33

CHAPTER

DBF and DIF Procedures

Introduction 33
Import/Export Facility 33

Introduction

If you are running this SAS/ACCESS interface under the Windows, OS/2, OS/390, or
UNIX operating environment, this chapter applies to you. Under UNIX and the PC
hosts, you can use the DBF and DIF procedures to convert a DBF or DIF file to a SAS
data set or a SAS data set to a DBF or DIF file. Under OS/390, you can use PROC DBF
only to convert a DBF file to a SAS data set or a SAS data set to a DBF file.

Import/Export Facility

UNIX and PC users can access DBF (but not DIF) data through the Import/Export
facility or by using the IMPORT and EXPORT procedures. An overview is included in
Chapter 5, “Import/Export Facility and Procedures,” on page 51.

To use the point-and-click interface from a SAS PROGRAM EDITOR window, select
the File menu and then the Import Data Or Export Data item. Information about
how to import or export DBF data is available from the button. The following is a
sample Import window:

34 PROC DBF A Chapter 3

Display 3.1 Import Window

E® Imgeet ‘Wizend - Sellect mpot lype

"wfhat ppe ol dlaba do pou wath o impoir?
R Saseeisid daln sosze
Select & dats sounoe inom Hhe st below,
| Ewoest B o 7 5 prosmabizsst [*] =
S T -

Esazidl & SpaddeSabnid [i)
fax, Lotus 1 Speasdsheat [wkl|

Lidiik 3 5pidifshunid [° wh 3]
Lotus 8 5 pesadshest | wihd]
E-'h.ll.lul.l-" .Fl.l.r.'\. T i

) slaratad Fis 7]
Irngesdt Coowrwvea Sepacsbid Wahees [e

ECELS dats T b Dimbiilesd Fibs [* 1]

Hep | Corel o] [Cpess]

To write code to import or export DBF data, refer to the detailed descriptions of the
IMPORT and EXPORT procedures in the SAS Procedures Guide. This documentation
also includes several examples.

PROC DBF

converts a dBASE file to SAS data set or a SAS data set to a dBASE file

Syntax
PROC DBF options;

PROC DBF Options

DB2|DB3| DB4|DB5=fileref | filename
specifies the fileref or filename of a DBF file. When you use the FILENAME
statement to assign the fileref, the statement must specify the filename plus a DBF
extension (that is, filename myref '/my dir/myfile.dbf’).

If you specify a filename instead of a fileref, you can only specify the name itself
(omitting the DBF extension) and the file must be in the current directory. For
example, this PROC DBF statement creates the EMP.DBF file (uppercase) from the
MYLIB.EMPLOYEE data set:

proc dbf db5=emp data=mylib.employee;

DBF and DIF Procedures A PROC DBF 35

You cannot specify emp.dbf or a full pathname (proc dbf db5=’/my/
unix_directory/emp.dbf’) in the DBn= option.

The DBn option must correspond to the version of dBASE with which the DBF file
is compatible. You specify a DBF file with the DBn option, where n is 2, 3, 4, or 5.
You can specify only one of these values. If you specify DB4=myfile, SAS looks for
(and creates, depending on your options) a file called MYFILE.DBF, where the name
is converted to uppercase.

DATA=<libref.>member
names the input SAS data set. Use this option if you are creating a DBF file from a
SAS data set. If you use the DATA= option, do not use the OUT= option. If you omit
the DATA= option, SAS software creates an output SAS data set from the DBF file.

OUT=<libref.>member
names the SAS data set that is created to hold the converted data. Use this option
only if you do not specify the DATA= option.

If OUT= is omitted, SAS creates a temporary data set in the WORK library.
(Under UNIX and OS/390, the temporary data set is named DATAL [...DATAnN];
under PCs, it is called _DATA _.) If OUT= is omitted or if you do not specify a
two-level name in the OUT= option, the SAS data set that is created by PROC DBF
remains available during your current SAS session, but it is not permanently saved.

Details The DBF procedure converts dBASE files to SAS data sets that are
compatible with the current release of the SAS System. This procedure can also be used
to convert SAS data sets to DBF files.

PROC DBF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

The DBF procedure works with DBF files created by all the current versions and
releases of dBASE (I1, 111, 111 PLUS, 1V, and 5.0) and with most DBF files that are
created by other software products.

Future versions of dBASE files might not be compatible with the current version of
the DBF procedure. SAS Institute cannot be responsible for upgrading PROC DBF to
support new versions of dBASE with each new version of SAS software. To use the DBF
procedure, you must have a SAS/ACCESS interface to PC File Formats license.

Converting DBF Fields to SAS Variables Numeric variables are stored in character
form by DBF files. These numeric variables become SAS numeric variables when
converting from a DBF file to a SAS data set. If a DBF numeric value is missing, the
corresponding dBASE numeric field is filled with the character 9, by default.

Character variables become SAS character variables. Any character variable of a
length greater than 200 is truncated to 200. Logical fields become SAS character
variables with a length of 1. Date fields become SAS date variables. When converting a
DBF file to a SAS data set, fields whose data are stored in auxiliary DBF files (Memo
and General fields) are ignored.

When a dBASE 1 file is translated into a SAS data set, any colons in dBASE
variable names are changed to underscores in SAS variable names. Conversely, when a
SAS data set is translated into a dBASE file, any underscores in SAS variable names
are changed to colons in dBASE field names.

Converting SAS Variables to DBF Fields Numeric variables are stored in character
form by DBF files. SAS numeric variables become numeric variables with a length of 16
when converting from a SAS data set to a DBF file. A SAS numeric variable with a
decimal value must be stored in a decimal format in order to be converted to a DBF
numeric field with a decimal value. In other words, unless you associate the SAS
numeric variable with an appropriate format in a SAS FORMAT statement, the
corresponding DBF field will not have any value to the right of the decimal point. You

36

PROC DBF A Chapter 3

can associate a format with the variable in a SAS data set when you create the data set
or by using the DATASETS procedure.

If the number of digits—including a possible decimal point—exceeds 16 a warning
message is issued and the DBF numeric field is filled with the character 9. All SAS
character variables become DBF fields of the same length. When converting from a SAS
data set to a DBF file that is compatible with dBASE 111 or later, SAS date variables
become DBF date fields. When converting from a SAS data set to a dBASE 11 file, SAS
date variables become dBASE 11 character fields in the form YYYMMDD.

Transferring Other Software Files to DBF Files You might find it helpful to save
another software vendor’s file to a DBF file and then convert that file into a SAS data
set. UNIX users find this especially helpful. For example, you could save an Excel .XLS
file to a DBF file (by selecting File —> save As —>EMP.DBF from within an Excel
spreadsheet) and then use PROC DBF to convert that file into a SAS data set. Or you
could do the reverse: use PROC DBF to convert a SAS data set into a DBF file and then
load that file into an Excel spreadsheet.

Examples

Example 1: Converting a dBASE Il File to a SAS Data Set In this example, a dBASE 11
file named EMPLOYEE.DBF is converted to a SAS data set. Because no FILENAME
statement is specified, the last level of the filename is assumed to be DBF and the file is
assumed to be in your current directory and in uppercase.

libname save ’/my/unx save dir’;
proc dbf db2=employee out=save.employee;
run;

Example 2: Converting a SAS Data Set to a dBASE 5 File In this example, a SAS data
set is converted to a dBASE 5 file. A FILENAME statement specifies a fileref that
names the dBASE 5 file. You must specify the FILENAME statement before the PROC
DBF statement.

libname mylib ’'/my/unix directory’;
filename employee ’'/sasdemo/employee.dbf’;
proc dbf db5=employee data=mylib.employee;
run;

In a Windows environment, this example would be:

libname mylib ’c:\my\directory’;

filename employee ’‘c:\sasdemo\employee.dbf’;
proc dbf db5=employee data=mylib.employee;
run;

In an OS/390 environment, this example would be:

libname mylib ’'sasdemo.employee.data’;
filename dbfout ’'sasdemo.newemp.dbf’ recfm=n;
proc dbf db5=dbfout data=mylib.employee;

run;

DBF and DIF Procedures A PROC DIF 37

PROC DIF

converts a DIF file to SAS data set or a SAS data set to a DIF file

Syntax
PROC DIF options;

PROC DIF Options

DIF=fileref | filename
specifies the fileref or filename of a DIF file. When you use the FILENAME
statement to assign the fileref, the statement must specify the filename plus a .DIF
extension (that is, filename myref '/my dir/myfile.dif’).

If you specify a filename instead of a fileref, you can only specify the name itself
(omitting the .DIF extension) and the file must be in the current directory. For
example, this PROC DIF statement creates the EMP.DIF file from the
MYLIB.EMPLOYEE data set:

proc dif dif=emp data=mylib.employee;

You cannot specify emp.dif or a full pathname (proc dif dif=’/my/
unix_directory/emp.dif’) in the DIF option.

DATA=<libref.>member
names the input SAS data set. Use this option if you are creating a DIF file from a
SAS data set. If you use this option, do not use the OUT= option. If you omit the
DATA= option, the SAS System creates an output SAS data set from the DIF file.

OUT=<libref.>member
names the SAS data set to hold the converted data. Use this option only if you omit
the DATA= option.

If OUT= is omitted, SAS creates a temporary data set in the WORK library.
(Under UNIX, the temporary data set is named DATA1 [...DATAN]; under PCs, it is
called DATA . If OUT= is omitted or if you do not specify a two-level name in the
OUT= option, the SAS data set created by PROC DIF remains available during your
current SAS session but is not permanently saved.

LABELS
causes PROC DIF to write the names of the SAS variables as the first row of the DIF
file and a row of blanks as the second row of the DIF file. The actual data portion of
the DIF file begins in the third row. The LABELS option is allowed only when
converting a SAS data set to a DIF file.

PREFIX=name
specifies a prefix to be used in constructing SAS variable names when converting a
DIF file to a SAS data set. For example, if PREFIX=VAR, the new variable names
are VAR1, VAR?2, ..., VARnN. If you omit the PREFIX= option, PROC DIF assigns the
names COL1, COL2, ..., COLnN to the variables in the output SAS data set.

SKIP=n
specifies the number of rows, beginning at the top of the DIF file, to be ignored when
converting a DIF file to a SAS data set. For example, suppose the first row of your

38

PROC DIF A Chapter 3

DIF file contains column headings and the second row of your DIF file is a blank row.
The actual data in your DIF file begin in row 3. You should specify SKIP=2 so that
PROC DIF ignores the nondata portion of your DIF file. Alternatively, you could
delete the first two rows of your DIF file before using PROC DIF.

Details The DIF procedure converts Data Interchange Format (DIF) files to SAS data
sets that are compatible with the current release of SAS software. This procedure can
also be used to convert SAS data sets to DIF files.

PROC DIF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

Software Arts, Inc. developed the Data Interchange Format to be used as a common
language for data. Originally, DIF was made popular by products such as Lotus 1-2-3
and VisiCalc. Although DIF is not as popular today as it once was, it is still supported
by many software products.

Note: Any DIF file that you plan to convert to a SAS data set should be in a tabular
form. All items in a given column should represent the same type of data. If any rows
in the DIF file contain inconsistent data—for example, a row of underscores, dashes, or
blanks—delete these rows before converting the DIF file to a SAS data set. It is
recommended that you make a backup copy of your DIF table before you make these
modifications. a

When converting from a DIF file to a SAS data set, each row of the DIF file becomes
an observation in the SAS data set. Conversely, when converting a SAS data set to a
DIF file, each SAS observation becomes a row in the DIF file. To use the DIF procedure,
you must have a SAS/ACCESS interface to PC File Formats license.

Converting DIF Variables to SAS Variables Character variables in a DIF file
(sometimes referred to as string values) become SAS character variables of length 20. If
a DIF character variable’s value is longer than 20 characters, it is truncated to a length
of 20 in the SAS output data set. The quotation marks that normally enclose character
variable values in a DIF file are removed when the value is converted to a SAS
character value.

Numeric variables, which can be represented in either integer or scientific notation in
a DIF file, become SAS numeric variables when a DIF file is converted to a SAS data set.

Transferring SAS Data Sets to and from Other Software Products Using DIF DIF files
are not generally used as the native file format for a software product’'s data storage.
Therefore, transferring data between SAS and another software product is a two-step
process when using DIF files.

To send SAS data sets to another software product using DIF files, you must first run
PROC DIF to convert your SAS data set to a DIF file. Use whatever facility is provided
by the target software product to read the DIF file. For example, you use the
Lotus 1-2-3 Translate Utility to translate a DIF file to a 1-2-3 worksheet file. (This
facility might be provided by an import tool or from a File —> open dialog box in that
software product.) After the application reads the DIF file data, the data can be
manipulated and saved in the application’s native format.

To transfer data in the opposite direction—for example, from a software product to a
SAS data set—the process is reversed. First, export the data to a DIF file and then run
PROC DIF to read the DIF file into a SAS data set.

Missing Values The developers of the Data Interchange Format (DIF) suggest that
you treat all numeric values that have a value indicator other than V as missing values.
PROC DIF follows this convention. When a DIF file is converted to a SAS data set, any
numeric value with a value indicator other than V becomes a SAS missing value.

DBF and DIF Procedures A PROC DIF 39

When a SAS data set that has missing values for some numeric variables is
converted to a DIF file, the following assignments are made in the DIF file for the
variables with missing values:

o the type indicator field value is set to 0
o the number field value contains a string of 16 blanks
o the value indicator is set to NA.

Examples

Example 1: Converting a DIF File to a SAS Data Set In this example, a DIF file named
EMPLOYEE.DIF is converted to a SAS data set. Because no FILENAME statement is

specified, the last level of the filename is assumed to be DIF, and the file is assumed to
be in your current directory and in uppercase.

libname save ’/my/my unx_dir’;
proc dif dif=employee out=save.employee;
run;

Example 2: Converting a SAS Data Set to a DIF File In this example, a SAS data set is
converted to a DIF file. A FILENAME statement is used to specify a fileref that names
the DIF file. You must specify the FILENAME statement before the PROC DIF
statement.

filename employee ’‘c:\sasdemo\employee.dif’;
proc dif dif=employee data=save.employee;
run;

Or, in a UNIX environment, this example would be:

filename employee '/sasdemo/employee.dif’;
proc dif dif=employee data=save.employee;
run;

See Also
"Programmer’s Guide to the DIF," Software Arts Technical Notes (SATN-18).

40 PROC DIF A Chapter 3

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS® Software for PC File Formats: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for PC File Formats: Reference, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-544-2

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

