
ACCESS Version 6 Procedures

Introduction 185
Tips for Running ACCESS and DBLOAD Procedure Examples 186

Reviewing Variables 186

Printing Data 187

Calculating Statistics 188

Using the MEANS Procedure 188
Using the RANK Procedure 190

Reading and Updating Data with the SQL Procedure 192

Reading Data with the SQL Procedure 193

Updating Data with the SQL Procedure 194

Deleting Data with the SQL Procedure 195

Inserting Data with the SQL Procedure 196
Selecting and Combining Data By Using the SQL Procedure 196

Joining Data from Various Sources 196

Creating New Columns and Using the GROUP BY Clause 198

Using Advanced PROC SQL Features 200

Accessing Tables That Are Located on Different Nodes or Databases 202
Updating DBMS Data with the MODIFY Statement 204

Updating a SAS Data File with DBMS Data 207

Appending Data with the APPEND Procedure 210

Introduction
This topic presents examples of accessing and updating DBMS data through Version

6 view descriptors. In Version 7 and later, there are several changes in the ways that
the SAS/ACCESS procedures work. For more information, see “Version 8 Compatibility
for Version 6 Procedures” on page 99.

Note: It is recommended that you use the new SAS/ACCESS LIBNAME statement
to access your DBMS data more easily and directly and to take full advantage of
Version8 enhancements. See “SAS/ACCESS LIBNAME Statement” on page 27 for more
information about the SAS/ACCESS LIBNAME statement. 4

For information about using view descriptors efficiently in SAS programs, see
“Performance and Efficient View Descriptors” on page 125.

Note: See your DBMS chapter to determine whether the ACCESS and DBLOAD
procedures are available for your DBMS. 4

186 Tips for Running ACCESS and DBLOAD Procedure Examples 4 Chapter 14

Tips for Running ACCESS and DBLOAD Procedure Examples
As you work through the examples, notice that the descriptors can be created in

several ways. In some cases, the ASSIGN=YES statement is specified and SAS variable
names and formats are assigned when the access descriptor is created. In other cases,
the ASSIGN statement is omitted and editing statements, such as RENAME and
UNIQUE, are specified when the view descriptors are created. How you create
descriptors depends on your site’s needs and practices.

When you run the examples, you need only to create an access descriptor or a view
descriptor once per example. If you rerun the examples, you do not need to re-create
the descriptors.

Reviewing Variables
Before retrieving or updating DBMS data that is described by a view descriptor, you

might want to review the attributes of the data’s variables. You can use the
CONTENTS or DATASETS procedure to display a view descriptor’s variable and format
information. You can use these procedures with view descriptors in the same way that
you use them with other SAS data sets.

This example uses the DATASETS procedure to display information about the view
descriptor VLIB.USACUST, which describes the data in the DB2 table
SASDEMO.CUSTOMERS.

options linesize=80;

proc access dbms=db2;
/* create access descriptor */

create adlib.customr.access;
table=sasdemo.customers;
ssid=db2;
assign=yes;
rename customer=custnum

firstorder=firstord;
format firstorder date9.;
list all;

/* create vlib.usacust view */
create vlib.usacust.view;
select customer state zipcode name

firstorder;
subset where customer like ’1%’;

run;

/* example */
proc datasets library=vlib memtype=view;

contents data=usacust;
run;

Output 14.1 on page 186 shows the results of this example.

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Printing Data 187

Output 14.1 Using the DATASETS Procedure with a View Descriptor

DATASETS PROCEDURE

Data Set Name: VLIB.USACUST Observations: .
Member Type: VIEW Variables: 5
Engine: DB2 Indexes: 0
Created: . Observation Length: 0
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

1 CUSTNUM Char 8 0 $8. $8. CUSTOMER
5 FIRSTORD Num 8 88 DATE9. DATE9. FIRSTORDER
4 NAME Char 60 24 $60. $60. NAME
2 STATE Char 2 8 $2. $2. STATE
3 ZIPCODE Char 5 16 $5. $5. ZIPCODE

In the DATASETS procedure output, the VLIB.USACUST view descriptor has five
variables: CUSTNUM, FIRSTORD, NAME, STATE, and ZIPCODE. The variables are
listed in alphabetic order, and the # column in the listing shows the order of each
variable in VLIB.USACUST. The Label field in the DATASETS procedure lists the
complete names of the DBMS columns. Note that descriptors do not support SAS
names longer than eight characters.

The information displayed by the DATASETS procedure does not include any
selection criteria that might be specified for the view descriptor. To see selection
criteria, you must review the code that created the view descriptor.

You can use the ACCESS procedure’s UPDATE statement to change the attributes of
a view descriptor. See “ACCESS Procedure Syntax” on page 104 for more information.

Printing Data
The DATASETS procedure shows you the SAS variables and their attributes, but it

does not display the data values. You can use the PRINT procedure to print all or some
of the data values.

In this example, you use the PRINT procedure to print data that is described by the
VLIB.CUSORDR view descriptor; VLIB.CUSORDR gets its data from the table
SASDEMO.ORDERS.

Note: The OBS= data set option limits the output to five observations. 4

proc access dbms=db2;
/* create access descriptor */

create adlib.order.access;
table=sasdemo.orders;
ssid=db2;
assign=no;
list all;

/* create vlib.cusordr view */
create vlib.cusordr.view;

188 Calculating Statistics 4 Chapter 14

select ordernum stocknum shipto;
rename ordernum ordnum;
format ordernum 5.0

stocknum 4.0;
run;

/* example */
proc print data=vlib.cusordr(obs=5);
title ’Five Observations Described by VLIB.CUSORDR’;
run;

Output 14.2 on page 188 shows the results of this example.

Output 14.2 Results of Using the OBS= Option

Five Observations Described by VLIB.CUSORDR

OBS ORDERNUM STOCKNUM SHIPTO

1 11269 9870 19876078
2 11270 1279 39045213
3 11271 8934 18543489
4 11272 3478 29834248
5 11273 2567 19783482

In addition to the OBS= option, the SAS system option FIRSTOBS= also works with
view descriptors. However, because of the way data is stored in a relational DBMS
table, there is no true first observation, and the FIRSTOBS= option might not
consistently retrieve the same observation. In addition, the FIRSTOBS= option might
not improve performance significantly because each row might still be read and its
position must be calculated.

Calculating Statistics

You can also use SAS statistical procedures on DBMS data. This section shows
examples using the MEANS and RANK procedures. See Chapter 12, “Using DBMS
Data in Version 7 and Version 8,” on page 151 for an example of the FREQ procedure.

Using the MEANS Procedure
In your analysis of recent orders, suppose you also want to calculate some statistics

for each U.S. customer. From the DB2 table SASDEMO.ORDERS, the view descriptor
VLIB.USAORDR selects a subset of observations that have a SHIPTO value beginning
with a 1, indicating a U.S. customer. The observations are also ordered by the SHIPTO
variable.

The following example generates the means and sums of the length of material
ordered (in yards) and the fabric charges (in dollars) for each U.S. customer. Also
included are the number of observations (N) and the number of missing values
(NMISS). The MAXDEC= option specifies the number of decimal places (0-8) for PROC
MEANS to use in printing the results.

proc access dbms=db2;
/* create access descriptor */

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Using the MEANS Procedure 189

create adlib.order.access;
ssid=db2;
table=sasdemo.invoice;
assign=yes;
rename dateorderd = dateord

processdby = procesby;
format dateorderd date9.

shipped date9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

list all;

/* create vlib.usaordr view */
create vlib.usaordr.view;
select ordernum stocknum length

fabcharges shipto;
subset where shipto like ’1%’;

run;

/* example */
proc means data=vlib.usaordr mean

sum n nmiss maxdec=0;
by shipto;
var length fabcharg;

title ’Data Described by VLIB.USAORDR’;
run;

Output 14.3 on page 189 shows the output for this example.

190 Using the RANK Procedure 4 Chapter 14

Output 14.3 Statistics on Fabric Length and Charges for Each U.S. Customer

Data Described by VLIB.USAORDER

---------------------- SHIPTO=14324742 -----------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 1095 4380 4 0
FABCHARG FABCHARGES 1934460 3868920 2 2

---------------------- SHIPTO=14898029 -----------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 2500 5000 2 0
FABCHARG FABCHARGES 1400825 2801650 2 0

---------------------- SHIPTO=15432147 -----------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 725 2900 4 0
FABCHARG FABCHARGES 252149 504297 2 2

---------------------- SHIPTO=18543489 -----------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 303 1820 6 0
FABCHARG FABCHARGES 11063836 44255344 4 2

---------------------- SHIPTO=19783482 -----------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 450 1800 4 0
FABCHARG FABCHARGES 252149 1008594 4 0

---------------------- SHIPTO=19876078 -----------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 690 1380 2 0
FABCHARG FABCHARGES . . 0 2

The BY statement causes the interface view engine to generate a DBMS-specific SQL
ORDER BY clause so that the data from this table is returned as if it were sorted.

Using the RANK Procedure
You can also use more advanced statistical procedures on DBMS data. The following

example uses the RANK procedure to calculate the order of birthdays for a set of
employees who are listed in the DB2 table SASDEMO.EMPLOYEES. The OUT= option

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Using the RANK Procedure 191

creates a SAS data file, DLIB.RANKEXAM, from the view descriptor VLIB.EMPS so
that the data in the SAS file can be sorted by the SORT procedure. The RANKS
statement assigns the name DATERANK to the new variable (in the SAS data file) that
is created by the procedure.

proc access dbms=db2;
/* create access descriptor */

create adlib.employ.access;
database=sample;
table=sasdemo.employees;
drop salary;
rename birthdate birthdat;
list all;

/* create vlib.emps view */
create vlib.emps.view;
select empid jobcode birthdate lastname;
format birthdate date9.

empid 6.0;
subset where jobcode=602;

run;

/* example */
proc rank data=vlib.emps out=dlib.rankexam;

var birthdat;
ranks daterank;

run;

proc sort data=dlib.rankexam;
by lastname;

run;

proc print data=dlib.rankexam(drop=jobcode);
title ’Order of Dept 602 Employee Birthdays’;
run;

The DROP= data set option is used on the PROC PRINT statement because the
JOBCODE variable is not needed in the output. Output 14.4 on page 192 shows the
result of this example.

192 Reading and Updating Data with the SQL Procedure 4 Chapter 14

Output 14.4 Ranking of Employee Birthdays

Order of Dept 602 Employee Birthdays

OBS EMPID BIRTHDAT LASTNAME DATERANK

1 456910 24SEP1958 ARDIS 5
2 237642 13MAR1959 BATTERSBY 6
3 239185 28AUG1964 DOS REMEDIOS 7
4 321783 03JUN1940 GONZALES 2
5 120591 12FEB1951 HAMMERSTEIN 4
6 135673 21MAR1966 HEMESLY 8
7 456921 12MAY1967 KRAUSE 9
8 457232 15OCT1968 LOVELL 11
9 423286 31OCT1969 MIFUNE 12

10 216382 24JUL1968 PURINTON 10
11 234967 21DEC1972 SMITH 13
12 212916 29MAY1933 WACHBERGER 1
13 119012 05JAN1951 WOLF-PROVENZA 3

Reading and Updating Data with the SQL Procedure
In Version 6, the SAS System’s SQL procedure enabled you to retrieve and update

data from DBMS tables and views. You could read and display DBMS data by
specifying a view descriptor or other SAS data set in the SQL procedure’s SELECT
statement. In Version 7, you can specify librefs based on DBMS data that you create by
using the SAS/ACCESS LIBNAME statement. See Chapter 12, “Using DBMS Data in
Version 7 and Version 8,” on page 151 for examples.

If you are using descriptors, you can specify them in the SQL procedure’s INSERT,
DELETE, and UPDATE statements. You can also use these statements to modify SAS
data files. The ability to update data in a DBMS table or through a DBMS view by
using descriptors is subject to the following conditions:

� As in other PROC and DATA steps, you can use only a view descriptor or other
SAS data set in an SQL procedure statement, not an access descriptor.

� You can usually only browse data retrieved using a view descriptor that is based
on a DBMS view. Most DBMS views have a number of restrictions on when you
can use them to update their underlying data. (The primary restriction is that a
DBMS view can be used only to update data when the view is defined on a single
DBMS table.)

� If you did not create the DBMS table or view, you must be granted the appropriate
DBMS privileges before you can select, insert, delete, or update the data.

� A DBMS trigger might prevent you from updating observations in a DBMS table.
Refer to your DBA to determine if triggers are used in your DBMS tables.

� Some DBMSs require the SQL procedure’s UNDO_POLICY option before you can
use the INSERT, DELETE, or UPDATE statements with a DBMS view descriptor.
For example:

proc sql undo_policy=none;

Refer to your DBMS chapter to see if this requirement applies to your DBMS.

Here is a summary of some of the SQL procedure statements, when used with view
descriptors:

SELECT retrieves, manipulates, and displays data described by a view
descriptor. A SELECT statement is usually referred to as a query
because it queries the table for information.

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Reading Data with the SQL Procedure 193

DELETE deletes rows from a DBMS table that is described by a view
descriptor. If a view descriptor is based on an updatable DBMS
view, rows can also be deleted from the view’s underlying table.

INSERT inserts rows into a DBMS table.

UPDATE updates the data values in a DBMS table.

Because the SQL procedure is based on the Structured Query Language, it works
somewhat differently than some SAS procedures. For example, the SQL procedure
executes without a RUN statement when a procedure statement is submitted. The SQL
procedure also displays any output automatically without using the PRINT procedure.

By default, PROC SQL uses the LABEL option to display output. LABEL displays
SAS variable labels, which default to DBMS column names. If you prefer to use SAS
variable names in your output, specify NOLABEL in the OPTIONS statement.

Reading Data with the SQL Procedure
You can use the SQL procedure’s SELECT statement to display data that is described

by a view descriptor. In the following example, the query uses the VLIB.PRODUCT
view descriptor to retrieve a subset of the data in the ORACLE SPECPROD table.

The asterisk (*) in the SELECT statement indicates that all the columns in
VLIB.PRODUCT are retrieved. The WHERE clause retrieves a subset of the rows. The
ORDER BY clause causes the data to be presented in ascending order according to the
table’s FIBERNAME column. Both the WHERE clause and the ORDER BY clause are
passed to the DBMS for processing.

Note: The following SQL procedure examples assume that the DBMS tables have
not been updated by other examples. 4

proc access dbms=oracle;
/* create access descriptor */

create adlib.product.access;
user=scott; orapw=tiger;
path=’myorapath’;
table=specprod;
assign=yes;
rename productid=prodid

fibername=fibernam;
format productid 4.

weight e16.9
fibersize e20.13
width e16.9 ;

list all;

/* create view descriptor */
create vlib.product.view;
select all;
list view;

run;

options nodate linesize=120;
title ’DBMS Data Retrieved with a SELECT

Statement’;
proc sql;

194 Updating Data with the SQL Procedure 4 Chapter 14

select *
from vlib.product
where cost is not null
order by fibernam;

quit;

Output 14.5 on page 194 displays the query’s output. Note that the SQL procedure
displays the DBMS table’s column names, not the SAS variable names.

Output 14.5 DBMS Data Retrieved with a PROC SQL Query

DBMS Data Retrieved with a SELECT Statement

PRODUCTID WEIGHT FIBERNAME FIBERSIZE COST PERUNIT WIDTH

--

1279 1.278899910E-01 asbestos 6.3476000000000E-10 1289.64 m 2.227550050E+02

2567 1.258500220E-01 fiberglass 5.1880000000000E-11 560.33 m 1.205000000E+02

8934 1.429999950E-03 gold 2.3800000000000E-12 100580.33 cm 2.255999760E+01

Updating Data with the SQL Procedure
You can use the SQL procedure’s UPDATE statement to update the data in a DBMS

table.
The following UPDATE statements update the values in the Oracle Rdb table

EMPLOYEES. Because you are referencing a view descriptor, you use the SAS variable
names in the UPDATE statement; however, the SQL procedure displays the Oracle Rdb
column names.

Note: The following examples use a previously created view descriptor,
VLIB.EMPEEOC, which is based on data that is contained in the EMPLOYEES table. 4

proc sql;
update vlib.empeeoc

set salary=26678.24,
gender=’M’,
birthdat=’28AUG64’dt

where empid=’123456’;

options linesize=120;
title ’Updated Data in EMPLOYEES Table’;
select empid, hiredate, salary, dept,

jobcode, gender, birthdat, lastname
from vlib.empeeoc
where empid=’123456’;

quit;

Output 14.6 on page 194 displays the updated row of data retrieved from the view
descriptor VLIB.EMPEEOC.

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Deleting Data with the SQL Procedure 195

Output 14.6 Oracle Rdb Data Updated with the UPDATE Statement

Updated Data in EMPLOYEES Table

EMPID HIREDATE SALARY DEPT JOBCODE GENDER BIRTHDATE LASTNAME

--

123456 04APR1989 $26,678.24 ACC043 1204 M 28AUG64 VARGAS

Deleting Data with the SQL Procedure
You can use the SQL procedure’s DELETE statement to delete rows from a DBMS

table. In the following example, the row that contains the value 346917 in the EMPID
column is deleted from the Oracle Rdb table EMPLOYEES.

proc sql undo_policy=none;
delete from vlib.empeeoc

where empid=’346917’;
quit;

A message is written to the SAS log to indicate that the row has been deleted, as
shown in Output 14.7 on page 195.

Output 14.7 Message Displayed in the SAS Log When a Row Is Deleted

6688
6689 /*=========================*/
6690 /* Example for Output */
6691 /* shows in a SAS log. */
6692 /*=========================*/
6693 proc sql undo_policy=none;
6694 delete from vlib.empeeoc
6695 where empid=’346917’;

NOTE: 1 row was deleted from VLIB.EMPEEOC.

6707 quit;

If you have many rows to delete, you could use a macro variable for EMPID instead
of the individual EMPID values to change the values more easily.

%let empid=’346917’;

proc sql;
delete from vlib.empeeoc

where empid=&empid;
quit;

CAUTION:
Use a WHERE clause in the DELETE statement. If you omit the WHERE clause from the
DELETE statement, you delete all the data in the SAS data file or DBMS table. 4

196 Inserting Data with the SQL Procedure 4 Chapter 14

Inserting Data with the SQL Procedure
You can use the SQL procedure’s INSERT statement to add rows to a DBMS table.

In the following example, the row that contains the value 346917 in the EMPID column
is inserted back into the Oracle Rdb table EMPLOYEES.

Note: The following examples use a previously created view descriptor,
VLIB.ALLEMP, which is based on data contained in the EMPLOYEES table. 4

proc sql undo_policy=none;
insert into vlib.allemp

values(346917,’02MAR87’d,46000.33,’SHP013’,
204,’F’,’15MAR1955’DT,’SHIEKELESLAM’,
’SHALA’,’Y.’,’8745’);

quit;

A message is written to the SAS log to indicate that the row has been inserted, as
shown in Output 14.8 on page 196.

Output 14.8 Message Displayed in the SAS Log When a Row Is Inserted

6698
6699 /*=========================*/
6700 /* Example for Output */
6701 /* shows in a SAS log. */
6702 /*=========================*/
6703 proc sql undo_policy=none;
6704 insert into vlib.allemp
6705 values(346917,’02MAR87’d,46000.33,’SHP013’,204,’F’,
6706 ’15MAR1955’DT, ’SHIEKELESLAM’,’SHALA’,’Y.’,’8745’);

NOTE: 1 row was inserted into VLIB.ALLEMP.

6707 quit;

Selecting and Combining Data By Using the SQL Procedure

Joining Data from Various Sources
The SQL procedure provides another way to select and combine data. For example,

suppose you have three data sets: two view descriptors, VLIB.CUSPHON and
VLIB.CUSORDR, which are based on the ORACLE tables CUSTOMERS and ORDERS,
respectively, and a SAS data file, DLIB.OUTOFSTK, which contains product names and
numbers that are out of stock.

Note: See the appendix for a description of DLIB.OUTOFSTK. 4

You can use the SQL procedure to create a view that joins the data from these three
sources and displays their output. The SAS WHERE or subsetting IF statements would
not be appropriate in this case because you want to compare variables from several
sources, rather than simply merging or concatenating the data.

The following SAS statements select and combine data from the view descriptors and
the SAS data file to create a PROC SQL view, SLIB.BADORDR. SLIB.BADORDR

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Joining Data from Various Sources 197

retrieves customer and product information that the sales department uses to notify
customers of unavailable products.

Note: Although this example shows you an alternate way to join data by using
access descriptors, SAS/ACCESS now provides more efficient ways to join your data by
using the LIBNAME statement. 4

proc access dbms=oracle;

/* create access descriptor */

create adlib.customr.access;
user=scott; orapw=tiger;
path=’myorapath’;
table=customers;
list all;

/* create vlib.cusphon view */

create vlib.cusphon.view;
select customer phone name;
rename customer = custnum;

run;

/* create access descriptor */

proc access dbms=oracle;
create adlib.orders.access;
user=scott; orapw=tiger;
path=’myorapath’;
table=orders;
list all;

/* create vlib.cusordr view */

create vlib.cusordr.view;
select ordernum stocknum shipto;
rename ordernum ordnum;
format ordernum 5.0

stocknum 4.0;
run;

proc sql;
create view slib.badordr as

select distinct cusphon.custnum,
cusphon.name, cusphon.phone,
cusordr.stocknum, outofstk.fibernam

as product
from vlib.cusphon, vlib.cusordr,

dlib.outofstk
where cusordr.stocknum=outofstk.fibernum

and cusphon.custnum=cusordr.shipto;
quit;

198 Creating New Columns and Using the GROUP BY Clause 4 Chapter 14

The CREATE VIEW statement incorporates a WHERE clause as part of its SELECT
clause. The DISTINCT keyword eliminates any duplicate rows of customer numbers
that occur when companies order an unavailable product more than once.

Note: It is recommended that you not include an ORDER BY clause in a CREATE
VIEW statement. This causes the output data to be sorted every time the PROC SQL
view is submitted and might have a negative impact on performance. It is more
efficient to add an ORDER BY clause to a SELECT statement that displays your output
data, as shown below. 4

options linesize=120;
title ’Data Described by SLIB.BADORDR’;

select * from slib.badordr
order by custnum, product;

This SELECT statement uses the PROC SQL view SLIB.BADORDR to display joined
ORACLE and SAS data in ascending order by the CUSTNUM column and then by the
PRODUCT (that is, FIBERNAM) column. The data is ordered by PRODUCT because
one customer might have ordered more than one product. To select all the columns from
the view, use an asterisk (*) in place of column names. When an asterisk is used, the
columns are displayed in the order specified in the SLIB.BADORDR view. Output 14.9
on page 198 shows the data described by the SLIB.BADORDR view.

Output 14.9 Data Described by the PROC SQL View SLIB.BADORDR

Data Described by SLIB.BADORDER

CUSTOMER NAME PHONE STOCKNUM PRODUCT

--

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 616/582-3906 4789 dacron

18543489 LONE STAR STATE RESEARCH SUPPLIERS 512/478-0788 8934 gold

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY (0552)715311 3478 olefin

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH 406/422-3413 8934 gold

43459747 RESEARCH OUTFITTERS 03/734-5111 8934 gold

Although the query uses SAS variable names like CUSTNUM, you may notice that the
output uses DBMS column names like CUSTOMER. By default, PROC SQL displays
SAS variable labels, which default to DBMS column names. (You can use the
NOLABEL option to change this default.)

Creating New Columns and Using the GROUP BY Clause
Instead of creating a new PROC SQL view, you might want to summarize your data

and create new columns in a report. Although you cannot use the ACCESS procedure to
create new columns, you can easily do this by using the SQL procedure with data that
is described by a view descriptor.

This example uses the SQL procedure to retrieve and manipulate data from the view
descriptor VLIB.ALLEMP, which is based on the DB2 table SASDEMO.EMPLOYEES.
When this query (as a SELECT statement is often called) is submitted, it calculates and
displays the average salary for each department. The query enables you to manipulate
your data and display the results without creating a SAS data set.

Because this example reports on employees’ salaries, the view descriptor
VLIB.ALLEMP is assigned a SAS System password (MONEY) using the DATASETS

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Creating New Columns and Using the GROUP BY Clause 199

procedure. Because of the READ= level of protection, the password must be specified in
the PROC SQL SELECT statement before you can see the DB2 data accessed by
VLIB.ALLEMP.

In the following example, the DISTINCT keyword in the SELECT statement removes
duplicate rows. The AVG function in the SQL procedure is equivalent to the SAS
MEAN function.

options linesize=80;

proc access dbms=db2;
/* create access descriptor */

create adlib.employ.access;
ssid=db2;
table=sasdemo.employees;
assign=yes;
format empid 6.0

salary dollar12.2
jobcode 5.0
birthdate date9.
hiredate date9.;

list all;
run;

/* create vlib.allemp view */
proc access dbms=db2

accdesc=adlib.employ;
create vlib.allemp.view;
select all;

run;

/* assign a password */
proc datasets library=vlib memtype=view;

modify allemp (read=money);
run;

/* example */
title ’Average Salary Per ACC Department’;
proc sql;

select distinct dept,
avg(salary) label=’Average Salary’
format=dollar12.2

from vlib.allemp(pw=money)
where dept like ’ACC%’
group by dept;

The columns are displayed in the order specified in the SELECT clause of the query.
Output 14.10 on page 199 shows the result of the query.

200 Using Advanced PROC SQL Features 4 Chapter 14

Output 14.10 Data Retrieved by an SQL Procedure Query

Average Salary Per ACC Department

Average
DEPT Salary

ACC013 $54,591.33
ACC024 $55,370.55
ACC043 $75,000.34

To delete a password on an access or view descriptor or any SAS data set, put a slash
after the password:

/* delete the password */
proc datasets library=vlib memtype=view;

modify allemp (read=money/);
run;

Using Advanced PROC SQL Features
This example combines a number of PROC SQL components including summary

functions, a HAVING clause with a subquery, and an inline view within that subquery.
The reason you use each component and the way in which each is evaluated are
described following the example. The example displays the employees who took the
most orders that have already shipped. It uses the VLIB.ALLEMP and
VLIB.ALLORDR view descriptors to join data from the tables SASDEMO.EMPLOYEES
and SASDEMO.ORDERS.

options ls=80;

proc access dbms=db2;
/* create access descriptor */

create adlib.employ.access;
database=sample;
table=sasdemo.employees;
assign=yes;
format empid 6.0

salary dollar12.2
jobcode 5.0
birthdate date9.
hiredate date9.;

/* create vlib.allemp view */
create vlib.allemp.view;
select all;
list view;

run;

proc access dbms=db2;
/* create access descriptor */

create adlib.order.access;
database=sample;
table=sasdemo.orders;
assign=yes;

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Using Advanced PROC SQL Features 201

rename dateorderd = dateord
processdby = procesby;

format dateorderd datetime9.
shipped datetime9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

/* create vlib.allordr view */
create vlib.allordr.view;
select all;
list view;

run;

proc sql;
title ’Employees Who Took the Most Orders That
Shipped’;
select distinct lastname label "Took Orders",
takenby, count(shipped) as ordship

from vlib.allemp, vlib.allordr
where takenby=empid
group by takenby
having ordship=

(select max(ordship)
from (select distinct takenby,

count(shipped) as ordship
from vlib.allemp, vlib.allordr
where takenby=empid
group by takenby));

quit;

You begin to evaluate the query at its innermost level. Here the query begins by
evaluating the inline view:

from (select distinct takenby,
count(shipped) as ordship
from vlib.allemp, vlib.allordr
where takenby=empid
group by takenby));

The inline view lists employees who have taken orders and counts the number of
orders that have been shipped. A column alias ORDSHIP is assigned to the number of
orders and is used elsewhere in the query.

TAKENBY ORDSHIP

119012 6
212916 0
234967 0
321783 6
456910 5

202 Accessing Tables That Are Located on Different Nodes or Databases 4 Chapter 14

The SELECT MAX(ORDSHIP) clause uses the results of the inline view to determine
the highest number of orders taken and shipped, 6. When this amount is supplied to
the outer query, it evaluates as if the query were written:

proc sql;
select distinct lastname label "Took Orders",

takenby, count(shipped) as ordship
from vlib.allemp, vlib.allordr
where takenby=empid
group by takenby
having ordship=6;

The first part of the outer query adds the names of the employees who took the
orders and joins the data from the two view descriptors with matching EMPLOYEE
numbers (where takenby=empid). The COUNT function computes the number of
shipped orders that were taken by each employee to reduce the number of rows to one
per employee. The HAVING expression then selects rows if the number of orders is 6.
Output 14.11 on page 202 shows the results of the PROC SQL query.

Output 14.11 Data on Orders Shipped

Employees Who Took the Most Orders That Shipped

Took Orders TAKENBY ORDSHIP

GONZALES 321783 6
WOLF-PROVENZA 119012 6

Accessing Tables That Are Located on Different Nodes or Databases
In a networking environment, you can often access data from DBMS tables that is

stored on different machines or in different databases. When using the SAS/ACCESS
Interface to SYBASE, for example, you use the SERVER= and DATABASE= statements
to specify the locations of the tables that you want to access. Use TABLE= to specify
the names of the SYBASE tables.

In the following example, you create access descriptors and view descriptors for
SYBASE tables that have different owners and are stored in databases that reside on
different machines. The USER= and PASSWORD= statements identify the owners of
the EMPLOYEES and INVOICE tables and their passwords.

After creating the descriptors, you use the SQL procedure to join the tables’ data.
Because the database identification information is stored permanently in each
descriptor, PROC SQL can use the view descriptors to access and join the remote
SYBASE data:

/* create access descriptor */
proc access dbms=sybase;

create work.employ.access;
server=server1;
database=personnel;
user=carmen;
password=aria;
table=employees;

/* create vlib.emp_acc view */
create vlib.emp_acc.view;

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Accessing Tables on Different Nodes or Databases 203

select all;
format empid 6.0

salary dollar12.2
jobcode 5.0
hiredate date9.
birthdate date9.;

subset where DEPT like ’ACC%’;
list all;

run;

/* create access descriptor */
proc access dbms=sybase;

create work.invoice.access;
server=server2;
database=inventory;
user=joachim;
password=machauf;
table=invoice;

/* create vlib.sainv view */
create vlib.sainv.view;
select all;
rename invoicenum invnum

amtbilled amtbilld
amountinus amtinus;

format invoicenum 5.
billedby 6.
amtbilled 15.2
amountinus 15.2
billedon date9.
paidon date9.;

subset where COUNTRY in (’Argentina’,’Brazil’);
list all;

run;

SYBASE objects, such as table names and columns, are case sensitive. The WHERE
clauses in PROC ACCESS SUBSET statements are passed to SYBASE exactly as you
type them, so you must use the correct case for SYBASE column names. The database
identification statements and column names in all other statements are converted to
uppercase unless they are enclosed in quotes.

options linesize=120;
title ’South American Invoices and Who Submitted

Them’;

proc sql;
select invnum, country, billedon,

paidon, billedby, lastname, firstnam
from vlib.emp_acc, vlib.sainv
where emp_acc.empid=sainv.billedby;

quit;

Output 14.12 on page 204 shows the results of the PROC SQL query.

204 Updating DBMS Data with the MODIFY Statement 4 Chapter 14

Output 14.12 Data Joined from Tables in Different Databases

South American Invoices and Who Submitted Them

INVOICENUM COUNTRY BILLEDON PAIDON BILLEDBY LASTNAME FIRSTNAME

--

12476 Argentina 24DEC1998 . 135673 HEMESLY STEPHANIE

11270 Brazil 05OCT1998 18OCT1998 239185 DOS REMEDIOS LEONARD

11285 Argentina 10OCT1998 30NOV1998 239185 DOS REMEDIOS LEONARD

11280 Brazil 07OCT1998 20OCT1998 423286 MIFUNE YUKIO

12051 Brazil 02NOV1998 . 457232 LOVELL WILLIAM

12471 Brazil 27DEC1998 . 457232 LOVELL WILLIAM

Updating DBMS Data with the MODIFY Statement

The MODIFY statement extends the capabilities of the DATA step by enabling you
to modify data accessed by a view descriptor or a SAS data file without creating an
additional copy of the data. To use the MODIFY statement with a view descriptor, you
must have UPDATE privileges on the view’s underlying DBMS table.

A DBMS trigger may prevent you from modifying observations in a DBMS table.
Refer to your DBMS documentation to see if triggers are used in your DBMS.

You can specify either a view descriptor or a SAS data file as the master data set in
the MODIFY statement. In the following example, the master data set is the view
descriptor VLIB.MASTER, which describes data in the ORACLE table ORDERS. You
also create a transaction data file, DLIB.TRANS, that you use to update the master
data set (and therefore, the ORDERS table). The SAS variable names, formats, and
informats of the transaction data file must correspond to those described by the view
descriptor VLIB.MASTER.

Using the VLIB.MASTER view descriptor, the MODIFY statement updates the
ORDERS table with data from the DLIB.TRANS data file. The SAS System reads one
observation (or row) of the ORDERS table for each iteration of the DATA step, and
performs any operations that the code specifies. In this case, the IF-THEN statements
specify whether the information for an order is to be updated, added, or deleted.

proc access dbms=oracle;
/* create access descriptor */

create adlib.orders.access;
user=scott; orapw=tiger;
path=’myorapath’;
table=orders;
assign=yes;
rename dateorderd = dateord

processdby = procesby;
format dateorderd date9.

shipped date9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

/* create vlib.master view */
create vlib.master.view;

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Updating DBMS Data with the MODIFY Statement 205

select all;
run;

data dlib.trans;
/* Obs. 1 specifies Update for */
/* ORDERNUM=12102 */

ordernum=12102;
shipped=’05DEC1998’d;
type=’U’;
output;

/* Obs. 2 specifies Update for */
/* ORDERNUM=12160 */

ordernum=12160;
shipped=.;
takenby=456910;
type=’U’;
output;

/* Obs. 3 specifies Add for new */
/* ORDERNUM=13000 */

ordernum=13000;
stocknum=9870;
length=650;
fabcharg=.;
shipto=’19876078’;
dateord=’18JAN1999’d;
shipped=’29JAN1999’d;
takenby=321783;
procesby=120591;
specinst=’Customer agrees to

certain limitations.’;
type=’A’;
output;

/* Obs. 4 specifies Delete for */
/* ORDERNUM=12465 */

ordernum=12465;
type=’D’;
output;

run;

/* MODIFY statement example */
data vlib.master;

modify vlib.master dlib.trans;
by ordernum;
select (_iorc_);

/* No match in MASTER - Add */
when (%sysrc(_dsenmr)) do;

if type=’A’
then output vlib.master;

error = 0;
end;

/* Match located - Update or Delete */

206 Updating DBMS Data with the MODIFY Statement 4 Chapter 14

when (%sysrc(_sok)) do;
if type=’U’

then replace vlib.master;
else if type=’D’

then remove vlib.master;
end;

/* Traps unexpected outcomes */
otherwise do;
put ’Unexpected ERROR condition:

IORC = ’ _iorc_ ;
/* This dumps all vars in the PDV */

put _all_;
error = 0;

end;
end;

run;

/* prints the example’s output */
options linesize=120;

proc print data=vlib.master;
where ordernum

in(12102 12160 13000 12465);
title ’ORACLE Data Updated with

the MODIFY Statement’;
run;

The DATA step uses the SYSRC macro to check the value of the _IORC_ automatic
variable. It also prevents an error message from being generated when no match is
found in the VLIB.MASTER file for an observation that is being added. It prevents the
error message by resetting the _ERROR_ automatic variable to 0. The PRINT
procedure specifies a WHERE statement so only the observations that are included in
the transaction data set are displayed. The observation with ORDERNUM 12465 is
deleted by the MODIFY statement, so it does not appear in the results. The results of
this example are shown in Output 14.13 on page 206.

Output 14.13 Revising DBMS Data with a MODIFY Statement

DBMS Data Updated with the MODIFY Statement

OBS ORDERNUM STOCKNUM LENGTH FABCHARG SHIPTO DATEORD SHIPPED TAKENBY PROCESBY

1 13000 9870 650 . 19876078 18JAN1999 29JAN1999 321783 120591

2 12160 3478 1000 . 29834248 19NOV1998 . 456910 .

3 12102 8934 110 11063836.00 18543489 15NOV1998 05DEC1998 456910 .

OBS SPECINST

1 Customer agrees to certain limitations.

2 Customer agrees to pay in full.

In this example, any column value that you specify in the transaction data set carries
over to any subsequent observations if the values for the subsequent observations are
missing. For example, the first observation sets the value of SHIPPED to 05DEC98. The
second observation sets the value to MISSING. If the value of SHIPPED were not set to
MISSING in the second observation, the value 05DEC98 would be incorrectly supplied.

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Updating a SAS Data File with DBMS Data 207

Therefore, you might want to create your transaction data set in a specific order to
minimize having to reset variables.

There are some differences in the ways you use a MODIFY statement to update a SAS
data file and to update DBMS data through a view descriptor. When a view descriptor
is used as the master data set in a MODIFY statement, the following conditions apply:

� The POINT= option cannot be used because observation numbers are not available
in a relational DBMS table.

� The NOBS= option displays the largest positive integer value available on the host
operating system.

� The KEY= option cannot be used because the DBMS determines whether to use
DBMS indexes that have been assigned to columns in tables.

� Each DBMS statement that is issued, whether an INSERT, DELETE, or UPDATE,
is a separate transaction and is saved in the DBMS table. You cannot undo (or
reverse) these changes without re-editing.

Updating a SAS Data File with DBMS Data

You can update a SAS data file with DBMS data that is described by a view
descriptor just as you can update a SAS data file with data from another SAS data file.

Suppose you have a SAS data set, DLIB.BIRTHDAY, that contains employee ID
numbers, last names, and birthdays. (See Appendix 1, “Sample Data,” on page 217 for a
description of DLIB.BIRTHDAY.) You want to update this data set with data described
by VLIB.EMPBDAY, a view descriptor that is based on the DB2 table
SASDEMO.EMPLOYEES. To perform this update, enter the following SAS statements:

options linesize=80;

proc access dbms=db2;
/* create access descriptor */

create adlib.employ.access;
ssid=db2;
table=sasdemo.employees;
assign=yes;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate date9.
birthdate date9.;

list all;

/* create view descriptor */
create vlib.empbday.view;
select empid birthdate lastname

firstname phone;
run;

proc sort data=dlib.birthday;
by lastname;

run;

/* examples */
proc print data=dlib.birthday;

208 Updating a SAS Data File with DBMS Data 4 Chapter 14

format birthdat date9.;
title ’DLIB.BIRTHDAY Data File’;

run;

proc print data=vlib.empbday;
format birthdat date9.;
title ’Data Described by VLIB.EMPBDAY’;

run;

data dlib.newbday;
update dlib.birthday vlib.empbday;
by lastname;

run;

proc print;
format birthdat date9.;
title ’DLIB.NEWBDAY Data File’;

run;

When the UPDATE statement references the view descriptor VLIB.EMPBDAY, and a
BY statement is used in the DATA step, the BY statement causes the interface view
engine to generate an ORDER BY clause for the variable LASTNAME. Thus, the
ORDER BY clause causes the DBMS data to be presented to the SAS System in sorted
order for use in updating the DLIB.NEWBDAY data file. However, the SAS data file
DLIB.BIRTHDAY must be sorted before the update because the UPDATE statement
expects both the original file and the transaction file to be sorted by the same BY
variable.

Output 14.14 on page 208, Output 14.15 on page 208, and Output 14.16 on page 209
show the results of the PRINT procedures.

Output 14.14 Data File to Be Updated, DLIB.BIRTHDAY

DLIB.BIRTHDAY Data File

OBS EMPID BIRTHDAT LASTNAME

1 127845 25DEC1949 MEDER
2 459287 05JUN1939 RODRIGUES
3 254896 06APR1951 TAYLOR-HUNYADI

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Updating a SAS Data File with DBMS Data 209

Output 14.15 AS/400 Data Described by the View Descriptor VLIB.EMPBDAY

Data Described by VLIB.EMPBDAY

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM PHONE

1 119012 05JAN1951 WOLF-PROVENZA G. 3467
2 120591 12FEB1951 HAMMERSTEIN S. 3287
3 123456 . VARGAS CHRIS
4 127845 25DEC1948 MEDER VLADIMIR 6231
5 129540 31JUL1965 CHOULAI CLARA 3921
6 135673 21MAR1966 HEMESLY STEPHANIE 6329
7 212916 29MAY1933 WACHBERGER MARIE-LOUISE 8562
8 216382 24JUL1968 PURINTON PRUDENCE 3852
9 234967 21DEC1972 SMITH GILBERT 7274
10 237642 13MAR1959 BATTERSBY R. 8342
11 239185 28AUG1964 DOS REMEDIOS LEONARD 4892
12 254896 06APR1954 TAYLOR-HUNYADI ITO 0231
13 321783 03JUN1940 GONZALES GUILLERMO 3642
14 328140 02JUN1956 MEDINA-SIDONIA MARGARET 5901
15 346917 15MAR1955 SHIEKELESLAM SHALA 8745
16 356134 25OCT1965 DUNNETT CHRISTINE 4213
17 423286 31OCT1969 MIFUNE YUKIO 3278
18 456910 24SEP1958 ARDIS RICHARD 4351
19 456921 12MAY1967 KRAUSE KARL-HEINZ 7452
20 457232 15OCT1968 LOVELL WILLIAM 6321
21 459287 05JAN1939 RODRIGUES JUAN 5879
22 677890 24APR1970 NISHIMATSU-LYNCH CAROL 6245

Output 14.16 Data in the Updated Data File DLIB.NEWBDAY

DLIB.NEWBDAY Data File

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM PHONE

1 456910 24SEP1958 ARDIS RICHARD 4351
2 237642 13MAR1959 BATTERSBY R. 8342
3 129540 31JUL1965 CHOULAI CLARA 3921
4 239185 28AUG1964 DOS REMEDIOS LEONARD 4892
5 356134 25OCT1965 DUNNETT CHRISTINE 4213
6 321783 03JUN1940 GONZALES GUILLERMO 3642
7 120591 12FEB1951 HAMMERSTEIN S. 3287
8 135673 21MAR1966 HEMESLY STEPHANIE 6329
9 456921 12MAY1967 KRAUSE KARL-HEINZ 7452
10 457232 15OCT1968 LOVELL WILLIAM 6321
11 127845 25DEC1948 MEDER VLADIMIR 6231
12 328140 02JUN1956 MEDINA-SIDONIA MARGARET 5901
13 423286 31OCT1969 MIFUNE YUKIO 3278
14 677890 24APR1970 NISHIMATSU-LYNCH CAROL 6245
15 216382 24JUL1968 PURINTON PRUDENCE 3852
16 459287 05JAN1939 RODRIGUES JUAN 5879
17 346917 15MAR1955 SHIEKELESLAM SHALA 8745
18 234967 21DEC1972 SMITH GILBERT 7274
19 254896 06APR1954 TAYLOR-HUNYADI ITO 0231
20 123456 . VARGAS CHRIS
21 212916 29MAY1933 WACHBERGER MARIE-LOUISE 8562
22 119012 05JAN1951 WOLF-PROVENZA G. 3467

210 Appending Data with the APPEND Procedure 4 Chapter 14

Appending Data with the APPEND Procedure
You can append data from any data set to a SAS data file or view descriptor.

Specifically, you can append DBMS data described by one view descriptor to another, or
you can append a SAS data file to a view descriptor (and therefore to the DBMS table).

The following example uses the APPEND procedure’s FORCE option to append a
SAS data file with extra variables to the view descriptor VLIB.SQLEMPS. You must be
granted DBMS-specific INSERT privileges to add rows to the table
SASDEMO.EMPLOYEES.

You can append data to a table that is referenced by a view descriptor even if the
view descriptor contains a subset of columns and a subset of rows. If a DBMS column is
defined as NOT NULL, some restrictions apply when appending data.

The FORCE option forces PROC APPEND to concatenate two data sets even though
they may have some different variables or variable attributes. The SAS data file,
DLIB.TEMPEMPS, has DEPT, FAMILYID, and GENDER variables that have not been
selected in the view descriptor VLIB.SQLEMPS. The extra variables are dropped from
DLIB.TEMPEMPS when it and the BASE= data set, VLIB.SQLEMPS, are concatenated.
A message is displayed in the SAS log indicating that the variables are dropped.

/* create access descriptor */
proc access dbms=oracle;

create adlib.employ.access;
user=scott; orapw=tiger;
path=’myorapath’;
table=sasdemo.employees;
assign=no;
drop salary;
list all;

/* create view descriptor */
create vlib.sqlemps.view;
select empid hiredate lastname

firstname middlename;
format empid 6.0

hiredate date9.;
run;

proc print data=vlib.sqlemps;
/* examples */
title ’Data Described by VLIB.SQLEMPS’;
run;

proc print data=dlib.tempemps;
title ’Data in DLIB.TEMPEMPS Data File’;
run;

The view descriptor VLIB.SQLEMPS is displayed in Output 14.17 on page 210, and
the SAS data file DLIB.TEMPEMPS is displayed in Output 14.18 on page 211.

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Appending Data with the APPEND Procedure 211

Output 14.17 Data Described by VLIB.SQLEMPS

Data Described by VLIB.SQLEMPS

OBS EMPID HIREDATE LASTNAME FIRSTNAM MIDDLENA

1 119012 01JUL1968 WOLF-PROVENZA G. ANDREA
2 120591 05DEC1980 HAMMERSTEIN S. RACHAEL
3 123456 04APR1989 VARGAS CHRIS J.
4 127845 16JAN1967 MEDER VLADIMIR JORAN
5 129540 01AUG1982 CHOULAI CLARA JANE
6 135673 15JUL1984 HEMESLY STEPHANIE J.
7 212916 15FEB1951 WACHBERGER MARIE-LOUISE TERESA
8 216382 15JUN1985 PURINTON PRUDENCE VALENTINE
9 234967 19DEC1988 SMITH GILBERT IRVINE
10 237642 01NOV1976 BATTERSBY R. STEPHEN
11 239185 07MAY1981 DOS REMEDIOS LEONARD WESLEY
12 254896 04APR1985 TAYLOR-HUNYADI ITO MISHIMA
13 321783 10SEP1967 GONZALES GUILLERMO RICARDO
14 328140 10JAN1975 MEDINA-SIDONIA MARGARET ROSE
15 356134 14JUN1985 DUNNETT CHRISTINE MARIE
16 423286 19DEC1988 MIFUNE YUKIO TOSHIRO
17 456910 14JUN1978 ARDIS RICHARD BINGHAM
18 456921 19AUG1987 KRAUSE KARL-HEINZ G.
19 457232 15JUL1985 LOVELL WILLIAM SINCLAIR
20 459287 02NOV1964 RODRIGUES JUAN M.
21 677890 12DEC1988 NISHIMATSU-LYNCH CAROL ANNE
22 346917 02MAR1987 SHIEKELESLAM SHALA Y.

Output 14.18 Data in DLIB.TEMPEMPS

Data in DLIB.TEMPEMPS Data File

OBS EMPID HIREDATE DEPT GENDER LASTNAME FIRSTNAM MIDDLENA FAMILYID

1 765111 04MAY1998 CSR011 M NISHIMATSU-LYNCH RICHARD ITO 677890
2 765112 04MAY1998 CSR010 M SMITH ROBERT MICHAEL 234967
3 219776 15APR1998 ACC024 F PASTORELLI ZORA .
4 245233 10APR1998 ACC013 ALI SADIQ H. .
5 245234 10APR1998 ACC024 F MEHAILESCU NADIA P. .
6 326721 01MAY1998 SHP002 M CALHOUN WILLIS BEAUREGARD .

The APPEND procedure also accepts a WHERE= data set option or a SAS WHERE
statement to retrieve a subset of the observations. In this example, a subset of the
observations from DLIB.TEMPEMPS is added to VLIB.SQLEMPS by using a SAS
WHERE statement; the WHERE statement applies only to the DATA= data set.

proc append base=vlib.sqlemps
data=dlib.tempemps force;

where hiredate <= ’30APR1998’d;
run;

proc print data=vlib.sqlemps;
title ’Subset of SAS Data Appended

to a View Descriptor’;
run;

Output 14.19 on page 211 shows VLIB.SQLEMPS with three rows from
DLIB.TEMPEMPS appended to it.

212 Appending Data with the APPEND Procedure 4 Chapter 14

Output 14.19 Subset of Data Appended with the FORCE Option

Subset of SAS Data Appended to a View Descriptor

OBS EMPID HIREDATE LASTNAME FIRSTNAM MIDDLENA

1 119012 01JUL1968 WOLF-PROVENZA G. ANDREA
2 120591 05DEC1980 HAMMERSTEIN S. RACHAEL
3 123456 04APR1989 VARGAS CHRIS J.
4 127845 16JAN1967 MEDER VLADIMIR JORAN
5 129540 01AUG1982 CHOULAI CLARA JANE
6 135673 15JUL1984 HEMESLY STEPHANIE J.
7 212916 15FEB1951 WACHBERGER MARIE-LOUISE TERESA
8 216382 15JUN1985 PURINTON PRUDENCE VALENTINE
9 234967 19DEC1988 SMITH GILBERT IRVINE

10 237642 01NOV1976 BATTERSBY R. STEPHEN
11 239185 07MAY1981 DOS REMEDIOS LEONARD WESLEY
12 254896 04APR1985 TAYLOR-HUNYADI ITO MISHIMA
13 321783 10SEP1967 GONZALES GUILLERMO RICARDO
14 328140 10JAN1975 MEDINA-SIDONIA MARGARET ROSE
15 356134 14JUN1985 DUNNETT CHRISTINE MARIE
16 423286 19DEC1988 MIFUNE YUKIO TOSHIRO
17 456910 14JUN1978 ARDIS RICHARD BINGHAM
18 456921 19AUG1987 KRAUSE KARL-HEINZ G.
19 457232 15JUL1985 LOVELL WILLIAM SINCLAIR
20 459287 02NOV1964 RODRIGUES JUAN M.
21 677890 12DEC1988 NISHIMATSU-LYNCH CAROL ANNE
22 346917 02MAR1987 SHIEKELESLAM SHALA Y.
23 219776 15APR1998 PASTORELLI ZORA
24 245233 10APR1998 ALI SADIQ H.
25 245234 10APR1998 MEHAILESCU NADIA P.

When you use PROC APPEND with a view descriptor as the BASE= file, the DBMS
issues DBMS-specific INSERT statements and places the new rows into the DBMS table
wherever the free space exists. The Screen Control Language (SCL) APPEND function
behaves in the same way, that is, the DBMS determines where the rows are inserted
into the table. This approach is contrary to how SAS usually performs an append.
When the BASE= file is a SAS data file, the data is appended to the end of the data file.

See Output 14.20 on page 212 for a copy of the SAS log screen and the messages
about the FORCE option.

Output 14.20 SAS Log with Messages about the FORCE Option

10504
10505
10506 /*==========================*/
10507 /* Example for Output */
10508 /*==========================*/
10509 proc append base=vlib.sqlemps data=dlib.tempemps force;
10510 where hiredate <= ’30APR98’d;
10511 run;

NOTE: Appending DLIB.TEMPEMPS to VLIB.SQLEMPS.
WARNING: Variable DEPT was not found on BASE file.
WARNING: Variable GENDER was not found on BASE file.
WARNING: Variable FAMILYID was not found on BASE file.
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: 3 observations added.
NOTE: The data set VLIB.SQLEMPS has . observations and 5

variables.

Using DBMS Data with SAS/ACCESS Version 6 Procedures 4 Appending Data with the APPEND Procedure 213

Because the BASE= data set is a view descriptor in this example, PROC APPEND
generates a DBMS-specific SQL INSERT statement for the rows to be appended to the
DBMS table.

The number of observations in the EMPLOYEES table is not displayed in the SAS
log because when the view descriptor is opened by the SAS/ACCESS engine, the
number of rows in the underlying table is not known.

214 Appending Data with the APPEND Procedure 4 Chapter 14

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–558–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

