
1

C H A P T E R

1
OLE DB Chapter, First Edition

Introduction 1
SAS/ACCESS LIBNAME Statement 1

Data Set Options: OLE DB Specifics 15

SQL Procedure Pass-Through Facility: OLE DB Specifics 27

Special OLE DB Queries 33

Examples 36
Accessing OLE DB for OLAP Data 37

Overview 37

Using the SQL Procedure Pass-Through Facility 37

Syntax 38

Examples 39

OLE DB Naming Conventions 40
OLE DB Data Types 41

Introduction
SAS/ACCESS software enables you to access data in a database management system

(DBMS) or other data source in order to use that data in your SAS programs. Microsoft
OLE DB is an API (application programming interface) that provides access to data,
which can be in many forms, including a database table, an email file, a text file, or
other kind of file. This SAS/ACCESS interface accesses data from these sources through
the OLE DB data providers. You specify the data provider, data source, and other
connection information in a SAS/ACCESS LIBNAME statement and the SQL Procedure
Pass-Through facility. The SQL procedure is a base SAS procedure that works with
SAS/ACCESS software to send and receive data directly between a data source and
SAS software. You can store Pass-Through code in a PROC SQL view for later use.

For more information about the OLE DB API, see the Microsoft OLE DB reference
documentation. This chapter accompanies and should be used with SAS/ACCESS
Software for Relational Databases: Reference (order #57204).*

SAS/ACCESS LIBNAME Statement
The SAS/ACCESS LIBNAME statement and options that can be used in most

relational databases are fully described in Chapter 3, "SAS/ACCESS LIBNAME
Statement". This section describes the connection options for OLE DB and any OLE
DB-specific LIBNAME options.

* Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

2 LIBNAME Statement: OLE DB Specifics 4 Chapter 1

LIBNAME Statement: OLE DB Specifics

Associates a SAS libref with a data source

Valid: in a DATA or PROC step

Syntax
LIBNAME libref SAS/ACCESS-engine-name

SAS/ACCESS-engine-connection-options
< SAS/ACCESS-LIBNAME-options>;

Arguments

libref
is any SAS name that serves as an alias to associate the SAS System with a data
source.

SAS/ACCESS-engine-name
is a SAS/ACCESS engine name for your DBMS or data source, in this case, OLEDB.
SAS/ACCESS engines are implemented differently in different operating
environments. The engine name is required.

SAS/ACCESS-engine-connection-options
are options that you specify in order to connect to a particular data source; these
options are different for each data source. If the SAS/ACCESS engine connection
options contain characters that are not allowed in SAS names, enclose the values of
the options in quotation marks. If you specify the appropriate system options or
environment variables for your data source, you can often omit the SAS/ACCESS
engine connection options.

SAS/ACCESS-LIBNAME-options
are options that apply to a data source, such as a database table. For example, the
STRINGDATES= option specifies whether to read date and time values as character
strings or as numeric date values. Support for many of the LIBNAME options is
specific to OLE DB data providers.

Some SAS/ACCESS LIBNAME options have the same names as SAS/
ACCESS-engine data-set options. When you specify an option in the LIBNAME
statement, it applies to the particular data source (which is accessed by the libref). A
SAS/ACCESS data set option applies only to the data set on which it is specified. If a
like-named option is specified in both the SAS/ACCESS LIBNAME statement and
after a data set name (which represents a data source table or view), the SAS System
uses the value that is specified after the data set name. For more information, see
Chapter 3, "SAS/ACCESS LIBNAME Statement".

Details The LIBNAME statement associates a libref with a SAS/ACCESS engine in
order to access a data source. The SAS/ACCESS engine enables you to connect to a
particular data source and, therefore, to specify a DBMS table or other file name in a
two-level SAS name.

For example, in mydblib.q2_employees, mydblib is a SAS libref that points to a
particular data source, and q2_employees is a DBMS table name. When you specify
mydblib.q2_employees in a DATA step or procedure, you dynamically access that

OLE DB Chapter, First Edition 4 LIBNAME Statement: OLE DB Specifics 3

DBMS table. Version 8 the SAS System supports reading, updating, creating, and
deleting DBMS tables. (However, it does not support altering a database by adding or
deleting a column. For these tasks, you must use the DBMS-specific SQL statements.)

See for more information about arguments and options that you can use in the
LIBNAME statement.

Connecting to OLE DB There are many SAS/ACCESS connection options available
when you use the SAS/ACCESS interface to OLE DB, and these options have several
interactions. Basically, there are two separate ways to connect to a data source: using
OLE DB Services or connecting directly to the provider. Each has its advantages and
its limitations, as described here.

Connecting with OLE DB Services Often the fastest and easiest way to connect to a
data provider is by using OLE DB Services. Examples of data providers include
Microsoft Access, Microsoft SQL Server, or ORACLE. For each of the listed providers,
the data source would be a relational database that contains database objects, such as
tables and views, whose data you could then access in your SAS programs. OLE DB
accepts other sources of data as well, including email files and text files.

OLE DB Services provides some performance optimizations and scaling features,
including resource pooling. It also displays dialog windows to prompt you for connection
information, where the dialogs are consistent regardless of which provider you use.

As described in “Connecting Directly with the Data Provider” on page 5, you can
specify the SAS/ACCESS connection options, PROVIDER= and PROPERTIES=, to
connect to a data provider and its data sources. In PROPERTIES=, you supply the
connection information; for example, if the data source were a relational database, you
might supply the user ID, password,and schema. The default action for SAS/ACCESS
software is to use OLE DB Services, so you can omit the OLEDB_SERVICES= option
and still get the benefits of the Services.

Using OLE DB Services enables you to be prompted for the provider name and
properties during an interactive SAS session. To be prompted, submit your libref and a
SAS/ACCESS LIBNAME statement for OLE DB:

libname mydblib oledb;

In this case, the SAS/ACCESS engine for OLE DB assumes that you want to be
prompted (and therefore sets PROMPT=YES). It directs OLE DB Services to display the
prompting dialog windows so that you can supply the provider name and connection
information for the data source. If you choose, you can specify the PROPERTIES=
option in the LIBNAME statement, supply some of the connection information, and still
be prompted to supply the rest of the information in the dialog windows.

Display 1.1 on page 4 shows you the initial prompting dialog window and some of the
providers from which you can choose:

4 LIBNAME Statement: OLE DB Specifics 4 Chapter 1

Display 1.1 OLE DB Services Dialog Window, First Tab

Display 1.2 on page 4 shows where you enter the data source name and other server
information:

Display 1.2 OLE DB Services Dialog Window, Second Tab

After you have been prompted for the connection information and made a successful
connection, the SAS/ACCESS engine for OLE DB and OLE DB Services enable you to
retrieve the connection information and re-use it in batch jobs and automated

OLE DB Chapter, First Edition 4 LIBNAME Statement: OLE DB Specifics 5

connections. For details, see the SAS/ACCESS connection option, INIT_STRING= on
page 6. See also the option, OLEDB_SERVICES= on page 7.

Connecting Directly with the Data Provider If you know the data provider’s name and
properties, you can connect directly to the provider and its data source(s). Examples of
data providers include Microsoft Access and ORACLE, where the sources of data that
you might access could be tables in a relational database, email files, or text files.

OLE DB does not have an administrator, like the ODBC Data Source Administrator,
to help you create and list data sources. Therefore, you have to determine the data
providers and the properties that they accept. To make the connection to the provider’s
data source, SAS requires connection information, such as the user ID, password,
schema, and server name.

If you connect directly to the provider, your minimum set of SAS/ACCESS connection
options are PROVIDER=, and OLEDB_SERVICES=NO, assuming that you have
default values set for the provider’s properties. (The default action for
OLEDB_SERVICES= is YES, so you have to indicate that you do not want to use the
OLE DB Services. For more information about OLE DB Services, see “Connecting with
OLE DB Services” on page 3.)

After you connect to your provider once (for example, by using OLE DB Services or
through a prompted session), you can use a special OLE DB query called
PROVIDER_INFO()“Special OLE DB Queries” on page 33 to make subsequent
non-prompted connections easier. You can submit this special query as part of a PROC
SQL query in order to display all of the available provider names and properties. For
an example, see “Examples” on page 36.

If you are connecting to MS SQL Server and specifying the SAS/ACCESS option
BCP=YES, then you must connect directly to the provider.

If you know only the provider name and you are running an interactive SAS session,
you can be prompted for the provider’s properties. Specify PROMPT=YES to direct the
provider to prompt you for properties and other connection information. The provider
displays its own dialog window for prompting; these dialogs vary from provider to
provider.

In addition to the SAS/ACCESS connection options already listed, you can specify the
SAS/ACCESS options, COMPLETE= and REQUIRED=. Use these options to try to
connect to the data source using the information that you have already supplied with a
PROPERTIES= options. If more information is needed to make the connection, the
dialog windows prompt you for it.

If you run SAS in a batch environment, you must supply the provider name and all
of the connection information in the PROPERTIES= option. In this case, you specify
only the following SAS/ACCESS connection options: PROVIDER=, PROPERTIES=, and
OLEDB_SERVICES=NO.

The following table summarizes how you can use the SAS/ACCESS-engine
connection options:

6 LIBNAME Statement: OLE DB Specifics 4 Chapter 1

Table 1.1 Two Ways to Connect OLE DB

Minimum options required All options allowed

Connect through OLE DB
Services

none provider=, oledb_services=yes

properties=, provider_string=,
init_string=, prompt=

Connect directly to OLE DB provider= * , oledb_services=no provider=, oledb_services=no,
properties=, provider_string=,
prompt=, complete=, required=

* You can omit the PROPERTIES= option if you have default properties set for your provider.

SAS/ACCESS-Engine Connection Options The SAS/ACCESS-engine connection options
are as follows:

COMPLETE=YES | NO
specifies whether the SAS/ACCESS engine for OLE DB tries to connect to the data
source with the properties that you specified in PROPERTIES=. If
COMPLETE=YES, the engine tries to connect. If enough information is specified
for a successful connection, then the connection is made without any prompting for
more information.

Default value: NO.
If you specify COMPLETE= NO or do not have enough information to connect,

you are prompted for the connection options with a dialog window.
COMPLETE= is used only when you connect directly to OLE DB using the

PROVIDER= and OLEDB_SERVICES=NO in a SAS/ACCESS LIBNAME
statement.

See also these options: PROPERTIES= on page 8, PROMPT=YES on page 7,
PROVIDER= on page 8, OLEDB_SERVICES= on page 7.

INIT_STRING="<initilization-string>"
using OLE DB Services, INIT_STRING= specifies an initialization string when
connecting to a data source. After you are prompted to supply information to
connect to your data source, the SAS/ACCESS engine for OLE DB returns the
complete initialization string to the macro variable, SYSDBMSG. You can then
re-use the initialization string to connect to the same provider and data source.

Default value: option is not set. However, if you specify the option with a null
argument, (INIT_STRING=""), OLE DB connects to ODBC with a default set of
properties. See the Microsoft OLE DB documentation for more information about
these default values.

In this example, you submit the basic connection information so that you will be
prompted for the rest of the information. Using OLE DB Services is the default
value, so you can omit the OLEDB_SERVICES= option.

libname mydblib oledb;

Through dialog windows, OLE DB Services prompts you for the provider and
properties’ values. The advantage of being prompted is that you do not need to
know any special syntax to set the properties’. Prompting also enables you to set
more options than you might when connecting directly to the provider (and not
using OLE DB Services).

After connecting to the data source, the SAS/ACCESS engine for OLE DB
returns the initialization string to the SYSDBMSG macro variable. To write this

OLE DB Chapter, First Edition 4 LIBNAME Statement: OLE DB Specifics 7

string to the SAS log immediately after connecting to the data source, submit the
following:

%put &SYSDBMSG;

OLEDB: Provider=SQLOLEDB;Password=dbmgr1;
Persist Security Info=True;User ID=rachel;
Initial Catalog=users;Data Source=DBPC6;

The SYSDBMSG information mirrors all of the options that you chose during
your prompted connection. Notice that the initialization string is prefixed with
OLEDB:. When you store the string for later use, delete this prefix and any initial
spaces before the first listed option.

By storing the initialization string, you can re-use it in the INIT_STRING=
option to make automated connections or to specify this option in batch jobs:

init_string="Provider=SQLOLEDB;Password=dbmgr1;Persist
Security Info=True;User ID=rachel;Initial Catalog=users;
Data Source=DBPC6";

Using INIT_STRING= enables you to bypass the prompting window but still gives
you the advantages of the OLE DB Services, such as performance optimizations.

Specifying INIT_STRING= overrides any values that were set with the
SAS/ACCESS connection options PROVIDER= on page 8 and PROPERTIES= on
page 8.

Alias: INIT=.

OLEDB_SERVICES=YES | NO
determines whether the SAS/ACCESS engine for OLE DB uses OLE DB Services.
OLEDB_SERVICES=YES causes the engine to use OLE DB Services, and
OLEDB_SERVICES=NO causes the engine to use the provider to connect to the
data source.

Default value: YES.
Generally, OLE DB Services is easier to use and more consistent. When

OLEDB_SERVICES=YES and a successful prompted connection is made, the
complete connection string is returned in the SYSDBMSG macro variable. For
more information, see the option INIT_STRING= on page 6.

OLEDB_SERVICES= interacts with other connection options. If you have set
PROMPT=YES, OLEDB_SERVICES=YES enables you to set more options than
you would be able to set by being prompted by the provider’s dialog window. If
OLEDB_SERVICES=NO, you must specify PROVIDER= first in order for the
provider’s prompt dialogs to be used. If PROVIDER= is omitted, the SAS/ACCESS
engine uses OLE DB Services, regardless of how the OLEDB_SERVICES= option
is set.

If the BCP=YES option is set for Microsoft SQL Server data, then
OLEDB_SERVICES=NO. OLEDB_SERVICES= also interacts with the PROMPT=,
REQUIRED= , and COMPLETE= options. See these options for more information:
PROVIDER= on page 8, BCP=YES on page 10, PROMPT= on page 7,
REQUIRED= on page 9, COMPLETE= on page 6.

PROMPT =YES | NO
enables you to be prompted for connection information to supply to the data
source. The kind of prompting that you receive depends on how you set the
PROVIDER= and OLEDB_SERVICES= options.

Default value: NO, if the provider is specified; otherwise, YES.
If a provider name is specified and OLEDB_SERVICES= NO, the OLE DB

provider displays a dialog window that contains the connection information and

8 LIBNAME Statement: OLE DB Specifics 4 Chapter 1

property attributes. If the provider name is omitted or OLEDB_SERVICES=YES,
the OLE DB Services displays a dialog window that enables you to select a provider
and to specify connection information and property attributes. The dialog window
for OLE DB Services is generally preferred over the provider’s dialog window
because the OLE DB Services window enables you to set options more easily.

If PROMPT=YES, properties that were set with PROPERTIES= will be
displayed in the dialog window. This applies both to the provider dialog window
and to the OLE DB Services dialog window. You can edit any field before you
connect to the data source.

If the provider name is omitted, the SAS/ACCESS engine for OLE DB tries to
prompt you for the connection information by using the OLE DB Services dialog
window. This applies even if PROMPT=NO and OLEDB_SERVICES= NO. If the
provider name is omitted in batch mode, the connection fails.

If you are unsure what to specify for various provider properties, use the
PROMPT= option to guide you through the connection process.

See the following options for more information: PROVIDER= on page
8,OLEDB_SERVICES= on page 7, PROPERTIES= on page 8.

PROPERTIES=(<">property-name-1<">=<">property-value-1<"> . . .
<">property-name-n<">=<">property-value-n<">)

specifies provider properties that enable you to connect to a data source and to
define the attributes of that connection. Each property name is assigned a value
using an equal sign (=). If the property name or value contains embedded spaces
or special characters, enclose the name in double quotes. Separate multiple pairs
with a space. PROPERTIES= is optional in OLE DB.

Default value: none.
In this example, you specify a user ID and password to connect to a Microsoft

SQL Server data source, you would enter:

libname mydblib oledb provider=sqloledb
properties=("User ID"=shala
Password="mypw@hr");

Note: See your provider’s documentation for a list and description of all the
properties that your provider supports. 4

Aliases: PROPS= and PROP=.

PROVIDER=<’> your-provider-name<’>
specifies the OLE DB provider to use in order to connect to the data source. The
PROVIDER= option is required during batch processing.

Default value: none.
There is no restriction on the length of the name. Put names with non-standard

SAS characters (such as spaces, colons, @ signs) in single or double quotations
marks.

If you omit this option, you are prompted for the provider name. It is
recommended that, if possible, you use the dialog prompts to connect to your data
source. The prompts enable you to use an interactive interface to enter the name
of the provider, properties, and connection options.

Alias: PROV=.

PROVIDER_STRING=<">provider-name<">
passes additional provider-specific connection information to the provider. The
provider-string is enclosed in quotation marks if it contains blank spaces or special

OLE DB Chapter, First Edition 4 LIBNAME Statement: OLE DB Specifics 9

characters. The PROVIDER_STRING= option works whether you connect directly
to the provider or are using OLE DB Services.

Default value: none
Microsoft uses a provider-string for its Jet provider in order to determine the

type of data source to which it connects. MS Jet currently accepts the following
providers; this list is not all-inclusive and is subject to change by Microsoft:

dBase III, IV, 5.0
Excel 3.0, 4.0, 5.0, 8.0
Exchange 4.0
HTML Export, HTML Import
Jet 2.x, Jet 3.x
Lotus WJ2, WJ3
Lotus WK1, WK2, WK3, WK4
Outlook 9.0
Paradox 3.x, Paradox 4.x, Paradox 5.x, Paradox 7.x
Text

Providers other than MS Jet also accept other provider-strings.
In the following SAS/ACCESS LIBNAME statement example, you use the

Microsoft Jet 4.0 provider to access the spreadsheet Y2Kbudgetworksheet.xls.
Notice that you must specify the provider-string "Excel 8.0" so that MS Jet
recognizes the file as an Excel 8.0 worksheet.

libname y2kbudget oledb provider="Microsoft.Jet.OLEDB.4.0"
properties=(’data source’=’d:\excel80\Y2Kbudgetworksheet.xls’)
provider_string="Excel 8.0";

REQUIRED=YES | NO
indicates whether you specify connection options for your provider.

Default value: NO.
If you specify REQUIRED= YES, the SAS/ACCESS engine for OLE DB tries to

connect to the data source by using the properties that were specified in
PROPERTIES= . If you specify enough information in order to make a connection,
then the connection is made without prompting. Otherwise, a dialog window is
displayed to prompt you for the connection options. Options in the dialog window
that are not related to the connection are disabled.

REQUIRED= is used only when you connect to the provider directly using the
options PROVIDER= and OLEDB_SERVICES=NO in a SAS/ACCESS LIBNAME
statement.

For more information, see PROPERTIES= on page 8, OLEDB_SERVICES= on
page 7, and PROVIDER= on page 8.

SAS/ACCESS LIBNAME Options When you specify any of the following options on the
LIBNAME statement, the option is applied to the data source that the libref represents.
When the data source is a relational database, the LIBNAME option applies to all of the
objects in the database (such as its tables, views, and indexes) that the libref represents.

The SAS/ACCESS interface to OLE DB supports all of the SAS/ACCESS LIBNAME
options listed in Chapter 3, "SAS/ACCESS LIBNAME Statement" , except for

10 LIBNAME Statement: OLE DB Specifics 4 Chapter 1

DBPROMPT=. In addition to the supported options, the following LIBNAME options
are used only in the interface to OLE DB or have OLE DB–specific aspects to them:

AUTOCOMMIT= on page 10

BCP= on page 10 (SQL Server only)

CELLPROP= on page 11

COMMAND_TIMEOUT= on page 11

CURSOR_TYPE= on page 11

DELETE_MULT_ROWS= on page 12

PRESERVE_COL_NAMES= on page 12

PRESERVE_TAB_NAMES= on page 12

QUALIFIER= on page 12

QUOTE_CHAR= on page 13

READ_ISOLATION_LEVEL= on page 13

READLOCK_TYPE= on page 13

ROWSET_SIZE= on page 13

SCHEMA= on page 14

STRINGDATES= on page 14

UPDATE_ISOLATION_LEVEL= on page 14

UPDATELOCK_TYPE= on page 14

UPDATE_MULT_ROWS= on page 15

AUTOCOMMIT=YES | NO
indicates whether or not updates are committed immediately after they are
submitted. This option applies if your data source is a relational database. This is
a LIBNAME-only option.

Default value: NO.
If AUTOCOMMIT=YES, updates are committed (that is, saved) to table as soon

as they are submitted, and no rollback is possible. If AUTOCOMMIT=NO, the
SAS/ACCESS engine automatically performs the commit when it reaches the end
of the file.

For the SAS/ACCESS LIBNAME engine, the default value is NO, if the data
source provider supports transactions and it is a connection for updating data.
Otherwise, the default value is AUTOCOMMIT= YES (that is, YES for the SQL
Procedure Pass-Through Facility and read-only connections).

BCP=YES | NO
determines whether SAS uses the Microsoft Bulk Copy facility to insert data into a
DBMS table. Specify BCP=YES to direct SAS to use the OLE DB BCP interface
when inserting data into a Microsoft SQL Server database table. (MS SQL Server
7.0 and later provides this support.) The BCP= option is valid only in a SAS/
ACCESS LIBNAME statement when connecting to MS SQL Server.

Default value: NO.
BCP is Microsoft’s Bulk Copy facility, and it enables you to efficiently insert

rows of data into a DBMS table as a unit. As SAS/ACCESS sends each row of data
to BCP, the data is written to an input buffer. When you have inserted all the
rows or the buffer reaches a certain size (as determined by the DBCOMMIT= data

OLE DB Chapter, First Edition 4 LIBNAME Statement: OLE DB Specifics 11

set option), all of the rows are inserted as a unit into the table, and the data is
committed to the table.

Alternatively, you can set the DBCOMMIT=n option to commit rows after every
n insertions. See Chapter 4, "SAS/ACCESS Data Set Options".

If an error occurs, a message is written to the SAS log, and any rows that have
been inserted in the table before the error will be rolled back.

If you specify BCP=YES and the PROVIDER= option is set, the SAS/ACCESS
engine for OLE DB uses the specified provider. If you specify BCP=YES and
PROVIDER= is not set, the engine assumes the value PROVIDER=SQLOLEDB. If
you specify BCP=YES, connections that are made through OLE DB Services are
not allowed; that is, specifying BCP=YES means that OLEDB_SERVICES=NO.

CELLPROP=<’>value<’> | ’formatted-value’
modifies the metadata and content of a result data set that is defined through an
MDX command. When an MDX command is issued, the resulting data set might
have columns that contain one or more types of data values: the actual value of
the cell or the formatted value of the cell. (A cell or data value refers to the
intersection of a column and a row.)

Default value: <’>value<’>.
For example, if you were to issue an MDX command and the resulting data set

contained a column named SALARY, the column could contain data values of two
types. It could contain numeric values, such as 50000, or it could contain
formatted values, such as $50,000. Setting the CELLPROP= option determines
how the values are defined and the value of the column.

If CELLPROP=<’>value<’>, the SAS/ACCESS engine for OLE DB tries to
return the actual data value; if the value is numeric, then the column is defined as
NUMERIC.

If CELLPROP= ’formatted-value’, the SAS/ACCESS engine for OLE DB defines
the column as CHARACTER and it returns the formatted data values.

It is possible for a column in a result set to contain both NUMERIC and
CHARACTER data values. For example, a data set might return the data values
of 50000, 60000, and UNKNOWN. SAS data sets cannot contain both types of data.
Therefore, even if you specify CELLPROP=<’>value<’>, the SAS/ACCESS engine
defines the problematic column as CHARACTER and returns formatted values for
that column.

For more information about MDX commands, see “Accessing OLE DB for OLAP
Data” on page 37.

COMMAND_TIMEOUT=number-of-seconds
specifies the number of seconds to wait before a data source command times out.
This is a LIBNAME and data set option.

Default value: 0 (no timeout).
Alias: TIMEOUT=.

CURSOR_TYPE=DYNAMIC | KEYSET_DRIVEN | STATIC
specifies the cursor type for read only and updatable cursors. This is both a
LIBNAME and data set option.

Default value: None.
When your data source is a relational database, not all DBMS drivers support

all cursor types. An error is returned if the specified cursor type is not supported.
If CURSOR_TYPE=DYNAMIC, then the cursor reflects all of the changes that

are made to the rows in a result set as you scroll around the cursor. The data
values and the membership of rows in the cursor can change dynamically on each
fetch. The OLE DB properties that are applied to an open row set are

12 LIBNAME Statement: OLE DB Specifics 4 Chapter 1

DBPROP_OTHERINSERT=TRUE and
DBPROP_OTHERUPDATEDELETE=TRUE.

If CURSOR_TYPE=KEYSET_DRIVEN, then the cursor determines which rows
belong to the result set when the cursor is opened. However, changes that are
made to these rows will be reflected as you scroll around the cursor. The OLE DB
properties that are applied to an open row set are
DBPROP_OTHERINSERT=FALSE and
DBPROP_OTHERUPDATEDELET=TRUE.

If CURSOR_TYPE=STATIC, then the cursor builds the complete result set
when the cursor is opened. No changes made to the rows in the result set after the
cursor is opened will be reflected in the cursor. Static cursors are read-only. The
OLE DB properties that are applied to an open row set are
DBPROP_OTHERINSERT=FALSE and
DBPROP_OTHERUPDATEDELETE=FALSE.

By default, CURSOR_TYPE= is not set and the provider will use a default. See
your provider documentation for more information. See OLE DB programmer
reference documentation for details about these properties.

Alias: CURSOR.

DELETE_MULT_ROW=YES | NO
indicates whether to allow SAS to delete multiple rows from a data source, such as
a DBMS table. This is a LIBNAME-only option.

Some providers do not handle the following DBMS SQL statement well, and
therefore delete more than the current row with this statement: DELETE ...
WHERE CURRENT OF CURSOR. DELETE_MULT_ROW= enables SAS/ACCESS to
continue if multiple rows were deleted.

Default value: NO

PRESERVE_COL_NAMES=YES | NO
preserves blank spaces, special characters, and mixed case in the column names of
a data source, such as a relational database table. This is a LIBNAME-only option.

Default value: NO for most data sources. For the following data sources, the
default value is YES: MS Access, MS Excel, and MS SQL Server.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

PRESERVE_TAB_NAMES=YES | NO
preserves blank spaces, special characters, and mixed case in a data source, such
as a relational database table. This is a LIBNAME-only option.

Default value: NO for most data sources. For the following data sources, the
default value is YES: MS Access, MS Excel, and MS SQL Server.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

QUALIFIER=<qualifier-name>
enables you to read a data source using the specified qualifier. Or, when the data
source is a relational database, you can read the database objects, such as tables
and views, using the specified qualifier. QUALIFIER= is both a LIBNAME and
data set option.

QUALIFIER= is optional. If it is omitted, you use the default DBMS qualifier
name, if any. QUALIFIER= can be used for any DBMS that allows three-part
identifier names, such as qualifier.schema.object.

The following LIBNAME statement connects to an MS SQL Server table. The
QUALIFIER= option causes any reference in SAS to mydblib.employee to be
interpreted by OLE DB as pcdivision.raoul.employee.

OLE DB Chapter, First Edition 4 LIBNAME Statement: OLE DB Specifics 13

libname mydblib oledb provider=SQLOLEDB
properties=("user id"=dbajorge
"data source"=SQLSERVR)
schema=raoul qualifier=pcdivision;

proc print data=mydblib.employee;
run;

QUOTE_CHAR=character
specifies the quotation character to use when delimiting identifiers, such as
double-quote character ("). This is a LIBNAME-only option.

The provider usually specifies the delimiting character. However, when there is
a difference between what the provider allows for this character and what the data
source allows, the QUOTE_CHAR= option enables you to override the character
returned by the provider.

Default value: the option is not set, and it uses the quotation character
returned by the provider.

READ_ISOLATION_LEVEL=S | RR | RC | RU
defines the degree of isolation of the current application process from other
concurrently running application processes. This is both a LIBNAME and data set
option.

Default value: Set by the data provider.
The arguments for READ_ISOLATION_LEVEL= indicate the following: S =

Serializable, RR = Repeatable Read, RC = Read Committed, and RU = Read
Uncommitted.

OLE DB supports five levels of isolation, which are described in detail in
“READ_ISOLATION_LEVEL=” on page 21. The degree of isolation identifies

� the degree to which rows that are read and updated by the current
application are available to other concurrently executing applications

� the degree to which update activity of other concurrently executing
application processes can affect the current application.

The READ_ISOLATION_LEVEL= option applies only when reading a data
source, such as a DBMS table or view. By default, this option is not set. The
provider sets the default value. If READ_LOCK_TYPE= is not set to ROW, then
READ_ISOLATION_LEVEL= is ignored. See also READ_LOCK_TYPE= on page
13.

Alias: RIL=.

READ_LOCK_TYPE=ROW
specifies how a table is locked during a READ operation.

The value ROW specifies that a row or set of rows will be locked. SAS/ACCESS
software uses the READ_ISOLATION_LEVEL= option to determine which rows
will be locked. Currently, the only valid locking that is allowed is through the
READ_ISOLATION_LEVEL= option; therefore, READ_LOCK_TYPE= only allows
a value of ROW. See also READ_ISOLATION_LEVEL= on page 13.

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

ROWSET_SIZE=number-of-rows
specifies the number of rows to use when reading data from a data source, such as
a DBMS table. This is both a LIBNAME and data set option.

Default value: 1, so that only one row is retrieved at a time.
The higher the value for ROWSET_SIZE=, the more rows that the SAS/

ACCESS engine for OLE DB retrieves in one fetch operation. This option reduces
the amount of I/O that is used and can help improve performance. However,

14 LIBNAME Statement: OLE DB Specifics 4 Chapter 1

because SAS software stores the rows in memory, higher values for
ROWSET_SIZE= use more memory. In addition, if too many rows are selected at
once, then the rows that are returned to the SAS application might be out of date.

Alias: ROWSET=.

SCHEMA=schema-name
enables you to read a data source using the specified schema. Or, when the data
source is a relational database, you can read the database objects, such as tables
and views, using the specified schema.

SCHEMA= is both a LIBNAME and data set option. SHEMA= is optional. If it
is omitted, you connect to the default schema.

In the following LIBNAME statement, the SCHEMA= option causes any
reference in SAS to mydblib.employee to be interpreted by the OLE DB
provider (ORACLE) as raoul.employee.

libname mydblib oledb provider=msdaora
properties=("user id"=dbajorge password=dbajorge99
"data source"="oracle_loc")
schema=raoul qualifier=pcdivision;

proc print data=mydblib.schedule;
run;

Alias: OWNER=.

STRINGDATES=YES | NO
specifies whether to read datetime values from the data source, such as a DBMS
table, as character strings, or to read them as numeric date values. This is a
LIBNAME-only option.

Default value: NO.
If STRINGDATES=YES, SAS/ACCESS reads datetime values as character

strings. If STRINGDATES=NO, SAS/ACCESS reads datetimes values as numeric
date values.

Alias: STRDATES.

UPDATE_ISOLATION_LEVEL=S | RC | RR
Defines the degree of isolation of the current application process from other
concurrently running application processes.

The arguments for UPDATE_ISOLATION_LEVEL= indicate the following: S =
Serializable, RC = Read Committed, and RR = Repeatable Read.

OLE DB supports four isolation levels, which are described in detail in
“UPDATE_ISOLATION_LEVEL=” on page 25. The degree of isolation identifies

� the degree to which rows that are read and updated by the current
application are available to other concurrently executing applications

� the degree to which update activity of other concurrently executing
application processes can affect the current application.

By default, UPDATE_ISOLATION_LEVEL= in not set. The provider sets the
default value. If UPDATE_LOCK_TYPE= is not set to ROW, then
UPDATE_ISOLATION_LEVEL= is ignored. See also UPDATE_LOCK_TYPE= on
page 14.

Alias: UIL=.

UPDATE_LOCK_TYPE=ROW
specifies how a data source, such as a DBMS table, is locked during an UPDATE
operation. This is both a LIBNAME and data set option.

Default value: ROW.
The UPDATE_ISOLATION_LEVEL= option applies only when updating a

DBMS table or view. The value ROW specifies that a row or set of rows will be

OLE DB Chapter, First Edition 4 Data Set Options: OLE DB Specifics 15

locked. To determine which rows will be locked, SAS/ACCESS software uses the
UPDATE_ISOLATION_LEVEL= option. See also UPDATE_ISOLATION_LEVEL=
on page 14.

UPDATE_MULT_ROW=YES | NO
indicates whether to allow SAS to update multiple rows from a data source, such
as a DBMS table. This is a LIBNAME-only option.

Default value: NO.
Some providers do not handle the following DBMS SQL statement well, and

therefore update more than the current row with this statement: UPDATE ...
WHERE CURRENT OF CURSOR. UPDATE_MULT_ROW= enables SAS/ACCESS to
continue if multiple rows were updated.

Examples

Example 1: Specifying a LIBNAME Statement to Access OLE DB Data on on MS SQL
Server In this example, the libref MYDBLIB uses the OLE DB engine to connect to
an MS SQL Server database. The SAS/ACCESS-engine connection options are
PROVIDER= and PROPERTIES=, and the LIBNAME options are SCHEMA= and
QUALIFIER.

libname mydblib oledb provider=sqloledb
properties=("User ID=shala" Password=myhrpw

"data source"=dept203
"initial catalog"=mgronly)

schema=rfcmgrs qualifier=hrdiv;

proc print data=mydblib.customers;
where state=’CA’;
run;

Example 2: Specifying a LIBNAME Statement to Access OLE DB Data in Oracle In this
example, the libref MYDBLIB uses the SAS/ACCESS engine for OLE DB to connect to
an ORACLE database. Prompting is enabled, and when the dialog window opens, you
supply information for the user ID, password, and data source. The SAS/
ACCESS-engine connection options are PROVIDER=, PROPERTIES=, and PROMPT=.

libname mydblib oledb provider=msdaora properties=("User ID"=fred
password=freddie "data source"="v2o7223.world")
prompt=yes preserve_tab_names=yes preserve_col_names=yes;

proc print data=mydblib.customers;
where state=’CA’;

run;

For an example of the OLE DB Services dialog window, which prompts you for more
information, see “Connecting with OLE DB Services” on page 3.

Data Set Options: OLE DB Specifics

This section describes SAS data set options that use OLE DB providers to access
data sources such as DBMS tables and views. In some cases, the option is fully

16 COMMAND_TIMEOUT= 4 Chapter 1

described in Chapter 4, "SAS/ACCESS Data Set Options", except for some OLE
DB-specific detail, such as a default value. In other cases, the entire option is OLE
DB-specific, so it is described fully in this chapter.

When specified in a DATA step or SAS procedure, the following data set options can
be used on a SAS data set that accesses data in a source, such as a DBMS table or view.
A data set option applies only to the SAS data set on which it is specified.

The SAS/ACCESS interface to OLE DB supports all of the SAS/ACCESS data set
options listed in Chapter 4, "SAS/ACCESS Data Set Options" , except for DBPROMPT=.
In addition to the supported options, the following data set options are used only in the
interface to OLE DB or have OLE DB–specific aspects to them:

“COMMAND_TIMEOUT=” on page 16
“CURSOR_TYPE=” on page 16
“DBFORCE=” on page 17
“DBINDEX=” on page 18
“DBNULL=” on page 18
“DBSASTYPE=” on page 18
“DBTYPE=” on page 20
“QUALIFIER=” on page 20
“READ_ISOLATION_LEVEL=” on page 21
“READ_LOCK_TYPE=” on page 22
“ROWSET_SIZE=” on page 23
“SASDATEFMT=” on page 23
“SASDATEINFMT=” on page 24
“SCHEMA=” on page 24
“UPDATE_ISOLATION_LEVEL=” on page 25
“UPDATE_LOCK_TYPE=” on page 26

COMMAND_TIMEOUT=

Specifies the number of seconds to wait before a command times out.

Default value: 0 (no timeout)
Alias: TIMEOUT=
Option type: LIBNAME and Data Set

Syntax
COMMAND_TIMEOUT=number-of-seconds

Details COMMAND_TIMEOUT= specifies the number of seconds to wait before a
data source command times out.

CURSOR_TYPE=

Specifies the cursor type for read only and updatable cursors.

OLE DB Chapter, First Edition 4 DBFORCE= 17

Default value: Not set

Alias: CURSOR=

Option type: LIBNAME and Data Set

Syntax

CURSOR_TYPE=DYNAMIC | KEYSET_DRIVEN | STATIC

Details When your data source is a relational DBMS, not all database drivers support
all cursor types. An error is returned if the specified cursor type is not supported.

If CURSOR_TYPE=DYNAMIC, then the cursor reflects all of the changes that are
made to the rows in a result set as you scroll around the cursor. The data values and
the membership of rows in the cursor can change dynamically on each fetch. The OLE
DB properties that are applied to an open row set are
DBPROP_OTHERINSERT=TRUE and DBPROP_OTHERUPDATEDELETE=TRUE.

If CURSOR_TYPE=KEYSET_DRIVEN, then the cursor determines which rows
belong to the result set when the cursor is opened. However, changes that are made to
these rows will be reflected as you scroll around the cursor. The OLE DB properties
that are applied to an open row set are DBPROP_OTHERINSERT=FALSE and
DBPROP_OTHERUPDATEDELET=TRUE.

If CURSOR_TYPE=STATIC, then the cursor builds the complete result set when the
cursor is opened. No changes made to the rows in the result set after the cursor is
opened will be reflected in the cursor. Static cursors are read-only. The OLE DB
properties that are applied to an open row set are DBPROP_OTHERINSERT=FALSE
and DBPROP_OTHERUPDATEDELETE=FALSE.

By default, CURSOR_TYPE= is not set and the provider will use a default. See your
provider documentation for more information. See OLE DB programmer reference
documentation for details about these properties.

The CURSOR_TYPE= option can be specified with the alias CURSOR.

DBFORCE=

specifies whether to force the truncation of data during insert processing.

Default value: NO

Option type: Data set only

Syntax

DBFORCE=YES | NO

Details
For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set

Options".

18 DBINDEX= 4 Chapter 1

See Also
DBKEY= in Chapter 4, "SAS/ACCESS Data Set Options"

DBINDEX=

Indicates whether or not SAS calls the data source to find index(es) on the specified DBMS table.

Default value: NO
Option type: Data set only

Syntax
DBINDEX=YES | NO | <’>index-name<’>

Details
For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set

Options".

See Also
DBKEY= in Chapter 4, "SAS/ACCESS Data Set Options"

DBNULL=

Indicates whether or not NULL is a valid value for the specified variables or columns.

Default value: YES
Option type: Data set only

Syntax
DBNULL=(column-name-1=YES | NO column-name-n=YES | NO)

Details
For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set

Options".

DBSASTYPE=

Specifies data type(s) to override the default SAS data type(s) during input processing of data
through OLE DB.

Default value: Option is not specified.

OLE DB Chapter, First Edition 4 DBSASTYPE= 19

Option type: Data set only

Syntax
DBSASTYPE=(<column-name-1=<’>SAS-data-type<’>>

<...<column-name-n=<’SAS-data-type<’>>>)

column-name
specifies a column name in a data source.

SAS-data-type
specifies a SAS data type, which can be one of the following: CHAR(n), NUMERIC,
DATETIME, DATE, TIME.

Details This option is valid only when you read data into SAS through OLE DB.
By default, the SAS/ACCESS Interface to OLE DB converts each OLE DB data type

to a predetermined SAS data type when processing data through OLE DB. When you
need a different data type, you can use DBSASTYPE= to override the default data type
selected by the SAS/ACCESS engine. Any errors are written to the SAS log. This
option applies to cases in which you insert data into or append data to a data source,
such as a DBMS table.

In the following example, the data stored in the DBMS FIBERSIZE column has a
data type that provides more precision than what SAS could accurately support, such
as DECIMAL(20). If you just used a PROC PRINT on the DBMS table, the data might
be rounded or displayed as a missing value. Instead, you could use the DBSASTYPE=
option to convert the column to a character field of the length 21. Because the
conversion is performed before the data is brought into SAS, there is no loss of precision.

proc print data=mylib.specprod
(DBSASTYPE=(fibersize=’CHAR(21)’);

run;

You can also use the DBSASTYPE= option in cases where you are appending one
data source table to another table and the data types are not comparable. If the SAS
data set has a variable CITY defined as CHAR(20) and the table has a column defined
as DECIMAL (20), you can use DBSASTYPE= to make them match:

proc append base=dblib.hrdata (DBSASTYPE=(city=’CHAR(20)’));
data=saslib.personnel;

run;

DBSASTYPE= specifies to SAS that the CITY is defined as a character field of length
20. When a row is inserted from the SAS data set into a data source, such as a DBMS
table, OLE DB performs a conversion of the character field to the DBMS data type,
DECIMAL(20).

See “OLE DB Data Types” on page 41 for details about the default data types for
OLE DB.

20 DBTYPE= 4 Chapter 1

DBTYPE=

Specifies data types(s) to override the default OLE DB data type(s) when SAS outputs data to
DBMS tables through OLE DB.

Default value: DBTYPE_STR(size) or DBTYPE_R8

Option type: Data set only

Syntax

DBTYPE=(column-name-1=data-type <...> <column-name-n=data-type>)

Details
The default type for SAS character variables is DBTYPE_STR(size), where the size is

derived from the length of the SAS variable length. The default for SAS numeric
variables is DBTYPE_R8 unless you specify a format such as m.n, in which case the
type becomes DBTYPE_NUMERIC. For more information on SAS and OLE DB types,
see “OLE DB Data Types” on page 41. To see a full description of this data set option,
refer to Chapter 4, "SAS/ACCESS Data Set Options".

QUALIFIER=

Specifies the qualifier to use when reading a data source, such as DBMS tables and views.

Default value: default schema name

Option type: LIBNAME and Data set

Syntax

QUALIFIER=<qualifier-name>

Details QUALIFIER= is optional. If it is omitted, you use the default qualifier name,
if any, for the data source. QUALIFIER= can be used for any data source, such as a
DBMS object, that allows three-part identifier names: qualifier.schema.object. For
example, in the following SAS/ACCESS LIBNAME statement, any reference to SAS in
the DBLIB.EMP table would be sent to the DBMS as rfcdept.hrdiv.emp.

libname dblib oledb provider=sqloledb
properties=(’User ID’=suzanne Password=mypw3

"data source"=t1007
"initial catalog"=mgr1)

schema=hrdiv qualifier=rfcdept;

OLE DB Chapter, First Edition 4 READ_ISOLATION_LEVEL= 21

READ_ISOLATION_LEVEL=

Defines the degree of isolation of the current application process from other concurrently running
application processes.

Default value: Provider specifies
Alias: RIL=
Option type: LIBNAME and Data set

Syntax
READ_ISOLATION_LEVEL=S | RR | RC | RU

S = Serializable
RR = Repeatable Read
RC = Read Committed
RU = Read Uncommitted

Details
The degree of isolation identifies
� the degree to which rows that are read and updated by the current application are

available to other concurrently executing applications
� the degree to which update activity of other concurrently executing application

processes can affect the current application.

The READ_ISOLATION_LEVEL= option applies only when reading a DBMS table or
view. By default, this option is not set. The provider sets the default value. If
READ_LOCK_TYPE= is not set to ROW, then READ_ISOLATION_LEVEL= is ignored .

OLE DB supports five isolation levels. The isolation levels are defined in terms of
several possible occurrences:

� Dirty read — A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, it will be able to see changes made
by those concurrent transactions even before they commit.

For example, suppose that transaction T1 performs an update on a row,
transaction T2 then retrieves that row, and transaction T1 then terminates with
rollback. Transaction T2 has then seen a row that no longer exists.

� Nonrepeatable read — If a transaction exhibits this phenomenon, it is possible that
it may read a row once and, if it attempts to read that row again later in the course
of the same transaction, the row might have been changed or even deleted by
another concurrent transaction. Therefore, the read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row, transaction T2 then
updates that row, and transaction T1 then retrieves the same row again.
Transaction T1 has now retrieved the same row twice but has seen two different
values for it.

� Phantom reads — When a transaction exhibits this phenomemon, a set of rows
that it reads once might be a different set of rows if the transaction attempts to
read them again.

For example, suppose that transaction T1 retrieves the set of all rows that
satisfy some condition. Suppose that transaction T2 then inserts a new row that

22 READ_LOCK_TYPE= 4 Chapter 1

satisfies that same condition. If transaction T1 now repeats its retrieval request, it
will see a row that did not previously exist, a phantom.

The isolation levels for READ_ISOLATION_LEVEL= include the following:

� Serializable (S)

� does not allow dirty reads

� does not allow nonrepeatable reads

� does not allow phantom reads

� Repeatable Read (RR)

� does not allow dirty reads

� does not allow nonrepeatable reads

� allows phantom reads

� Read Committed (RC)

� does not allow dirty reads

� allows nonrepeatable reads

� allows phantom reads

� Read Uncommitted (RU)

� allows dirty reads

� allows nonrepeatable reads

� allows phantom reads

READ_LOCK_TYPE=

Specifies how a table is locked during a READ operation.

Default value: ROW

Option type: LIBNAME and Data set

Syntax
READ_LOCK_TYPE=ROW

Details
The value ROW specifies that a row or set of rows will be locked. SAS/ACCESS

software uses the READ_ISOLATION_LEVEL= option to determine which rows will be
locked. Currently, the only valid locking that is allowed is through the
READ_ISOLATION_LEVEL= option; therefore, READ_LOCK_TYPE= only allows a
value of ROW.

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

OLE DB Chapter, First Edition 4 SASDATEFMT= 23

ROWSET_SIZE=

Specifies the number of rows to use when reading data from the data source.

Default value: 1

Alias: ROWSET=

Option type: LIBNAME and Data set

Syntax
ROWSET_SIZE=number-of-rows

Details
By default, ROWSET_SIZE=1 so that only one row is retrieved at a time. The higher

the value for ROWSET_SIZE=, the more rows that the SAS/ACCESS engine for OLE
DB retrieves in one fetch operation. This option reduces the amount of I/O that is used
and can help improve performance. However, because SAS software stores the rows in
memory, higher values for ROWSET_SIZE= use more memory. In addition, if too many
rows are selected at once, then the rows that are returned to the SAS application might
be out of date.

SASDATEFMT=

Changes the SAS date or datetime format of a data source column.

Default value: Not set

Option type: Data set only

Syntax
SASDATEFMT=(date-column="SAS-date-format" ...)

Details
For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set

Options".

Example: Using SASDATEFMT to convert a date column to a SAS date format In this
example, SAS changes the format of the HIRED column to the SAS DATE9. format for
reading the data in SAS.

proc print data=mydblib.payroll
(sasdatefmt=(hired=’DATE9.’));

run;

24 SASDATEINFMT= 4 Chapter 1

See Also
SASDATEFMT= in Chapter 4, "SAS/ACCESS Data Set Options"

SASDATEINFMT=

Changes the SAS date informat of a data source column.

Default value: None
Option type: Data set only

Syntax
SASDATEINFMT=(date-column="SAS-date-format"...)

Details
For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set

Options".

Example: Using SASDATEINFMT to convert SAS dates into DBMS dates In this
example, SAS changes the HIRED column from the default OLE DB data type to the
DATE9. format before appending the data to the DBMS table.

proc append base=air.payroll
data=mydblib.payroll2

(sasdateinfmt=(hired=’DATE9.’));
run;

See Also
SASDATEFMT= in Chapter 4, "SAS/ACCESS Data Set Options"

SCHEMA=

Enables you to read a data source, such as a DBMS table and view, in the specified schema.

Default value: None
Alias: OWNER=
Option type: LIBNAME and Data set

Syntax
SCHEMA=schema-name

Details
A schema is a logical classification of objects accessed by a data source, where the

source is a relational database. For this option to work, you must have READ privileges

OLE DB Chapter, First Edition 4 UPDATE_ISOLATION_LEVEL= 25

to the schema that is specified. SCHEMA= is optional, and if omitted, you connect to
the default schema.

Example: Accessing a table using SCHEMA=
In this example, SAS sends any reference to mydblib.emp as dbitest.emp.

libname mydblib oledb provider=sqloledb properties=(’User ID’=sue
Password=mypw3) qualifier=hrdiv;

proc print data=mydblib.employees (schema=mitori);
run;

UPDATE_ISOLATION_LEVEL=

Defines the degree of isolation of the current application process from other concurrently running
application processes

Default value: Not set
Alias: UIL=
Option type: LIBNAME and Data set

Syntax
UPDATE_ISOLATION_LEVEL=S | RC | RR

S = Serializable
RC = Read Committed
RR = Repeatable Read

Details
The degree of isolation identifies
� the degree to which rows that are read and updated by the current application are

available to other concurrently executing applications
� the degree to which update activity of other concurrently executing application

processes can affect the current application.

By default, UPDATE_ISOLATION_LEVEL= in not set. The provider sets the default
value. If UPDATE_LOCK_TYPE= is not set to ROW, then
UPDATE_ISOLATION_LEVEL= is ignored.

OLE DB supports four isolation levels. The isolation levels are defined in terms of
several possible occurrences:

� Dirty read — A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, it will be able to see changes that
are made by those concurrent transactions even before they commit.

For example, suppose that transaction T1 performs an update on a row,
transaction T2 then retrieves that row, and transaction T1 then terminates with
rollback. Transaction T2 has then seen a row that no longer exists.

� Nonrepeatable read — If a transaction exhibits this phenomenon, it is possible that
it may read a row once and, if it attempts to read that row again later in the course

26 UPDATE_LOCK_TYPE= 4 Chapter 1

of the same transaction, the row might have been changed or even deleted by
another concurrent transaction. Therefore, the read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row, transaction T2 then
updates that row, and transaction T1 then retrieves the same row again.
Transaction T1 has now retrieved the same row twice but has seen two different
values for it.

� Phantom reads — When a transaction exhibits this phenomemon, a set of rows
that it reads once might be a different set of rows if the transaction attempts to
read them again.

For example, suppose that transaction T1 retrieves the set of all rows that
satisfy some condition. Suppose that transaction T2 then inserts a new row that
satisfies that same condition. If transaction T1 now repeats its retrieval request, it
will see a row that did not previously exist, a phantom.

The isolation levels for UPDATE_ISOLATION_LEVEL= include the following:

� Serializable (S)
� does not allow dirty reads
� does not allow nonrepeatable reads
� does not allow phantom reads

� Repeatable Read (RR)
� does not allow dirty reads
� does not allow nonrepeatable reads
� allows phantom reads

� Read Committed (RC)
� does not allow dirty reads
� allows nonrepeatable reads
� allows phantom reads

UPDATE_LOCK_TYPE=

Specifies how an OLE DB table is locked during an UPDATE operation

Default value: ROW
Option type: LIBNAME and Data set

Syntax
UPDATE_LOCK_TYPE=ROW

Details
The UPDATE_ISOLATION_LEVEL= option applies only when updating a DBMS

table or view. The value ROW specifies that a row or set of rows will be locked. To
determine which rows will be locked, SAS/ACCESS software uses the
UPDATE_ISOLATION_LEVEL= option.

OLE DB Chapter, First Edition 4 CONNECT Statement 27

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

See Also
READ_LOCK_TYPE=“READ_LOCK_TYPE=” on page 22

SQL Procedure Pass-Through Facility: OLE DB Specifics
The SQL Procedure Pass-Through facility consists of three PROC SQL statements

and one component. For details about the OLE DB-specific information, see the
“CONNECT Statement” on page 27 and the “CONNECTION TO Component” on page
32 component. For a complete description of the SQL Procedure Pass-Through facility,
see Chapter 6, "SQL Procedure’s Interaction with SAS/ACCESS Software" .

CONNECT Statement
Establishes a connection with the data source.

Syntax
CONNECT TO OLEDB <AS alias > <(<OLE-DB-connection-arguments>)>;

Arguments
You use the following arguments with the CONNECT statement:

alias
specifies an optional alias that has 1 to 32 characters. If you specify an alias, the
keyword AS must appear before the alias.

(OLE DB-connection-arguments)
specifies the data source-specific arguments that PROC SQL needs in order to
connect to the data source, such as a relational DBMS. These arguments must be
enclosed in parentheses. For some data sources, these arguments have default values
and, therefore, are optional. The arguments for OLE DB are described in the
following sections.

OLE DB Connection Arguments PROC SQL supports multiple connections to OLE DB.
If you use multiple simultaneous connections, you must use an alias to identify the
different connections. If you do not specify an alias, the default alias, OLEDB, is used.
The functionality of multiple connections to the same OLE DB provider might be
limited by a particular provider.

The CONNECT statement is required when connecting to OLE DB providers by way
of the SQL Pass-Through Facility.

Note: Not all of these engine-connection options are supported by all OLE DB
providers. Refer to your vendor-supplied documentation for more information. 4

The arguments for the data-source connection information arguments can be quoted
by using either single or double quotes. Some values may include embedded spaces,
semicolons, or quotes and, therefore, must be quoted.

28 CONNECT Statement 4 Chapter 1

The OLE DB connection arguments are
AUTOCOMMIT= on page 28
COMPLETE= on page 28
INIT_STRING= on page 28
OLEDB_SERVICES= on page 29
PROMPT= on page 30
PROPERTIES= on page 30
PROVIDER= on page 30
PROVIDER_STRING= on page 31
REQUIRED= on page 31

AUTOCOMMIT=YES | NO
indicates whether or not updates are committed immediately to the data source as
soon as they are submitted.

Default value: YES.
If AUTOCOMMIT=YES, no rollback is possible. This is the default for the SQL

Procedure Pass-Through Facility and read-only connections.
If AUTOCOMMIT=NO, the SAS/ACCESS engine performs the commit

automatically when it reaches the end of the file.

COMPLETE=YES | NO
specifies whether the SAS/ACCESS engine for OLE DB tries to connect to the data
source with the properties that you specified in PROPERTIES=. If
COMPLETE=YES, the engine tries to connect. If enough information is specified
for a successful connection, then the connection is made without any prompting for
more information.

Default value: NO.
If you specify COMPLETE= NO or do not have enough information to connect,

you are prompted for the connection options with a dialog window.
COMPLETE= is used only when you use connect directly to OLE DB using the

PROVIDER= and OLEDB_SERVICES=NO options in a SAS/ACCESS LIBNAME
statement.

See also these arguments: PROMPT= on page 30, PROPERTIES= on page 30,
PROVIDER= on page 30, OLEDB_SERVICES= on page 29.

INIT_STRING="<initilization-string>"
using OLE DB Services, INIT_STRING= specifies an initialization string when
connecting to a data source. After you are prompted to supply information to
connect to your data source, the SAS/ACCESS engine for OLE DB returns the
complete initialization string to the macro variable, SYSDBMSG. You can then
re-use the initialization string to connect to the same provider and data source.

In this example, you submit the basic connection information so that you will be
prompted for the rest of the information. Using OLE DB Services is the default
value, so you can omit the OLEDB_SERVICES= option.

libname mydblib oledb;

Through dialog windows, OLE DB Services prompts you for the provider and
properties’ values. The advantage of being prompted is that you do not need to
know any special syntax to set the properties’. Prompting also enables you to set
more options than you might when connecting directly to the provider (and not
using OLE DB Services).

After connecting to the data source, the SAS/ACCESS engine for OLE DB
returns the initialization string to the SYSDBMSG macro variable. To write this

OLE DB Chapter, First Edition 4 CONNECT Statement 29

string to the SAS log immediately after connecting to the data source, submit the
following:

%put &SYSDBMSG;

OLEDB: Provider=SQLOLEDB;Password=dbmgr1;Persist Security Info=True;
User ID=rachel;Initial Catalog=users;Data Source=DBPC6;

The SYSDBMSG information mirrors all of the options that you chose during
your prompted connection. Notice that the initialization string is prefixed with
OLEDB:. When you store the string for later use, delete this prefix and any initial
spaces before the first listed option.

By storing the initialization string, you can re-use it in the INIT_STRING=
option to make automated connections or to specify this option in batch jobs:

init_string="Provider=SQLOLEDB;Password=dbmgr1;
Persist Security Info=True;User ID=rachel;
Initial Catalog=users;Data Source=DBPC6";

Using INIT_STRING= enables you to bypass the prompting window but still gives
you the advantages of the OLE DB Services, such as performance optimizations.

Specifying INIT_STRING= overrides any values that were set with the SAS/
ACCESS connection options PROVIDER= on page 30 and PROPERTIES= on page
30.

By default, the INIT_STRING= option is not set. However, if you specify the
option with a null argument, (INIT_STRING=""), OLE DB connects to ODBC
with a default set of properties. See the Microsoft OLE DB documentation for
more information about these defaults.

Alias: INIT=.

OLEDB_SERVICES=YES | NO
determines whether the SAS/ACCESS engine for OLE DB uses OLE DB Services.
OLEDB_SERVICES=YES causes the engine to use OLE DB Services, and
OLEDB_SERVICES=NO causes the engine to use the provider to connect to the
data source.

The default value is YES. Generally, OLE DB Services is easier to use and more
consistent. When OLEDB_SERVICES=YES and a successful prompted connection
is made, the complete connection string is returned in the SYSDBMSG macro
variable.

OLEDB_SERVICES= interacts with other connection options. If you have set
PROMPT=YES, OLEDB_SERVICES=YES enables you to set more options than
you would be able to set by being prompted by the provider’s dialog window. If
OLEDB_SERVICES=NO, you must specify PROVIDER= first in order for the
provider’s prompt dialogs to be used. If PROVIDER= is omitted, the SAS/ACCESS
engine uses OLE DB Services, regardless of how the OLEDB_SERVICES= option
is set.

If the BCP=YES option is set for MS SQL Server data, then
OLEDB_SERVICES=NO. OLEDB_SERVICES= also interacts with the PROMPT=,
REQUIRED= , and COMPLETE= arguments.

See these arguments for more information: COMPLETE= on page 28,
PROMPT= on page 30, PROVIDER= on page 30, REQUIRED= on page 31.

30 CONNECT Statement 4 Chapter 1

PROMPT=YES | NO
enables you to be prompted for connection information to access the data source.
The kind of prompting that you receive depends on how you set the PROVIDER=
and OLEDB_SERVICES= options.

If a provider name is specified and OLEDB_SERVICES= NO, the OLE DB
provider displays a dialog window that contains the connection information and
property attributes. If the provider name is omitted or OLEDB_SERVICES=YES,
the OLE DB Services displays a dialog window that enables you to select a provider
and to specify connection information and property attributes. The dialog window
for OLE DB Services is generally preferred over the provider’s dialog window
because the OLE DB Services window enables you to set options more easily.

If PROMPT=YES, properties that were set with PROPERTIES= will be
displayed in the dialog window. This applies both to the provider dialog window
and to the OLE DB Services dialog window. You can edit any field before you
connect to the data source.

If the provider name is omitted, the SAS/ACCESS engine for OLE DB tries to
prompt you for the connection information by using the OLE DB Services dialog
window. This applies even if PROMPT=NO and OLEDB_SERVICES= NO. If the
provider name is omitted in batch mode, the connection fails.

If you are unsure what to specify for various provider properties, use the
PROMPT= option to guide you through the connection process.

See the following arguments for more information: PROVIDER= on page 30,
OLEDB_SERVICES= on page 29, PROPERTIES= on page 30.

PROPERTIES=(<">property-name-1<">=<">property-value-1<"> . . .
<">property-name-n <">=<">property-value-n<">)

specifies provider properties that enable you to connect to a data source and to
define the attributes of that connection. Each property name is assigned a value
using an equal sign (=). If the property name or value contains embedded spaces
or special characters, enclose the name in double quotes. Separated multiple pairs
with a space. PROPERTIES= is optional in OLE DB.

In this example, you specify a user ID and password to connect to a Microsoft
SQL Server data source, you would enter:

libname mydblib oledb provider=sqloledb
properties=("User ID"=shala
Password="mypw@hr");

Note: See your provider’s documentation for a list and description of all the
properties that your provider supports. 4

Aliases: PROPS= and PROP=.

PROVIDER=<’> your-provider-name<’>
specifies the OLE DB provider to use in order to connect to the data source. The
PROVIDER= option is required during batch processing.

There is no restriction on the length of the name. Put names with non-standard
SAS characters (such as spaces, colons, @ signs) in single or double quotations
marks.

If you omit this option, you are prompted for the provider name. It is
recommended that, if possible, you use the dialog prompts to connect to your data
source. The prompts enable you to use an interactive interface to enter the name
of the provider, properties, and connection options.

Alias: PROV=.

OLE DB Chapter, First Edition 4 CONNECT Statement 31

PROVIDER_STRING=<">provider-name<">
passes additional provider-specific connection information to the provider. The
provider-string is enclosed in quotation marks if it contains blank spaces or special
characters. The PROVIDER_STRING= option works whether you are connecting
directly to the provider or are using OLE DB Services. Microsoft uses this
provider-string for its Jet provider in order to determine the type of data source to
which it connects. MS Jet currently accepts the following providers; this list is not
all-inclusive and is subject to change by Microsoft:

dBase III, IV, 5.0
Excel 3.0, 4.0, 5.0, 8.0
Exchange 4.0
HTML Export, HTML Import
Jet 2.x, Jet 3.x
Lotus WJ2, WJ3
Lotus WK1, WK2, WK3, WK4
Outlook 9.0
Paradox 3.x, Paradox 4.x, Paradox 5.x, Paradox 7.x
Text

Providers other than MS Jet accept other provider-strings, and the values that
MS Jet accepts are subject to change. For example, to connect to an Excel 8.0
spreadsheet using the Microsoft Jet provider, you could issue the following
LIBNAME statement:

libname y2kbudget oledb provider="Microsoft.Jet.OLEDB.4.0"
properties=(’data source’=’d:\excel80\Y2Kbudgetworksheet.xls’)
provider_string="Excel 8.0";

In this example’s LIBNAME statement, you use the Microsoft Jet 4.0 provider
to access the spreadsheet Y2Kbudgetworksheet.xls. Notice that you must
specify the provider-string "Excel 8.0" so that MS Jet recognizes that the file is
an Excel 8.0 worksheet.

REQUIRED=YES | NO
indicates whether you specify connection options for your provider.

If you specify REQUIRED= YES, the SAS/ACCESS engine for OLE DB tries to
connect to the data source by using the properties that were specified in
PROPERTIES=. If you specify enough information to make a connection, then the
connection is made without prompting. Otherwise, a dialog window is displayed to
prompt you for the connection options. Options in the dialog window that are not
related to the connection are disabled.

REQUIRED= is used only when you connect directly to OLE DB using the
PROVIDER= and OLEDB_SERVICES=NO options in a SAS/ACCESS LIBNAME
statement. The default value is REQUIRED=NO.

For more information, see OLEDB_SERVICES=, PROPERTIES= on page 30,
PROVIDER= on page 30.

Example: An MS SQL Server CONNECT statement In this example, you use an alias to
connect to a Microsoft SQL Server database and select a subset of data from the
payroll table. The SAS/ACCESS engine uses OLE DB Services to connect to OLE DB
because this is the default action when the OLEDB_SERVICES= option is omitted.

32 CONNECTION TO Component 4 Chapter 1

proc sql;
connect to sqlservr as finance

(properties=(’data source’=’Microsoft SQL Server Database’
’User ID’=isabella password=tester1

provider=sqloledb));

select * from connection to finance (select * from payroll
where jobcode=’FA3’);

quit;

In this example, you are prompted for more information because the PROC SQL
CONNECT statement has omitted the provider name and properties. See “Connecting
with OLE DB Services” on page 3 for a sample prompt window. This example also uses
OLE DB Services to connect to OLE DB.

proc sql;
connect to oledb;
quit;

CONNECT Example This example uses OLE DB to connect to a provider that is
configured under the data source name User’s Data using the alias USER1. Note
that the data source name(s) can contain quotes and spaces.

proc sql;
connect to oledb as user1
(properties=("data source"="User’s Data" "User id"=adi

password=ghana));

CONNECTION TO Component

Retrieves and uses data from a data source in a PROC SQL query or view.

Optional component

Syntax

CONNECTION TO OLEDB | alias (DBMS-SQL-query)

Arguments

alias
specifies an alias, if one was defined in the CONNECT statement.

(DBMS-SQL-query)
specifies the query that you are sending to the data source, such as a relational
DBMS. Data sources other that relational databases can be specified in the SQL
Procedure Pass-Through Facility, but they must have SQL capabilities. The query
can use any DBMS-specific SQL statement or syntax that is valid for the DBMS.

OLE DB Chapter, First Edition 4 Special OLE DB Queries 33

However, the query cannot contain a semicolon because to the SAS System, a
semicolon represents the end of a statement.

You must specify a DBMS-SQL-query argument in the CONNECTION TO
component, and the query must be enclosed in parentheses. The query is passed to
the DBMS exactly as you type it; therefore, if your DBMS is case sensitive, you must
either use the correct case for names or you must quote them. Quoted character
strings are limited to 32Kb characters. Or for some DBMSs, the DBMS-SQL-query
argument can be a DBMS-specific SQL EXECUTE statement that executes a DBMS
stored procedure. However, if the stored procedure contains more than one query,
only the first query is processed.

The CONNECTION TO component specifies the data source connection that you
want to use or that you want to establish (if you have omitted the CONNECT
statement). CONNECTION TO then enables you to retrieve data from the data source
directly through a PROC SQL query.

You use the CONNECTION TO component in the FROM clause of a PROC SQL
SELECT statement:

PROC SQL;

SELECT column-list

FROM CONNECTION TO dbms-name (DBMS-SQL-query)
other-optional-PROC-SQL-clauses;

CONNECTION TO can be used in any FROM clause, including those that are in
nested queries (that is, subqueries).

You can store a Pass-Through query in a PROC SQL view and then use that view in
SAS programs. When you create a PROC SQL view, any options that you specify in the
corresponding CONNECT statement are stored too. Thus, when the PROC SQL view is
used in a SAS program, the SAS System can establish the appropriate connection to the
data source.

On many DBMSs, you can issue a CONNECTION TO component in a PROC SQL
SELECT statement directly without first connecting to a DBMS . If you omit the
CONNECT statement, an implicit connection is performed when the first PROC SQL
SELECT statement that contains a CONNECTION TO component is passed to the
DBMS. Default values are used for all connection arguments.

Because DBMSs and the SAS System have different naming conventions, some
DBMS column names might be truncated when you retrieve DBMS data through the
CONNECTION TO component. Default SAS variable names follow these rules:

� If the column name is longer than thirty-two characters, the SAS System uses
only the first thirty-two characters. If truncating results in duplicate names,
sequential numbers (starting with zero) are appended to the ends of the names.

� If the column name contains characters that are invalid SAS names (such as
national characters), the SAS System replaces the invalid characters with
underscores (_). For example, the column name func$ becomes the SAS variable
name func_.

Special OLE DB Queries

The following special queries are supported by the SAS/ACCESS interface to OLE
DB. Many databases provide or use system tables that enable queries to return the list
of available tables, columns, procedures, and other useful information. In OLE DB,

34 Special OLE DB Queries 4 Chapter 1

much of this functionality is provided through special APIs (application programming
interfaces) in order to accommodate databases that do not follow the SQL table
structure. You can use these special queries on non-SQL and on SQL databases. The
general format of the special queries is:

OLEDB::schema-rowset("parameter 1","parameter n")

where

OLEDB::
is required to distinguish special queries from regular queries

schema-rowset
is the specific schema rowset that is being called. All valid schema rowsets are
listed under the IDBSchemaRowset Interface in the Microsoft OLE DB
Programmer’s Reference. Both OLEDB:: and schema-rowset are case-sensitive.

"parameter n"
is a quoted string that is enclosed by commas. The values for the special query
arguments are specific to each data source. For example, you supply the fully
qualified table name for the "Qualifier" argument. In dBase, the value of
"Qualifier" might be c:\dbase\tst.dbf, and in SQL Server, the value might be
test.customer. In addition, depending on the data source that you use, values
for "Owner" might be a user ID, a database name, or a library. All arguments are
optional. If you specify some but not all parameters within an argument, use a
comma to indicate the omitted parameters. If you do not specify any parameters,
commas are not necessary. Note that these special queries might not be available
for all OLE DB providers.

The following special queries are supported:

OLEDB::ASSERTIONS(<"Catalog", "Schema", "Constraint-Name">)
returns assertions defined in the catalog that are owned by a given user.

OLEDB::CATALOGS(<"Catalog">)
returns physical attributes associated with catalogs that are accessible from the
DBMS.

OLEDB::CHARACTER_SETS(<"Catalog", "Schema","Character-Set-Name">)
returns the character sets defined in the catalog that are accessible to a given user.

OLEDB::CHECK_CONSTRAINTS(<"Catalog", "Schema", "Constraint-Name">)
returns check constraints defined in the catalog that are owned by a given user.

OLEDB::COLLATIONS(<"Catalog", "Schema", "Collation-Name">)
returns the character collations defined in the catalog that are accessible to a
given user.

OLEDB::COLUMN_DOMAIN_USAGE(<"Catalog", "Schema", "Domain-Name",
"Column-Name">)

returns the columns defined in the catalog that are dependent on a domain defined
in the catalog and owned by a given user.

OLEDB::COLUMN_PRIVILEGES(<"Catalog", "Schema", "Table-Name",
"Column-Name", "Grantor", "Grantee">)

returns the privileges on columns of tables defined in the catalog that are
available to or granted by a given user

OLEDB::COLUMNS(<"Catalog", "Schema", "Table-Name", "Column-Name">)
returns the columns of tables defined in the catalogs that are accessible to a given
user.

OLE DB Chapter, First Edition 4 Special OLE DB Queries 35

OLEDB::CONSTRAINT_COLUMN_USAGE(<"Catalog", "Schema", "Table-Name",
"Column-Name">)

returns the columns used by referential constraints, unique constraints, check
constraints, and assertions that are defined in the catalog and owned by a given
user.

OLEDB::CONSTRAINT_TABLE_USAGE(<"Catalog", "Schema", "Table-Name">)
returns the tables used by referential constraints, unique constraints, check
constraints, and assertions that are defined in the catalog and owned by a given
user.

OLEDB::FOREIGN_KEYS(<"Primary-Key-Catalog", "Primary-Key-Schema",
"Primary-Key-Table-Name", "Foreign-Key-Catalog", "Foreign-Key-Schema",
"Foreign-Key-Table-Name">)

returns the foreign key columns defined in the catalog by a given user.

OLEDB::INDEXES(<"Catalog", "Schema", "Index-Name", "Type", "Table-Name">)
returns the indexes defined in the catalog that are owned by a given user.

OLEDB::KEY_COLUMN_USAGE(<"Constraint-Catalog", "Constraint-Schema",
"Constraint-Name", "Table-Catalog", "Table-Schema", "Table-Name",
"Column-Name">)

returns the columns defined in the catalog that are constrained as keys by a given
user.

OLEDB::PRIMARY_KEYS(<"Catalog", "Schema", "Table-Name">)
returns the primary key columns defined in the catalog by a given user.

OLEDB::PROCEDURE_COLUMNS(<"Catalog", "Schema", "Procedure-Name",
"Column-Name">)

returns information about the columns of rowsets returned by procedures.

OLEDB::PROCEDURE_PARAMETERS(<"Catalog", "Schema", "Procedure-Name",
"Parameter-Name">)

returns information about the parameters and return codes of the procedures.

OLEDB::PROCEDURES(<"Catalog", "Schema", "Procedure-Name",
"Procedure-Type">)

returns procedures defined in the catalog that are owned by a given user.

OLEDB::PROVIDER_INFO()
returns output that contains the following columns: PROVIDER_NAME,
PROVIDER_DESCRIPTION, and PROVIDER_PROPERTIES. The
PROVIDER_PROPERTIES column contains a list of all the properties that the
provider supports. The properties are separated by a semicolon(;). See the
example“Examples” on page 36.

OLEDB::PROVIDER_TYPES(<"Data Type", "Best-Match">)
returns information on the base data types supported by the data provider.

OLEDB::REFERENTIAL_CONSTRAINTS(<"Catalog", "Schema",
"Constraint-Name">)

returns the referential constraints defined in the catalog that are owned by a given
user.

OLEDB::SCHEMATA(<"Catalog", "Schema", "Owner">)
returns the schemas that are owned by a given user.

OLEDB::SQL_LANGUAGES()
returns the conformance levels, options and dialects supported by the
SQL-implementation processing data that is defined in the catalog.

36 Examples 4 Chapter 1

OLEDB::STATISTICS(<"Catalog", "Schema", "Table-Name">)
returns the statistics defined in the catalog that are owned by a given user.

OLEDB::TABLE_CONSTRAINTS(<"Constraint-Catalog", "Constraint-Schema",
"Constraint-Name", "Table-Catalog", "Table-Schema", "Table-Name",
"Constraint-Type">)

returns the table constraints defined in the catalog that are owned by a given user.

OLEDB::TABLE_PRIVILEGES(<"Catalog", "Schema", "Table-Name", "Grantor",
"Grantee">)

returns the privileges on tables defined in the catalog that are available to or
granted by a given user.

OLEDB::TABLES(<"Catalog", "Schema", "Table-Name", "Table-Type">)
returns the tables defined in the catalog that are available to or granted by a given
user.

OLEDB::TRANSLATIONS(<"Catalog", "Schema", "Translation-Name">)
returns the character translations defined in the catalog that are accessible to a
given user.

OLEDB::USAGE_PRIVILEGES(<"Catalog", "Schema", "Object-Name", "Object-Type",
"Grantor", "Grantee">)

returns the USAGE privileges on objects defined in the catalog that are available
to or granted by a given user.

OLEDB::VIEW_COLUMN_USAGE(<"Catalog", "Schema", "View-Name">)
returns the columns on which viewed tables, defined in the catalog and owned by a
given user, are dependent.

OLEDB::VIEW_TABLE_USAGE(<"Catalog", "Schema", "View-Name">)
returns the tables on which viewed tables, defined in the catalog and owned by a
given user, are dependent.

OLEDB::VIEWS(<"Catalog", "Schema", "Table-Name">)
returns the viewed tables defined in the catalog that are accessible to a given user.

For a complete description of each rowset and the columns that are defined in each
rowset, refer to the Microsoft OLE DB Programmer’s Reference.

Examples
In this example, you retrieve a rowset that displays all of the tables that are accessed

by the schema HRDEPT:

proc sql;
connect to oledb("User ID"=dbajorge Password=dbajorge99

"Data Source"="oracle8_loc");
select * from connection to oledb

(OLEDB::TABLES(,"HRDEPT"));

This next example uses the special query OLEDB::PROVIDER_INFO() to produce
the output that follows it:

proc sql;
connect to oledb("User ID"=dbajorge Password=dbajorge99

"Data Source"="oracle8_loc");

OLE DB Chapter, First Edition 4 Using the SQL Procedure Pass-Through Facility 37

select * from connection to oledb
(OLEDB::PROVIDER_INFO());

Output 1.1 Provider and Properties Output

PROVIDER_NAME PROVIDER_DESCRIPTION PROVIDER_PROPERTIES
------------- -------------------- -------------------
MSDAORA Microsoft OLE DB Password;User ID;Data

Provider for Oracle Source;Window Handle;Locale
Identifier;OLE DB Services;
Prompt; Extended Properties;

SampProv Microsoft OLE DB Data Source;Window Handle;
Sample Provider Prompt;

You could then reference the output when automating a connection to the provider.
For the previous result set, you could write the following SAS/ACCESS LIBNAME
statement:

libname mydblib oledb provider=msdaora
props=(’Data Source’=OraServer ’User ID’=Smith);

Accessing OLE DB for OLAP Data

Overview
The SAS/ACCESS interface to OLE DB provides a facility for accessing OLE DB for

OLAP data. You can specify a Multidimensional Expressions (MDX) statement through
the SQL Procedure Pass-Through Facility to access the data directly, or create a PROC
SQL view of the data. Note that you must pass an MDX statement which specifies a
two-axis “flattened” data set. Attempting to return a data set with more than two axes
will result in an error. Refer to the Microsoft Data Access Components Software
Developer’s Kit for details on MDX syntax.

Note: This implementation provides read-only access to OLE DB for OLAP data.
You cannot update or insert data with this facility. 4

Using the SQL Procedure Pass-Through Facility
The main difference between normal OLE DB access using SQL Pass-Through and

this implementation for OLE DB for OLAP is the use of additional identifiers to pass
MDX statements to the OLE DB for OLAP data. These identifiers are:

38 Using the SQL Procedure Pass-Through Facility 4 Chapter 1

MDX::
identifies MDX statements that return a “flattened” data set from the
multidimensional data

MDX_DESCRIBE::
identifies MDX statements that return detailed column information.

An MDX_DESCRIBE:: identifier is used to obtain detailed information on each
returned column. During the process of “flattening” multidimensional data into a
two-axis data set, OLE DB for OLAP builds column names from each level of the given
dimension. For example, for OLE DB for OLAP multidimensional data that contains
CONTINENT, COUNTRY, REGION, and CITY dimensions, you could build a column
with the following name:

[NORTH AMERICA].[USA].[SOUTHEAST].[ATLANTA]

This name cannot be used as a SAS variable name because it has more than 32
characters. For this reason, the SAS/ACCESS engine for OLE DB creates a column
name based on a shortened description, in this case, ATLANTA. However, since there
could be an ATLANTA in some other combination of dimensions, you might need to
know the complete OLE DB for OLAP column name. Using the MDX_DESCRIBE::
identifier returns a SAS data set that contains the SAS name for the returned column
and its corresponding OLE DB for OLAP column name:

SASNAME MDX_UNIQUE_NAME

ATLANTA [NORTH AMERICA].[USA].[SOUTHEAST].[ATLANTA]
CHARLOTTE [NORTH AMERICA].[USA].[SOUTHEAST].[CHARLOTTE]

. .

. .

. .

If two or more SASNAMEs are identical, a number is appended to the end of the
second and later instances of the name; for example, ATLANTA, ATLANTA0,
ATLANTA1, and so on. Also, depending on the value of the VALIDVARNAME= system
option, illegal characters are converted to underscores in the SASNAME.

Syntax
This facility uses the following general syntax. For more information on SQL

Pass-Through syntax, see .

PROC SQL <options>;

CONNECT TO OLEDB (<options>);

<non-SELECT SQL statement(s)>

SELECT column-identifier(s) FROM CONNECTION TO OLEDB
(MDX:: | MDX_DESCRIBE:: <MDX statement>)

<other SQL statement(s)>
;

MDX::
identifies the following statement as an MDX statement that requests data from
the multidimensional data. The MDX statement is passed through to the provider,
and the resulting “flattened” data set is returned to SAS software.

OLE DB Chapter, First Edition 4 Using the SQL Procedure Pass-Through Facility 39

MDX_DESCRIBE::
identifies a request for detailed information about the column names for the data
set that would be returned by the MDX statement. The returned data set contains
two varaibles:

� SASNAME, containing the SAS names for the columns that would be
returned by the MDX statements

� MDX_UNIQUE_NAME, containing the fully-described OLE DB for OLAP
column identifier

Examples
The following code uses SQL Pass-Through to pass an MDX statement to a Microsoft

SQL Server Decision Support Services (DSS) Cube. The provider used is the Microsoft
OLE DB for OLAP provider named MSOLAP.

proc sql noerrorstop;
connect to oledb (provider=msolap prompt=yes);
select * from connection to oledb

(MDX::select {[Measures].[Units Shipped],
[Measures].[Units Ordered]} on columns,
NON EMPTY [Store].[Store Name].members on rows
from Warehouse);

See the Microsoft Data Access Components Software Developer’s Kit for details on MDX
systax.

The CONNECT statement requests prompting for connection information, which
facilitates the connection process (especially with provider properties). The MDX::
prefix identifies the statement within the parentheses that follows the MDX statement
sytax, and is not an OLAP-specific SQL statement. Partial output from this query
might look like this:

Store Units Shipped Units Ordered

Store6 10,647 11,699
Store7 24,850 26,223

. . .

. . .

. . .

You can use the same MDX statement with the MDX_DESCRIBE:: identifier to see
the full description of each column:

proc sql noerrorstop;
connect to oledb (provider=msolap prompt=yes);
select * from connection to oledb

(MDX_DESCRIBE::select {[Measures].[Units Shipped],
[Measures].[Units Ordered]} on columns,
NON EMPTY [Store].[Store Name].members on rows
from Warehouse);

The next example creates a view of the OLAP data, which is then accessed using the
PRINT procedure:

proc sql noerrorstop;
connect to oledb(provider=msolap

props=(’data source’=sqlserverdb
’user id’=myuserid password=mypassword));

40 OLE DB Naming Conventions 4 Chapter 1

create view work.myview as
select * from connection to oledb

(MDX::select {[MEASURES].[Unit Sales]} on columns,
order(except([Promotion Media].[Media Type].members,
{[Promotion Media].[Media Type].[No Media]}),
[Measures].[Unit Sales],DESC) on rows

from Sales)
;

proc print data=work.myview;
run;

In this example, full connection information is provided in the CONNECT statement,
so the user is not prompted. The PROC SQL view can be used in other PROC SQL
statements, the DATA step, or in other procedures, but you cannot modify (that is,
insert, update, or delete a row in) the view’s underlying multidimensional data.

OLE DB Naming Conventions

Because OLE DB is not a database but rather is an application programming
interface (API), data source names for files, tables, and columns are determined at run
time, as described here. In Version 7 and later, most SAS names can be up to 32
characters long. The SAS/ACCESS interface for OLE DB also supports file, table, and
column names up to 32 characters long. If the file, table, or column names are longer
than 32 characters, they will be truncated to 32 characters. For more information, see
Chapter 2, "SAS Names and Support for DBMS Names" .

PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= are two SAS/
ACCESS LIBNAME options that specify whether to preserve blank spaces, special
characters, and mixed case in file, table, or column names. By setting these options to
YES, SAS preserves the case-sensitivity of the names. If
PRESERVE_TAB_NAMES=NO and PRESERVE_COL_NAMES=NO, then file, table,
and column names that are read from the data source are converted to SAS names by
using the SAS-name normalization rules.

This example specifies a Microsoft SQL Server provider that interacts with OLE DB.
SQL Server is generally case-sensitive and, as a provider to OLE DB, it takes the
default value YES for the preserve-name options. Therefore, this example would
produce a SQL Server table named staffids with a column named ID Num.

options validvarname=any;

libname mydblib oledb provider=sqloledb properties=(’UserID’=DIETER
password=FRUEHAUF "data source"="HR@00123");

proc sql dquote=ansi;
create table staffids as

select IDNUM as ’ID Num’n
from mydblib.STAFF;

quit;

proc print data=work.staffids;
run;

OLE DB Chapter, First Edition 4 OLE DB Data Types 41

If the data source were ORACLE, which is not case sensitive and which has a default
value of NO for the preserve-name options, the example would produce an ORACLE
table named STAFFIDS with a column named ID_NUM. The column names would be
normalized to uppercase and an underscore would be substituted for blank spaces or
characters that are not valid in SAS names.

For more information about the PRESERVE_COL_NAMES= and
PRESERVE_TAB_NAMES= options, see “SAS/ACCESS LIBNAME Options” on page 9.

OLE DB Data Types

A data source’s columns in a table each have a name and a data type. The data type
tells the data source how much physical storage to set aside for the column and the
form in which the data are stored.

Table 1.2 on page 41 shows all of the data types and default SAS formats that are
supported by the SAS/ACCESS engine for OLE DB. This table does not explicitly define
the data types as they exist for each data source. It lists the types that each data
source’s data type might map to. For example, an INTEGER data type under DB2
might map to an OLE DB data type of DBTYPE_I4. All data types are supported.

Table 1.2 OLE DB Data Types and Default SAS Formats

OLE DB Data Type Default SAS Format

DBTYPE_R8 none

DBTYPE_R4 none

DBTYPE_I8 none

DBTYPE_UI8 none

DBTYPE_I4 11.

DBTYPE_UI4 11.

DBTYPE_I2 6.

DBTYPE_UI2 6.

DBTYPE_I1 4.

DBTYPE_UI1 4.

DBTYPE_BOOL 1.

DBTYPE_NUMERIC m or m.n or none, if m and n are not specified

DBTYPE_DECIMAL m or m.n or none, if m and n are not specified

DBTYPE_CY DOLLARm.2

DBTYPE_BYTES $n.

DBTYPE_STR $n.

DBTYPE_BSTR $n.

DBTYPE_WSTR $n.

DBTYPE_DBDATE DATE9.

42 OLE DB Data Types 4 Chapter 1

OLE DB Data Type Default SAS Format

DBTYPE_DBTIME TIME8.

DBTYPE_TIMESTAMP and DBTYPE_DATE
DATETIMEm.n, where m depends on precision
and ndepends on scale

Table 1.3 on page 42 shows the default data types that the SAS/ACCESS engine for
OLE DB uses when creating DBMS tables.

Table 1.3 Default OLE DB Output Data Types

SAS Variable Format Default OLE DB Data Type

m.n
DBTYPE_R8 or DBTYPE_NUMERIC using m.n
if the DBMS allows it

$n. DBTYPE_STR using n

date formats DBTYPE_DBDATE

time formats DBTYPE_DBIME

datetime formats DBTYPE_DBTIMESTAMP

The SAS/ACCESS engine for OLE DB allows non-default data types to be specified
with the DBTYPE= data set option. See “DBTYPE=” on page 20 for more information
about this data set option.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8 (OLE DB
Chapter), Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8 (OLE DB
Chapter)
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–552–3
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

