
11

C H A P T E R

2
ACCESS Procedure Reference

Introduction 11
Note to UNIX and OS/390 Users 11

Import/Export Facility 12

ACCESS Procedure Syntax 12

Description 13

PROC ACCESS Statement Options 13
SAS System Passwords for SAS/ACCESS Descriptors 14

Assigning Passwords 15

Procedure Statements 15

Dictionary 16

Performance and Efficient View Descriptors 31

General Guidelines 31
Extracting Data Using a View 31

Introduction
You use the ACCESS procedure to create descriptor files that enable SAS/ACCESS

software to access supported PC file formats. This chapter provides general reference
information for the ACCESS procedure; more detailed information specific to supported
file formats is provided in Chapters 5 and later.

In this chapter, the PROC ACCESS statement and its options are presented first,
followed by the procedure statements. The last section, “Performance and Efficient
View Descriptors” on page 31, presents several efficiency considerations for using
SAS/ACCESS software.

For a quick reference to ACCESS procedure syntax, see the tab page enclosed with
your PC file format chapter.

For full information, refer to your base SAS reference documentation and the SAS
documentation for your operating environment.

To get online help for the ACCESS procedure, select the Help menu.

Note to UNIX and OS/390 Users
If you are running this SAS/ACCESS interface under the UNIX or OS/390 operating

environment, this chapter does not apply to you. Instead, see Chapter 3, “DBF and DIF
Procedures,” on page 33. Under UNIX and PC hosts, you can use these procedures to
convert a DBF or DIF file to a SAS data set or a SAS data set to a DBF or DIF file.
Under OS/390, you can use PROC DBF only to convert a DBF file to a SAS data set or a
SAS data set to a DBF file.

12 Import/Export Facility 4 Chapter 2

Import/Export Facility
UNIX and PC users can access DBF, WKn, Excel 4 and 5, Excel 97, and MS Access

and other data through the Import/Export facility or by using the IMPORT and
EXPORT procedures. An overview is included in Chapter 5, “Import/Export Facility
and Procedures,” on page 51.

To use the point-and-click interface from a SAS PROGRAM EDITOR window, select
the File menu and then select the Import Data or Export Data item. Information
about how to import or export PC file data is available from the Help button. The
following is a sample Import window:

Display 2.1 Import Window

To write code to import or export PC file data, refer to the detailed descriptions of the
IMPORT and EXPORT procedures in the SAS Procedures Guide. This documentation
also includes several examples.

ACCESS Procedure Syntax
PROC ACCESS options;

Create and Update Statements
CREATE libref.member-name.ACCESS|VIEW ;

UPDATE libref.member-name.ACCESS|VIEW ;

Database-Description Statement
PATH= ’path-and-filename<.PC-filename-extension>’ | <’>filename<’> | fileref;

Editing Statements
ASSIGN<=>YES|NO|Y|N;
DROP < ’>column-identifier-1< ’>

ACCESS Procedure Reference 4 PROC ACCESS Statement Options 13

<< ’>…column-identifier-n< ’>>;

FORMAT < ’>column-identifier-1< ’><=>SAS-format-name-1< ’>
<…< ’>column-identifier-n< ’><=>SAS-format-name-n>;

LIST <ALL|VIEW|< ’>column-identifier< ’>>;

QUIT;

RENAME < ’>column-identifier-1< ’><=>SAS-variable-name-1
<…< ’>column-identifier-n< ’><=>SAS-variable-name-n>;

RESET ALL | < ’>column-identifier-1 < ’><…< ’>column-identifier-n< ’>>;

SELECT ALL|< ’>column-identifier-1< ’>
<…< ’>column-identifier-n< ’>>;

SUBSET selection-criteria;

UNIQUE<=>YES|NO|Y|N ;

RUN;

The file-specific statements for your PC files might differ from those listed above. See
your PC file format chapter for your file’s statements.

Description
Use the ACCESS procedure to create access descriptors, view descriptors, and SAS

data files. Descriptor files describe PC file data so that you can directly read, update, or
extract the PC file data from within a SAS program. The following sections explain the
statements and options that might appear in a PROC ACCESS procedure.

PROC ACCESS Statement Options
The syntax of the ACCESS procedure statement is

PROC ACCESS options;

The PROC ACCESS statement options available with all supported PC file formats
are described below. Other options, specific to particular PC file formats, are described
in the DBMS-specific chapters.

DBMS=pc-file-format
specifies which PC database product or spreadsheet system you want to access
from SAS. This is the only required option. The valid types are DBF, DIF, WK1,
WK3, WK4, and XLS.

ACCDESC=libref.access-descriptor <(READ|WRITE|ALTER=password)>
specifies an existing access descriptor.

Use this option when creating or updating a view descriptor based on an access
descriptor that was created in a separate PROC ACCESS step.

You name the view descriptor in the CREATE statement. You can also use a
SAS data set option on the ACCDESC= option to specify a SAS password for the
access descriptor.

The ACCDESC= option has two aliases: AD= and ACCESS=.

VIEWDESC=libref.view-descriptor
specifies a view descriptor as input for the OUT= option. (See the description of
OUT=.)

14 SAS System Passwords for SAS/ACCESS Descriptors 4 Chapter 2

OUT= <libref.>member-name
specifies a SAS data file. When VIEWDESC= and OUT= are used together, you
can write data accessed from the view descriptor to the SAS data set specified in
OUT=. For example:

proc access viewdesc=vlib.invq4
out=dlib.invq4;

run;

CAUTION:
Altering a PC file might invalidate defined descriptors. Altering the format of a PC file
that has descriptor files defined on it might cause these descriptors to be out-of-date
or invalid. For example, if you add a column to a file and an existing access
descriptor is defined on that file, the access descriptor and any view descriptors based
on it do not show the new column. You must re-create the descriptors to be able to
show and select the new column. 4

SAS System Passwords for SAS/ACCESS Descriptors
The SAS System enables you to control access to SAS data sets and access descriptors

by associating one or more SAS System passwords with them. You must first create the
descriptor files before assigning SAS passwords to them, as described in “Assigning
Passwords” on page 15. Table 2.1 on page 14 summarizes the levels of protection that
SAS System passwords have and their effects on access descriptors and view descriptors.

Table 2.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor from
being read or edited

view descriptor protects PC file data from
being read or updated

protects PC file data from
being updated

protects descriptor from
being read or edited

When you create view descriptors, you can use a SAS data set option after the
ACCDESC= option to specify the access descriptor’s password (if one exists). In this
case, you are not assigning a password to the view descriptor that is being created.
Rather, using the password grants you permission to use the access descriptor to create
the view descriptor. For example:

proc access dbms=dbf
accdesc=adlib.customer(alter=rouge);

create vlib.customer.view;
select all;

run;

By specifying the ALTER-level password, you can read the ADLIB.CUSTOMER
access descriptor and therefore create the VLIB.CUSTOMER view descriptor.

For detailed information on the levels of protection and the types of passwords you
can use, refer to your base SAS software documentation.

ACCESS Procedure Reference 4 Procedure Statements 15

Assigning Passwords
To assign, change, or delete a SAS password, use the DATASETS procedure’s

MODIFY statement. Here is the basic syntax for using PROC DATASETS to assign a
password to an access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY= libref MEMTYPE= member-type;
MODIFY member-name (password-level= password-modification);

RUN;

In this syntax statement, the password-level argument can have one or more of the
following values: READ=, WRITE=, ALTER=, or PW=. PW= assigns read, write, and
alter privileges to a descriptor or data file. The password-modification argument
enables you to assign a new password or to change or delete an existing password. For
example, this PROC DATASETS statement assigns the password MONEY with the
ALTER level of protection to the access descriptor ADLIB.SALARIES

proc datasets library=adlib memtype=access;
modify salaries (alter=money);

run;

In this case, you are prompted for the password whenever you try to browse or edit
the access descriptor or to create view descriptors that are based on ADLIB.SALARIES.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.JOBC204:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw alter=mydept);

run;

In this case, you are prompted for the SAS passwords when you try to read the PC
file data, or try to browse or edit the view descriptor VLIB.JOBC204 itself. You need
both levels to protect the data and descriptor from being read. However, you could still
update the data accessed by VLIB.JOBC204, for example, by using a PROC SQL
UPDATE statement. Assign a WRITE level of protection to prevent data updates.

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw/ alter=mydept/);

run;

Procedure Statements
This section describes in alphabetical order the statements you use inside a PROC

ACCESS program block to create or modify access and view descriptors. Table 2.2 on
page 16 presents a task-oriented overview and indicates the order in which statements
must appear. See “CREATE” on page 17 for additional information on this order and for
information on database-description and editing statements.

16 Dictionary 4 Chapter 2

Table 2.2 Options and Statements Required for the ACCESS Procedure

Tasks Options and Statements You Use

create an access descriptor PROC ACCESS DBMS=DBF|DIF|WKn|XLS;
CREATE libref.member-name.ACCESS;

required database-description statements;
optional editing statements;

RUN;

create an access descriptor and a view
descriptor

PROC ACCESS DBMS=DBF|DIF|WKn| XLS;
CREATE libref.member-name.ACCESS;

required database-description statements;
optional editing statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

optional editing statements;

RUN;

create a view descriptor from an
existing access descriptor

PROC ACCESS DBMS=DBF|DIF|WKn|XLS
ACCDESC=libref.access-descriptor;

CREATE libref.member-name.VIEW;
SELECT column-list;

optional editing statements;

RUN;

As the table indicates, you can create one or more access descriptors and view
descriptors in one execution of PROC ACCESS, or you can create the descriptors in
separate executions.

Dictionary

ASSIGN
Indicates whether SAS variable names and formats are automatically generated.

Optional statement

Applies to: access descriptor
Interacts with: FORMAT, RENAME, RESET, UNIQUE
Not allowed with: UPDATE
Default: NO

Syntax
ASSIGN <=> YES|NO|Y|N;

ACCESS Procedure Reference 4 CREATE 17

Details The ASSIGN statement indicates whether SAS variable names and formats
are automatically generated. Where long names must be shortened to the SAS length
limit of 8 characters, variable names are automatically generated.

An editing statement such as ASSIGN appears after the CREATE and
database-description statements. See “CREATE” on page 17 for more information.

The value NO (or N) enables you to modify SAS variable names and formats when
you create an access descriptor and when you create view descriptors that are based on
this access descriptor. During an access descriptor’s creation, you use the RENAME
statement to change SAS variable names; you use the FORMAT statement to change
SAS formats.

Specify a YES (or Y) value for this statement to generate unique SAS variable names
from the first 8 characters of the PC file column names, according to the rules listed
below. With YES, you can change the SAS variable names only in the access descriptor.
The SAS variable names that are saved in an access descriptor are always used when
view descriptors are created from the access descriptor; you cannot change them in the
view descriptors.

Default SAS variable names are generated according to these rules:

� If the column name is longer than 8 characters, the SAS System uses only the first
8 characters. If truncating results in duplicate names, numbers are appended to
the ends of the names to prevent duplicate names. For example, the names
clientsname and clientsnumber become the SAS names clientsn and clients0.

� If the column name in the PC file contains blank characters, the SAS System
ignores the blank characters. For example, the column name PAID ON becomes
the SAS name PAIDON.

� If the column name in the PC file starts with a digit (0 through 9), the SAS
System adds the character Z before it. For example, the column name 1STYEAR
becomes the SAS name Z1STYEAR.

� If the column name contains characters that are invalid in SAS names (including
national characters), the SAS System replaces the invalid characters with
underscores (_). For example, the column name $PAID becomes the SAS variable
name _PAID.

If you specify YES for this statement, the SAS System automatically resolves any
duplicate variable names. However, if you specify YES, you cannot specify the
RENAME, FORMAT, RESET, or UNIQUE statements when you create view descriptors
that are based on the access descriptor. When you are updating an access descriptor,
you cannot specify the ASSIGN statement.

When the SAS/ACCESS interface encounters the next CREATE statement to create
an access descriptor, the ASSIGN statement is reset to the default NO value.

AN is the alias for the ASSIGN statement.

CREATE

Creates a SAS/ACCESS descriptor file.

Required statement

Applies to: access descriptor or view descriptor

18 CREATE 4 Chapter 2

Syntax
CREATE libref.descriptor-name.ACCESS|VIEW;

Details Use CREATE to create an access or view descriptor for a PC file you want to
access from the SAS system. To access a particular PC file of a supported type, you
must create first an access descriptor, and then one or more view descriptors based on
the access descriptor.

The descriptor name has three parts, separated by periods(.). The libref identifies a
SAS data library, which is associated with a directory on the local system’s disk where
the descriptor will be created. The libref must already have been created using the
LIBNAME statement. The descriptor-name is the name of the descriptor to be created.
The third part is the descriptor type. Specify ACCESS for an access descriptor or VIEW
for a view descriptor.

You can use the CREATE statement as many times as necessary in one procedure
execution. That is, you can create multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can create access descriptors and view descriptors in
separate executions of the procedure.

You can use CREATE and UPDATE in the same PROC ACCESS block with one
restriction: a CREATE statement for a view descriptor may not follow an UPDATE
statement.

Creating access descriptors
When you create an access descriptor, you must place statements or groups of
statements in a certain order after the PROC ACCESS statement and its options, as
listed here:

1 CREATE must be the first statement after the PROC ACCESS statement with one
exception: if the block includes both CREATE and UPDATE statements, either
statement may be the first in the block.

2 Next, specify any database-description statement, such as PATH=. This
information describes the location and characteristics of the PC file. These
statements must be placed before any editing statements. Do not specify these
statements when you create view descriptors.

Information from database-description statements is stored in an access
descriptor. Therefore, you do not repeat this information when you create view
descriptors. See Chapters 5 and later for additional database-description
statements for your PC file format.

3 Next, specify any editing statements: ASSIGN, DROP, FORMAT, LIST, RENAME,
RESET, and SUBSET. QUIT is also an editing statement, but using it terminates
PROC ACCESS without creating your descriptor.

4 Finally, specify the RUN statement. RUN executes the ACCESS procedure.

The order of the statements within the database-description and editing groups
sometimes matters; see the individual statement descriptions for more information.

Note: Altering a PC file that has descriptor files defined on it may cause the
descriptor files to be out-of-date or invalid. For example, if you re-create a file and add
a new column to the file, an existing access descriptor defined on that file does not show
that column; in this case, the descriptor may still be valid. However, if you re-create a

ACCESS Procedure Reference 4 CREATE 19

file and delete an existing column from the file, the descriptor may be invalid. If the
deleted column is included in a view descriptor and this view is used in a SAS program,
the program fails and an error message is written to the SAS log. 4

Creating view descriptors
You can create view descriptors and access descriptors in the same ACCESS procedure
or in separate procedures.

To create a view descriptor and the access descriptor on which it is based within the
same PROC ACCESS execution, you must place the statements or groups of statements
in a particular order after the PROC ACCESS statement and its options, as listed below:

1 First, create the access descriptor as described in “Creating access descriptors” on
page 18 except omit the RUN statement.

2 Next, specify the CREATE statement for the view descriptor. The CREATE
statement must follow the PROC ACCESS statements that you used to create the
access descriptor.

3 Next, specify any editing statements: SELECT, SUBSET, and UNIQUE are valid
only when creating view descriptors. FORMAT, LIST, RENAME, and RESET are
valid for both view and access descriptors. FORMAT, RENAME, and UNIQUE can
be specified only when ASSIGN=NO is specified in the access descriptor referenced
by this view descriptor. QUIT is also an editing statement but using it terminates
PROC ACCESS without creating your descriptor.

The order of the statements within this group usually does not matter; see the
individual statement descriptions for any restrictions.

4 Finally specify the RUN statement. RUN executes PROC ACCESS.

To create a view descriptor based on an access descriptor that was created in a
separate PROC ACCESS step, you specify the access descriptor’s name in the
ACCDESC= option in the new PROC ACCESS statement. You must specify the
CREATE statement before any of the editing statements for the view descriptor.

If you create only one descriptor in a PROC step, the CREATE statement and its
accompanying statements are checked for errors when you submit PROC ACCESS for
processing. If you create multiple descriptors in the same PROC step, each CREATE
statement (and its accompanying statements) is checked for errors as it is processed.

If no errors are found when the RUN statement is processed, all descriptors are
saved. If errors are found, error messages are written to the SAS log, and processing is
terminated. After you correct the errors, resubmit your statements.

Examples
The following example creates the access descriptor ADLIB.PRODUCT for the
worksheet file named c:\sasdemo\specprod.wk4:

libname adlib ’c:\sasdata’;

proc access dbms=wk4;
create adlib.product.access;
path=’c:\sasdemo\specprod.wk4’;
getnames=yes;
assign=yes;
rename productid prodid

fibername fiber;
format productid 4.

weight e16.9
fibersize e20.13

20 DROP 4 Chapter 2

width e16.9;
run;

The following example creates an access descriptor named ADLIB.EMPLOY for the
Excel worksheet named c:\dubois\employ.xls. It also creates a view descriptor
named VLIB.EMP1204 for this same file:

libname adlib ’c:\sasdata’;
libname vlib ’c:\sasviews’;

proc access dbms=xls;
/* create access descriptor */
create adlib.employ.access;
path=’c:\dubois\employ.xls’;
getnames=yes;
assign=no;
list all;

create vlib.emp1204.view;
/* create view descriptor */
select empid lastname hiredate salary

dept gender birthdate;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime7.
birthdate datetime7.;

subset where jobcode=1204;
run;

The following example creates a view descriptor VLIB.BDAYS from the
ADLIB.EMPLOY access descriptor, which was created in the previous PROC ACCESS
step. Note that FORMAT could be used because the access descriptor was created with
ASSIGN=NO.

libname adlib ’c:\sasdata’;
libname vlib ’c:\sasviews’;

proc access accdesc=adlib.employ;
create vlib.bdays.view;
select empid lastname birthdate;
format empid 6.

birthdate datetime7.;
run;

DROP

Drops a column from a descriptor.

Optional statement

Applies to: access descriptor, view descriptor

Interacts with: RESET, SELECT, UPDATE

ACCESS Procedure Reference 4 FORMAT 21

Syntax
DROP < ’>column-identifier-1< ’>

<…< ’>column-identifier-n< ’>>;

Details
The DROP statement drops the specified column from an access descriptor. The column
cannot be selected for a view descriptor that is based on the access descriptor. However,
the specified column in the PC file remains unaffected by this statement.

Note: The DROP statement can only be specified when creating or updating an
access descriptor, or when you are updating a view descriptor. DROP is not allowed
when you are creating a view descriptor. When you use the UPDATE statement, you
can specify DROP to remove a column from the view descriptor. However, the specified
column in the PC file remains unaffected by the DROP statement. 4

An editing statement, such as DROP, must follow the CREATE and
database-description statements when you create an access descriptor. See “CREATE”
on page 17 for more information on the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor or view descriptor. For example, to drop the third and
fifth columns, submit the following statement:

drop 3 5;

If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotes. You can drop as many columns as you want in
one DROP statement.

To display a column that was previously dropped, specify that column name in the
RESET statement. However, doing so also resets all the column’s attributes (such as
SAS variable name, format, and so on) to their default values.

FORMAT

Changes a SAS format for a PC file column.

Optional statement

Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, DROP, RESET

Syntax
FORMAT|FMT < ’>column-identifier-1< ’><=>

SAS-format-name-1
<…< ’>column-identifier-n< ’><=>
SAS-format-name-n>;

22 LIST 4 Chapter 2

Details The FORMAT statement changes a SAS variable format from its default
format; the default SAS variable format is based on the data type and format of the PC
file column. (See your PC file format chapter for information on the default data types
and formats that the SAS System assigns to PC file data.)

An editing statement, such as FORMAT, must follow the CREATE statement and the
database-description statements when you create a descriptor. See “CREATE” on page
17 for more information on the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to associate the DATE9. format with the
BIRTHDATE column and with the second column in the access descriptor, submit the
following statement:

format 2=date9. birthdate=date9.;

The column identifier is specified on the left and the SAS format is specified on the
right of the expression. The equal sign (=) is optional. If the column name contains
lowercase characters, special characters, or national characters, enclose the name in
quotes. You can enter formats for as many columns as you want in one FORMAT
statement.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: When you use the FORMAT statement with access descriptors, the FORMAT
statement also reselects columns that were previously dropped with the DROP
statement. 4

LIST

Lists columns in the descriptor and gives information about them.

Optional statement

Applies to: access descriptor or view descriptor

Default: ALL

Syntax
LIST <ALL|VIEW|< ’>column-identifier< ’> >;

Details The LIST statement lists columns in the descriptor along with information
about the columns. You can use the LIST statement when creating an access descriptor
or a view descriptor. The LIST information is written to your SAS log.

If you use an editing statement, such as LIST, it must follow the CREATE statement
and the database-description statements when you create a descriptor. You can specify
LIST as many times as you want while creating a descriptor; specify LIST last in your
PROC ACCESS code to see the entire descriptor. Or, if you are creating multiple
descriptors, specify LIST before the next CREATE statement in order to list all the
information about the descriptor you are creating.

The LIST statement can take one or more of the following arguments:

ACCESS Procedure Reference 4 PATH= 23

ALL
lists all the columns in the PC file, the positional equivalents, the SAS variable
names, and the SAS variable formats that are available for the access descriptor.
When you are creating an access descriptor, *NON-DISPLAY* appears next to the
column description for any column that has been dropped. When you are creating
a view descriptor, *SELECTED* appears next to the column description for columns
that you have selected for the view.

VIEW
lists all the columns that are selected for the view descriptor, along with their
positional equivalents, their SAS names and formats, and any subsetting clauses.
Any columns that were dropped in the access descriptor are not displayed. The
VIEW argument is valid only for a view descriptor.

column-identifier
lists the specified column name, its positional equivalent, its SAS variable name
and format, and whether the column has been selected. If the column name
contains lowercase characters, special characters, or national characters, enclose
the name in quotes.

The column-identifier argument can be either the column name or the positional
equivalent, which is the number that represents the column’s place in the
descriptor. For example, to list information about the fifth column in the
descriptor, submit the following statement:

list 5;

You can use one or more of these previously described options in a LIST statement,
in any order.

PATH=
Specifies the path and filename of the file to be accessed.

Required statement

Applies to: access descriptor

Syntax
PATH= ’path-and-filename<.PC-file-extension>’ |

<’>filename<’> | fileref ;

Details The PATH= statement indicates the path and name of the file you want to
access. The length of the filename and its other conventions can vary with the
operating system. See the host documentation for your operating environment for more
information.

For compatibility, place the PATH= statement immediately after the CREATE
statement and before any other database-description statements when creating access
descriptors. See “CREATE” on page 17 for more information.

You can specify PATH=statement with one of the following arguments:

’path-and-filename<.PC-file-extension>’
specifies the fully qualified path and filename. You must enclose the entire path
and filename in quotes, including the appropriate PC file extension, such as .DBF,

24 QUIT 4 Chapter 2

.DIF, .WK1, .WK3, WK4, or .XLS. If you omit the file extension, SAS/ACCESS
software supplies it for you.

<’>filename<’>
specifies the name of a file. The file must be located in your current (default)
directory. If no extension is specified, the SAS/ACCESS interface supplies it for
you. If the filename includes characters that are invalid in SAS names, such as
the dollar sign ($) or if the filename begins with a number, you must enclose the
entire filename in quotes.

fileref
specifies a fileref that references the path and name of the file. (Assigning filerefs
with the FILENAME statement is described in SAS Language and Procedures:
Usage.)

QUIT

Terminates the procedure.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
QUIT;

Details The QUIT statement terminates the ACCESS procedure without any further
descriptor creation.

EXIT is the alias for the QUIT statement.

RENAME

Modifies the SAS variable name.

Optional statement

Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, RESET

Syntax
RENAME < ’>column-identifier-1< ’><=>

SAS-variable-name-1
<…< ’>column-identifier-n< ’><=>
SAS-variable-name-n>;

ACCESS Procedure Reference 4 RESET 25

Details The RENAME statement enters or modifies the SAS variable name that is
associated with a column in a PC file. Use the RENAME statement when creating an
access descriptor or a view descriptor.

An editing statement, such as RENAME, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE” on
page 17 for more information on the order of statements.

Two factors affect the use of the RENAME statement: whether you specify the
ASSIGN statement when you are creating an access descriptor, and the kind of
descriptor you are creating.

� If you omit the ASSIGN statement or specify it with a NO value, the renamed SAS
variable names that you specify in the access descriptor are retained throughout
an ACCESS procedure execution. For example, if you rename the CUSTOMER
column to CUSTNUM when you create an access descriptor, that column continues
to be named CUSTNUM when you select it in a view descriptor unless a RESET
statement or another RENAME statement is specified.

When creating a view descriptor that is based on this access descriptor, you can
specify the RESET statement or another RENAME statement to rename the
variable again, but the new name applies only in that view. When you create other
view descriptors, the SAS variable names are derived from the access descriptor
variable names.

� If you specify the YES value in the ASSIGN statement, you can use the RENAME
statement to change SAS variable names only while creating an access descriptor.
As described earlier in the ASSIGN statement, SAS variable names and formats
that are saved in an access descriptor are always used when creating view
descriptors that are based on it.

The column-identifier argument can be either the PC file column name or the
positional equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor. For example, to rename the SAS variable names that
are associated with the seventh column and the nine-character FIRSTNAME column in
a descriptor, submit the following statement:

rename 7 birthdy ’firstname’=fname;

The column name (or positional equivalent) is specified on the left side of the
expression, with the SAS variable name on the right side. The equal sign (=) is
optional. If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotes. You can rename as many columns as
you want in one RENAME statement.

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS variable
associated with a column, you do not have to issue a SELECT statement for that
column.

When you are creating an access descriptor, the RENAME statement also reselects
columns that were previously dropped with the DROP statement.

RESET

Resets PC file columns to their default settings.

Optional statement

Applies to: access descriptor or view descriptor

26 RESET 4 Chapter 2

Interacts with: ASSIGN, DROP, FORMAT, RENAME, SELECT
Not allowed with: UPDATE

Syntax
RESET ALL|< ’>column-identifier-1< ’>

<…< ’>column-identifier-n< ’>>;

Details The RESET statement resets either the attributes of all the columns or the
attributes of the specified columns to their default values. The RESET statement can
be used when you create an access descriptor or a view descriptor, but it is not allowed
when you are updating a descriptor. RESET has different effects on access and view
descriptors, as described below.

If you use an editing statement, such as RESET, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE” on page 17 for more information on the order of statements.

Access descriptors When you create an access descriptor, the default setting for a
SAS variable name is a blank. However, if you have previously entered or modified any
of the SAS variable names, the RESET statement resets the modified names to the
default names that are generated by the ACCESS procedure. How the default SAS
variable names are set depends on whether you included the ASSIGN statement. If you
omitted ASSIGN or set it to NO, the default names are blank. If you set ASSIGN=YES,
the default names are the first eight characters of each PC file column name.

The current SAS variable format is also reset to the default SAS format, which was
determined from the column’s data type. Any columns that were previously dropped,
but that are specified in the RESET statement, become available; they can be selected
in view descriptors that are based on this access descriptor.

View descriptors When you create a view descriptor, the RESET statement clears
any columns that were included in the SELECT statement (that is, it de-selects the
columns).

When creating the view descriptor, if you reset a SAS variable and then select it
again within the same procedure execution, the SAS variable names and formats are
reset to their default values, which are generated from the column names and data
types. This applies only if you have omitted the ASSIGN statement or set the value to
NO when you created the access descriptor on which the view descriptor is based. If
you specified ASSIGN=YES when you created the access descriptor, the RESET
statement has no effect on the view descriptor.

The RESET statement can take one or more of the following arguments:

ALL
for access descriptors, resets all the PC file columns that have been defined to
their default names and format settings and reselects any dropped columns.

For view descriptors, ALL resets all the columns that have been selected so that
no columns are selected for the view; you can then use the SELECT statement to
select new columns. See “SELECT” on page 27 for more information on that
statement.

column-identifier
can be either the PC file column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor. For example, to reset the SAS variable name and format associated
with the third column, submit the following statement:

ACCESS Procedure Reference 4 SELECT 27

reset 3;

If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotes. You can reset as many columns as
you want in one RESET statement, or use the ALL option to reset all the columns.

When creating an access descriptor, the column-identifier is reset to its default
name and format settings. When creating a view descriptor, the specified column
is no longer selected for the view.

SELECT

Selects PC file columns for the view descriptor.

Required statement

Applies to: view descriptor

Interacts with: RESET

Not allowed with: UPDATE

Syntax
SELECT ALL|< ’>column-identifier-1< ’>

<…< ’>column-identifier-n< ’>>;

Details The SELECT statement specifies which PC file columns in the access
descriptor to include in the view descriptor. This is a required statement and is used
only when you create view descriptors. You cannot use the SELECT statement when
you are updating a view descriptor.

If you use an editing statement, such as SELECT, it must follow the CREATE
statement when you create a view descriptor. See “CREATE” on page 17 for more
information on the order of statements.

The SELECT statement can take one or more of the following arguments:

ALL
includes in the view descriptor all the columns that were defined in the access
descriptor and that were not dropped.

column-identifier
can be either the column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor on which the view is based. For example, to select the first three
columns, submit the following statement:

select 1 2 3;

If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotes. You can select as many columns
as you want in one SELECT statement.

SELECT statements are cumulative within the same view creation. That is, if
you submit the following two SELECT statements, columns 1, 5, and 6 are
selected, not just columns 5 and 6:

28 SUBSET 4 Chapter 2

select 1;
select 5 6;

To clear all your current selections when creating a view descriptor, use the
RESET ALL statement; you can then use another SELECT statement to select
new columns.

SUBSET

Adds or modifies selection criteria for a view descriptor.

Optional statement

Applies to: view descriptor

Syntax
SUBSET selection-criteria;

Details You use the SUBSET statement to specify selection criteria when you create
a view descriptor. This statement is optional; if you omit it, the view retrieves all the
data (that is, all the rows) in the PC file.

An editing statement, such as SUBSET, must follow the CREATE statement when
you create a view descriptor. See “CREATE” on page 17 for more information on the
order of statements.

UNIQUE

Generates SAS variable names based on PC file column names.

Optional statement

Applies to: view descriptor
Interacts with: ASSIGN
Not allowed with: UPDATE

Syntax
UNIQUE <=> YES|NO|Y|N ;

Details The UNIQUE statement specifies whether the SAS/ACCESS interface
generates unique SAS variable names for PC file columns for which SAS variable
names have not been entered. You cannot use the UNIQUE statement when you are
updating a view descriptor.

An editing statement, such as UNIQUE, must follow the CREATE statement when
you create a view descriptor. See “CREATE” on page 17 for more information on the

ACCESS Procedure Reference 4 UPDATE 29

order of statements. The UNIQUE statement is affected by whether you specified the
ASSIGN statement when you created the access descriptor on which this view is based,
as follows:

� If you specified the ASSIGN=YES statement, you cannot specify UNIQUE when
creating a view descriptor. YES causes the SAS System to generate unique names,
so UNIQUE is not necessary.

� If you omitted the ASSIGN statement or specified ASSIGN=NO, you must resolve
any duplicate SAS variable names in the view descriptor. You can use UNIQUE to
generate unique names automatically, or you can use the RENAME statement to
resolve duplicate names yourself. See “RENAME” on page 24 for information on
that statement.

If duplicate SAS variable names exist in the access descriptor on which you are
creating a view descriptor, you can specify UNIQUE to resolve the duplication. When
you specify UNIQUE=YES, the SAS/ACCESS interface appends numbers to any
duplicate SAS variable names, thus making each variable name unique. (See
“CREATE” on page 17 for an explanation of how to create descriptors.)

If you specify UNIQUE=NO, the SAS/ACCESS interface continues to allow duplicate
SAS variable names to exist. You must resolve these duplicate names before saving
(and thereby creating) the view descriptor.

Note: It is recommended that you use the UNIQUE statement. If you omit it and
the SAS System encounters duplicate SAS variable names in a view descriptor, your job
fails.

The equals (=) sign is optional in the UNIQUE statement. UN is the alias for
UNIQUE. 4

UPDATE

Updates a SAS/ACCESS descriptor file.

Optional statement

Applies to: access descriptor or view descriptor
Not allowed with: ASSIGN, RESET, SELECT, UNIQUE

Syntax
UPDATE libref.descriptor-name.ACCESS|VIEW ;

Details Use the UPDATE statement to perform a quick, simple update of a
descriptor. For example, if the PC database file for an existing access descriptor is
relocated, you can use UPDATE with the PATH option to specify the new location.

Descriptors modified by UPDATE are not checked for errors. Where validation is
crucial, use CREATE to overwrite a descriptor rather than UPDATE.

The descriptor is a name in three parts separated by periods (.):

libref
identifies the library container, which is a location either on the local system’s disk
or that the local system can directly access. The libref must have been previously
created by a LIBNAME statement.

30 UPDATE 4 Chapter 2

descriptor-name
is the descriptor you are updating. It must already exist in libref. (See CREATE
for an explanation of how to create descriptors.)

ACCESS
indicates you are updating an access descriptor while VIEW indicates you are
updating a view descriptor.

Multiple UPDATE statements may appear in one ACCESS procedure block. If you
use UPDATE to change an access descriptor, one or more UPDATE statements may be
required for views that depend on the modified access descriptor.

You can use UPDATE and CREATE in the same PROC ACCESS block.

Updating access descriptors
The order of statements in an UPDATE block is as follows:

1 UPDATE must be the first statement after the PROC ACCESS statement with one
exception: if the block includes both UPDATE and CREATE statements, either
statement may be the first in the block.

2 DBMS description statements are next. All are allowed.
3 Editing statements are next. These editing statements are not allowed: ASSIGN,

LIST, RESET, SELECT, VIEW.

Since the UPDATE block does not validate the updated descriptor, the order of
description and editing statements does not matter.

Updating view descriptors
1 UPDATE must be the first statement after the PROC ACCESS statement with one

exception: if the block includes both UPDATE and CREATE statements, either
statement may be the first in the block.

2 DBMS description statements are next. All are allowed.
3 Editing statements are next. These editing statements are not allowed: ASSIGN,

DROP, RESET, SELECT, and UNIQUE.

Examples
The following example upates an existing access descriptor named ADLIB.PRODUCT:

libname adlib ’c:\sasdata’;

proc access dbms=wk4;
update adlib.product.access;
path=c:\lotus\specprod.wk4;
rename productid prodid

fibername fiber;
format productid 4.

weight e16.9
fibersize e20.13
width e16.9;

run;

The following example updates the access descriptor EMPLOY, located in
c:\sasdata, for the spreadsheet named c:\excel\employ.xls and updates the view
descriptor for EMPLOY named EMP1204, located in c:\sasviews:

ACCESS Procedure Reference 4 Extracting Data Using a View 31

libname adlib ’c:\sasdata’;
libname vlib ’c:\sasviews’;

proc access dbms=xls;
update adlib.employ.access;
path=’c:\excel\employ.xls’;
list all;

update vlib.emp1204.view;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime9.
birthdate datetime9.;

subset where jobcode=1204;
run;

The following example updates a second view descriptor that is based on EMPLOY
named BDAYS. It is also located in c:\sasviews. When you update a view, it is not
necessary to specify the access descriptor (using ACCDESC=) in the PROC ACCESS
statement. Note that FORMAT can be used because the access descriptor EMPLOY was
created with ASSIGN=NO.

libname vlib ’c:\sasviews’;

proc access dbms=xls;
update vlib.bdays.view;
format empid 6.

birthdate datetime7.;
run;

Performance and Efficient View Descriptors

General Guidelines
When you create and use view descriptors, follow these guidelines to minimize the

use of SAS System resources and to reduce the time it takes to access data:
� Select only the columns your SAS program needs. Selecting unnecessary columns

adds extra processing time.
� Where possible, specify selection criteria to subset the number of observations

processed by the SAS System.
� To present PC data in sorted order, reference a view descriptor in a PROC SQL

query. Otherwise, you may need to extract the data to sort it, as described below.

Extracting Data Using a View
In some cases, it might be more efficient to use a view descriptor to extract PC file

data and place it in a SAS data file instead of using the view descriptor to read the data
directly.

A PC file is read every time a view descriptor is referred to in a SAS program and
the program is executed; the program’s output reflects the latest updated level of the

32 Extracting Data Using a View 4 Chapter 2

PC file. If many users are reading the same PC file repeatedly, PC file performance may
decrease. If you create several reports during the same SAS session, they may not be
based on the same PC file data due to updating by other users. Therefore, in the
following circumstances, it is better to extract data:

� Extract PC file data if the file is large and you use the data repeatedly in SAS
programs.

If a view descriptor describes a large PC file and you plan to use the same PC
file data in several procedures or DATA steps during the same SAS session, you
might improve performance by extracting the data. Placing the data into a SAS
data file requires a certain amount of disk space to store the data and I/O to write
the data. However, SAS data files are organized to provide optimal performance
with PROC and DATA steps. Programs that use SAS data files are often more
efficient than programs that read PC file data directly.

� Extract PC file data if you use sorted data several times in a SAS program.

If you intend to use PC file data in a particular sorted order several times, run
the SORT procedure on the view descriptor using the OUT= option to extract the
data. The OUT= option is required whenever PROC SORT references a view
descriptor. Extracting the data in this way is more efficient than requesting the
same sort repeatedly on the PC file data. Note that using the ORDER BY clause
in the SQL procedure does not sort the data in the physical PC file; it only
presents the data in a sorted order.

� Extract PC file data for added security.

If you are the owner of a PC file and do not want anyone else to read the data,
you might want to extract the data (or a subset of the data) and not distribute
information about either the access descriptor or view descriptor. Or, you might
want to assign PC file security features to your PC files to prevent unauthorized
reading or writing to them.

On the SAS System side, you might also want to assign SAS System passwords
to your descriptors for additional security. If a view descriptor has a password
assigned to it and you extract the data, the new SAS data file is automatically
assigned the same password. If a view descriptor does not have a password, you
can assign a password to the extracted SAS data file.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for PC File Formats: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for PC File Formats: Reference, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025–544–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

