
57

C H A P T E R

6
Using PC Files Data in SAS
Programs

Introduction 57
Running the Examples in This Chapter 58

Reviewing Variables 58

Charting Data 60

Calculating Statistics 61

Using the FREQ Procedure 61
Using the MEANS Procedure 62

Using the RANK Procedure 65

Selecting and Combining Data 66

Using the WHERE Statement 66

Using the SQL Procedure 68

Joining Data from Various Sources 68
Creating New Columns with the GROUP BY Clause 70

72

Reading PC Files Data into a SAS/AF Application 72

Browsing and Updating Data with SAS/FSP Procedures 75

Using the FSVIEW Procedure to Browse PC File Data 75
Using the FSVIEW Procedure to Update PC File Data 76

Using the SAS Viewer on PC File Data 77

Reading and Updating Data with the SQL Procedure 78

Reading Data with the SQL Procedure 79

Updating Data with the SQL Procedure 80
Deleting Data with the SQL Procedure 81

Inserting Data with the SQL Procedure 82

Updating PC Files Data with the MODIFY Statement 82

Updating a SAS Data File with PC Files Data 86

Appending Data with the APPEND Procedure 89

Introduction
One advantage of using SAS/ACCESS software is that it enables the SAS System to

read and write PC files data directly from SAS programs. This chapter presents
examples in which PC files data-accessed through view descriptors are used as input
data for SAS programs, and it also shows you how to use SAS procedures and the DATA
step to review and update PC file data that are described by SAS/ACCESS view
descriptors.

The examples in this chapter use DIF, DBF, WKn, and XLS data. The PC file format
is identified in each example and any file-specific issues are described in the example.
Throughout the examples, the SAS terms variable and observation are used instead of
column and row because this chapter illustrates SAS System procedures and the SAS

58 Running the Examples in This Chapter 4 Chapter 6

DATA step. The examples in this chapter show how to create access descriptors and
view descriptors and then use the view descriptors in SAS procedures and DATA steps.
For more information on the SAS language and procedures that are used in the
examples, refer to the books listed at the end of each section. For information about
using view descriptors efficiently in SAS programs, see “Performance and Efficient View
Descriptors” on page 31 and Chapter 2, “ACCESS Procedure Reference,” on page 11.

In examples that update DBF file data, examples that are re-run will not work the
same because the data have been modified. In this case, submit the PCFFDBL.SAS file
to re-create the PC files tables.

See Appendix 1, “Sample Data,” on page 151 for all the PC files on which the access
and view descriptors are defined. This appendix also includes the SAS data files that
are used in this chapter, as well as the SAS statements that created them.

Running the Examples in This Chapter
The examples in this chapter use data in different PC file formats. The PC file data

are identified in each example and any file-specific issues are described in the example.
The examples in this chapter show

� how to create access descriptors and view descriptors

� how to use the view descriptors in SAS procedures and DATA steps.

As you work through the examples, notice that you can create the descriptors in a
number of ways. In some cases, the ASSIGN=YES statement is specified and SAS
variable names and formats are assigned when the access descriptor is created. In
other cases, the ASSIGN statement is omitted and editing statements, such as
RENAME and UNIQUE, are specified when the view descriptors are created. How you
create descriptors depends on your site’s needs and practices. When you run the
examples, you only need to create an access descriptor or a view descriptor one time per
example. If you re-run the examples, you do not need to re-create the descriptors.

The macro file (PCFFMAC.SAS) provided with the files contains macros that enable
any SAS/ACCESS interface for a PC format to create database-description statements.
Use the macro file with PCFFDBL.SAS (creates PC files), PCFFSAMP.SAS (contains
samples) and PCFFSCL.SAS (contains SAS/AF examples). To adapt the PCFFMAC.SAS
file for use at your site, insert your PC file format in the first line of the code. See the
comments in the PCFFMAC.SAS file for more information.

If you run the examples individually instead of running the entire examples file, you
must preface them with LIBNAME statements to identify where your SAS data
libraries are stored. In these examples, the libname DLIB is used for SAS data files; the
libname SLIB is used for PROC SQL views; the libname ADLIB is used when creating
access descriptors; and the libname VLIB is used when creating view descriptors.

The files that create the PC files tables, descriptors, and the examples are shipped
with your SAS/ACCESS software. See “Sample Data in This Book” on page 6 for more
information about these files.

Reviewing Variables

Before retrieving or updating the PC files data that are described by a view
descriptor, you may want to review the attributes of the data’s variables. You can use
the CONTENTS or DATASETS procedure to display a view descriptor’s variable and
format information. You can use these procedures with view descriptors in much the
same way you use them with other SAS data sets.

Using PC Files Data in SAS Programs 4 Reviewing Variables 59

This example uses the DATASETS procedure to display information about the view
descriptor VLIB.USACUST, which describes the data in the CUSTOMERS.WK3 file.

options linesize=80;

proc access dbms=wk3;
create adlib.customr.access;
/* create access descriptor */
path="c:\sasdemo\customer.wk3";
worksheet=a;
range=’a1..j22’;
getnames=yes;
scantype=5;
mixed=yes;
assign=yes;
rename customer = custnum;
format firstorder date9.;
list all;

create vlib.usacust.view;
/* create vlib.usacust view */
select customer state zipcode name

firstorder;
run;

proc datasets library=vlib memtype=view;
/* example */
contents data=usacust;

run;

Output 6.1 on page 59 shows the results of this example.

Output 6.1 Using the DATASETS Procedure with a View Descriptor

DATASETS PROCEDURE

Data Set Name: VLIB.USACUST Observations: 21
Member Type: VIEW Variables: 5
Engine: SASIOWK3 Indexes: 0
Created: . Observation Length: 83
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

1 CUSTNUM Char 8 0 $8. $8. CUSTOMER
5 FIRSTORD Num 8 75 DATE9. DATE9. FIRSTORDER
4 NAME Char 60 15 $60. $60. NAME
2 STATE Char 2 8 $2. $2. STATE
3 ZIPCODE Char 5 10 $5. $5. ZIPCODE

60 Charting Data 4 Chapter 6

As you can see from the DATASETS procedure output, the VLIB.USACUST view
descriptor has five variables: CUSTNUM, FIRSTORD, NAME, STATE, and ZIPCODE.
The variables are listed in alphabetic order, and the # column in the listing shows the
order of each variable in VLIB.USACUST.

The Label field in the DATASETS procedure lists the names of the PC files columns.
The FIRSTORDER column name has been truncated to the eight-character SAS
variable name FIRSTORD because the SAS System uses only the first eight characters
of a PC files column name when it assigns a default SAS variable name. See “ASSIGN”
on page 16 for more information about how SAS variable names are assigned for PC
files column names.

The information displayed by the DATASETS procedure does not include any
selection criteria that might be specified for the view descriptor. To see selection
criteria, you must review the code that created the view descriptor.

You cannot use the MODIFY statement in the DATASETS procedure to change the
attributes of a view descriptor.

For more information about the DATASETS procedure, see SAS Procedures Guide.

Charting Data

PROC GCHART programs work with data that are described by view descriptors just
as they do with other SAS data sets. (Using this procedure requires a SAS/GRAPH
license at your site.) The following example uses the view descriptor VLIB.ALLORDR
to create a vertical bar chart of the number of orders per product. VLIB.ALLORDR
describes the data in the ORDERS.XLS file. You need a SAS/GRAPH license to
complete this exercise.

proc access dbms=xls;
create adlib.order.access;
/* create access descriptor */
path="c:\sasdemo\orders.xls";
worksheet=sheet1;
range=’a1..j39’;
getnames=yes;
scantype=5;
mixed=yes;
assign=yes;
rename dateorderd = dateord

processdby = procesby;
format dateorderd date9.

shipped date9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

list all;

create vlib.allordr.view;
/* create vlib.allordr view */
select all;

run;

Using PC Files Data in SAS Programs 4 Using the FREQ Procedure 61

proc gchart data=vlib.allordr;
/* example */
vbar stocknum / discrete;

title ’Data Described by VLIB.ALLORDR’;
run;

Output 6.2 on page 61 shows the output for this example. STOCKNUM represents
each product. The number of orders for each product is represented by the height of the
bar.

Output 6.2 Vertical Bar Chart of Number of Orders per Product

For more information on the GCHART procedure, see SAS/GRAPH Software: Reference.

Calculating Statistics
You can also use SAS statistical procedures on PC files data. This section shows

examples using the FREQ, MEANS, and RANK procedures.

Using the FREQ Procedure
Suppose you want to find the percentages of your invoices that went to each country

so that you can decide where to increase your overseas marketing. The following
example uses the view descriptor VLIB.INV to calculate the percentage of invoices for
each country that appears in the INVOICE.DBF file.

proc access dbms=dbf;
/* create access descriptor */
create adlib.invoice.access;

path="c:\sasdemo\invoice.dbf";
assign;

62 Using the MEANS Procedure 4 Chapter 6

rename invoicenum = invnum
amtbilled = amtbilld ;

format paidon date9.
invoicenum 5.0
billedby 6.0;

assign=yes;

create vlib.inv.view;
/* create vlib.inv view */
select invoicenum amtbilled

country billedby paidon;
list all;

run;

proc freq data=vlib.inv;
/* example */
tables country;
title ’Data Described by VLIB.INV’;

run;

Output 6.3 on page 62 shows the one-way frequency table that this example
generates.

Output 6.3 Frequency Table for Variable COUNTRY Described by View Descriptor VLIB.INV

Data Described by VLIB.INV 6

COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent
--
Argentina 2 11.76 2 11.76
Australia 1 5.88 3 17.65
Brazil 4 23.53 7 41.18
USA 10 58.82 17 100.00

For more information on the FREQ procedure, see SAS Language and Procedures:
Usage and SAS Procedures Guide.

Using the MEANS Procedure
In your analysis of recent orders, suppose you also want to calculate some statistics

for each U.S. customer. From the ORDERS.XLS file, the view descriptor
VLIB.USAORDR selects a subset of observations that have a SHIPTO value beginning
with a 1, indicating a U.S. customer.

Using the OUT= option in the SORT procedure, the data from the DBF file are
extracted, placed in a SAS data file, and then sorted.

Using PC Files Data in SAS Programs 4 Using the MEANS Procedure 63

The following example generates the means and sums of the length of material
ordered (in yards) and the fabric charges (in dollars) for each U.S. customer. Also
included are the number of observations (N) and the number of missing values
(NMISS). The MAXDEC= option specifies the number of decimal places (0-8) for PROC
MEANS to use in printing the results.

proc access dbms=xls;
create adlib.order.access;
/* create access descriptor */
path="c:\sasdemo\orders.xls";
worksheet=shee1;
getnames=yes;
skiprows=2;
scantype=5;
mixed=yes;
assign=yes;
rename dateorderd = dateord

processdby = procesby;
format dateorderd date9.

shipped date9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

list all;

create vlib.usaordr.view;
/* create vlib.usaordr view */
select ordernum stocknum length

fabcharges shipto;
subset where shipto like ’1%’;

run;

proc sort data=vlib.usaordr out=work.usaorder;
by shipto;

run;

proc means data=work.usaordr mean
/* example */
sum n nmiss maxdec=0;

by shipto;
var length fabcharg;

title ’Data Described by VLIB.USAORDR’;
run;

Output 6.4 on page 64 shows the output for this example.

64 Using the MEANS Procedure 4 Chapter 6

Output 6.4 Statistics on Fabric Length and Charges for Each U.S. Customer

Data Described by VLIB.USAORDR 7

-------------------------------- SHIPTO=14324742 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 1095 4380 4 0

FABCHARG FABCHARGES 1934460 3868920 2 2

-------------------------------- SHIPTO=14898029 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 2500 5000 2 0

FABCHARG FABCHARGES 1400825 2801650 2 0

-------------------------------- SHIPTO=15432147 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 725 2900 4 0

FABCHARG FABCHARGES 252149 504297 2 2

-------------------------------- SHIPTO=18543489 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 303 1820 6 0

FABCHARG FABCHARGES 11063836 44255344 4 2

-------------------------------- SHIPTO=19783482 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 450 1800 4 0

FABCHARG FABCHARGES 252149 1008594 4 0

-------------------------------- SHIPTO=19876078 -------------------------------

Variable Label Mean Sum N Nmiss

LENGTH LENGTH 690 1380 2 0

FABCHARG FABCHARGES . . 0 2

For more information on the MEANS procedure, see SAS Procedures Guide.

Using PC Files Data in SAS Programs 4 Using the RANK Procedure 65

Using the RANK Procedure
You can also use more advanced statistical procedures on PC files data. The following

example uses the RANK procedure to calculate the order of birthdays for a set of
employees who are listed in the EMPLOYEES.DBF file. The OUT= option creates a
SAS data file, DLIB.RANKEXAM, from the view descriptor VLIB.EMPS so that the
data in the SAS file can be sorted by the SORT procedure. The RANKS statement
assigns the name DATERANK to the new variable (in the SAS data file) that is created
by the procedure. The PRINT procedure then prints the data that are described by
DLIB.RANKEXAM. You can also use the PRINT procedure to print all or some of the
PC file data values described by view descriptors.

proc access dbms=dbf;
create adlib.employ.access;
/* create access descriptor */
path="c:\sasdemo\employees";
drop salary;
list all;

create vlib.emps.view;
/* create vlib.emps view */
select empid jobcode birthdate

lastname jobcode;
format birthdate date9.

empid 6.0;
subset where jobcode=602;

run;

proc rank data=vlib.emps out=dlib.rankexam;
/* example */
var birthdat;
ranks daterank;

run;

proc sort data=dlib.rankexam;
by lastname;

run;

proc print data=dlib.rankexam(drop=jobcode);
title ’Order of Dept 602 Employee Birthdays’;

run;

Data stored in the DBF file must be extracted and placed in a SAS data set before
they can be sorted with a SAS procedure. (This restriction also applies to data from
other PC files.) The DROP= data set option is used in the PROC PRINT statement
because the JOBCODE variable is not needed in the output. The JOBCODE variable is
required in the SELECT statement so it can be used in the WHERE statement. The
JOBCODE variable is then included in the view descriptor, even though it is not needed
in the output. Output 6.5 on page 66 shows the result of this example.

66 Selecting and Combining Data 4 Chapter 6

Output 6.5 Ranking of Employee Birthdays

Order of Dept 602 Employee Birthdays

OBS EMPID BIRTHDAT LASTNAME DATERANK

1 456910 24SEP1953 ARDIS 5
2 237642 13MAR1954 BATTERSBY 6
3 239185 28AUG1959 DOS REMEDIOS 7
4 321783 03JUN1935 GONZALES 2
5 120591 12FEB1946 HAMMERSTEIN 4
6 135673 21MAR1961 HEMESLY 8
7 456921 12MAY1962 KRAUSE 9
8 457232 15OCT1963 LOVELL 11
9 423286 31OCT1964 MIFUNE 12

10 216382 24JUL1963 PURINTON 10
11 234967 21DEC1967 SMITH 13
12 212916 29MAY1928 WACHBERGER 1
13 119012 05JAN1946 WOLF-PROVENZA 3

When you use the PRINT procedure, you may want to take advantage of the SAS
data set option OBS=, which enables you to limit the number of observations to be
processed. This option is especially useful when the view descriptor describes a large
amount of data, the SAS data file is large, or when you just want to see an example of
the output. You cannot use OBS= if the view descriptor contains a WHERE clause in
the SUBSET statement.

For more information on RANK, on other advanced statistical procedures, and for the
PRINT procedure, see SAS Procedures Guide. For more information on the OBS= and
FIRSTOBS= options, see SAS Language Reference: Dictionary.

Selecting and Combining Data
For many of your SAS programs, you may need to combine data from more than one

view descriptor or to manipulate data that are accessed by a specific view descriptor.
The following sections describe how you can select and combine data

� using the WHERE statement in a DATA step
� using the SQL procedure to create a new PROC SQL view
� using the SQL procedure to join data from various sources
� using a summary function in a PROC SQL query to create a new column in the

output

Using the WHERE Statement
Suppose you have a view descriptor VLIB.ALLINV that lists invoices for all

customers; VLIB.ALLINV is based on the INVOICE.DBF file. You can use a SET
statement to create a SAS data file that contains information on customers who have
not paid their bills and whose bills amount to at least $300,000.

Using PC Files Data in SAS Programs 4 Using the WHERE Statement 67

proc access dbms=dbf;
create adlib.invoice.access;
/* create access descriptor */
path="c:\sasdemo\invoice.dbf";
assign=yes;
rename invoicenum = invnum

amtbilled = amtbilld
amountinus = amtinus;

format paidon date9.
billedon date9.
invoicenum 5.0
billedby 6.0
amtbilled 15.2
amountinus 15.2;

list all;

create vlib.allinv.view;
/* create vlib.allinv view */
select all;

run;

data notpaid(keep=invnum billedto amtinus billedon);
/* example */

set vlib.allinv;
where paidon is missing and amtinus>=300000;

run;

In the DATA step’s WHERE statement, be sure to use SAS variable names, not PC
files column names. Output 6.6 on page 67 shows the result of the new temporary SAS
data file WORK.NOTPAID.

proc print data=notpaid;
format amtinus dollar20.2;

title ’High Bills--Not Paid’;
run;

Output 6.6 WORK.NOTPAID Data File Created Using a SAS WHERE Statement

High Bills--Not Paid

OBS INVNUM BILLEDTO AMTINUS BILLEDON

1 11271 18543489 $11,063,836.00 05OCT1998
2 12102 18543489 $11,063,836.00 17NOV1998
3 11286 43459747 $11,063,836.00 10OCT1998
4 12051 39045213 $2,256,870.00 02NOV1998
5 12471 39045213 $2,256,870.00 27DEC1998
6 12476 38763919 $2,256,870.00 24DEC1998

68 Using the SQL Procedure 4 Chapter 6

The first line of the DATA step uses the KEEP= data set option. This option works
with view descriptors just as it works with other SAS data sets; it specifies that you
want to include only the listed variables in the new SAS data file WORK.NOTPAID.
However, you can still use the other view descriptor variables in other statements
within the DATA step.

The SAS WHERE statement includes two conditions to be met. First, it selects only
observations that have a missing value for the PAIDON variable. Second, the SAS
WHERE statement requires that the amount in each bill be higher than a certain
figure. You need to be familiar with the PC files data so that you can determine
reasonable values for these expressions. For information on the SAS WHERE
statement, refer to SAS Language: Reference.

Using the SQL Procedure
The SQL procedure implements the Structured Query Language in the SAS System.

The SQL procedure follows the SQL convention of using the terms column and row for
variable and observation This section provides examples of using the SQL procedure
with PC files data.

Joining Data from Various Sources
The SQL procedure provides another way to select and combine data. For example,

suppose you have three data sets: two view descriptors, VLIB.CUSPHON and
VLIB.CUSORDR, which are based on the CUSTOMERS.WK3 and ORDERS.XLS files,
respectively, and a SAS data file, DLIB.OUTOFSTK, which contains product names and
numbers that are out of stock. You can use the SQL procedure to create a view that
joins the data from these three sources and displays their output. The SAS WHERE or
subsetting IF statements would not be appropriate in this case because you want to
compare variables from several sources, rather than simply merging or concatenating
the data.

The following SAS statements select and combine data from the view descriptors and
the SAS data file to create a PROC SQL view, SLIB.BADORDR. SLIB.BADORDR
retrieves customer and product information that the sales department uses to notify
customers of unavailable products.

proc access dbms=wk3;
create adlib.customr.access;
/* create access descriptor */
path="c:\sasdemo\customers.wk3";
worksheet=v;
range=’cus_phone’;
getnames=yes;
skiprows=2;
scantype=5;
mixed=yes;
list all;

create vlib.cusphon.view;
/* create vlib.cusphon view */
select customer phone name;
rename customer = custnum;

run;

proc access dbms=xls;
create adlib.orders.access;

Using PC Files Data in SAS Programs 4 Using the SQL Procedure 69

/* create access descriptor */
path="c:\sasdemo\orders.xls";
worksheet=’sheet1’;
range=’a1..j39’;
getnames=yes;
skiprows=2;
scantype=5;
mixed=yes;
list all;

create vlib.cusordr.view;
/* create vlib.cusordr view */
select ordernum stocknum shipto;
rename ordernum ordnum;
format ordernum 5.0

stocknum 4.0;
run;

proc sql;
/* example */
create view slib.badordr as

select distinct cusphon.custnum,
cusphon.name, cusphon.phone,
cusordr.stocknum,
outofstk.fibernam

as product
from vlib.cusphon, vlib.cusordr,

dlib.outofstk
where cusordr.stocknum=

outofstk.fibernum
and cusphon.custnum=

cusordr.shipto;

The CREATE VIEW statement incorporates a WHERE clause as part of its SELECT
clause. The DISTINCT keyword eliminates any duplicate rows of customer numbers
that occur when companies order an unavailable product more than once.

It is recommended that you not include an ORDER BY clause in a CREATE VIEW
statement. Doing so causes the output data to be sorted every time the PROC SQL
view is submitted, which may have a negative impact on performance. It is more
efficient to add an ORDER BY clause to a SELECT statement that displays your output
data, as shown below.

options linesize=120;
title ’Data Described by SLIB.BADORDR’;

select * from slib.badordr
order by custnum, product;

quit;

This SELECT statement uses the PROC SQL view SLIB.BADORDR to display joined
WK3 and XLS data and SAS data in ascending order by the CUSTNUM column and
then by the PRODUCT (that is, FIBERNAM) column. The data are ordered by
PRODUCT because one customer may have ordered more than one product. To select
all the columns from the view, use an asterisk (*) in place of column names. When an
asterisk is used, the columns are displayed in the order specified in the SLIB.BADORDR
view. Output 6.7 on page 70 shows the data described by the SLIB.BADORDR view.

70 Using the SQL Procedure 4 Chapter 6

Output 6.7 Data Described by the PROC SQL View SLIB.BADORDR

Data Described by SLIB.BADORDER

CUSTOMER NAME PHONE STOCKNUM PRODUCT

--

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 616/582-3906 4789 dacron

18543489 LONE STAR STATE RESEARCH SUPPLIERS 512/478-0788 8934 gold

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY (0552)715311 3478 olefin

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH 406/422-3413 8934 gold

43459747 RESEARCH OUTFITTERS 03/734-5111 8934 gold

Although the query uses SAS variable names like CUSTNUM, you may notice that
the output uses PC files column names like CUSTOMER. By default, PROC SQL
displays SAS variable labels, which default to PC files column names. (You can use the
NOLABEL option to change this default.)

Creating New Columns with the GROUP BY Clause
Instead of creating a new PROC SQL view, you may want to summarize your data

and create new columns in a report. Although you cannot use the ACCESS procedure to
create new columns, you can easily do this by using the SQL procedure with data that
are described by a view descriptor.

This example uses the SQL procedure to retrieve and manipulate data from the view
descriptor VLIB.ALLEMP, which is based on the EMPLOYEE.DBF file. When this
query (as a SELECT statement is often called) is submitted, it calculates and displays
the average salary for each department. The query enables you to manipulate your
data and display the results without creating a SAS data set.

Because this example reports on employees’ salaries, the view descriptor
VLIB.ALLEMP is assigned a SAS System password (MONEY) using the DATASETS
procedure. Because of the READ= level of protection, the password must be specified in
the PROC SQL SELECT statement before you can see the DIF file data accessed by
WORK.ALLEMP.

In the following example, the DISTINCT keyword in the SELECT statement removes
duplicate rows. The AVG function in the SQL procedure is equivalent to the SAS
MEAN function.

options linesize=80;

proc access dbms=dbf;
/* create access descriptor */
create adlib.employ.access;
path="c:\sasdemo\employee.dbf";
assign=yes;
format empid 6.0

salary dollar12.2
jobcode 5.0
birthdate date9.
hiredate date9.;

Using PC Files Data in SAS Programs 4 Using the SQL Procedure 71

list all;
run;

/* create work.allemp view */
proc access dbms=dbf

accdesc=adlib.employ;
create work.allemp.view;
select all;

run;

/* assign a password */
proc datasets library=work memtype=view;

modify allemp (read=money);
run;

/* example */
title ’Average Salary Per ACC Department’;

proc sql;
select distinct dept,

avg(salary) label=’Average Salary’
format=dollar12.2

from work.allemp(pw=money)
where dept like ’ACC%’
group by dept;

quit;

The columns are displayed in the order specified in the SELECT clause of the query.
Output 6.8 on page 71 shows the result of the query.

Output 6.8 Data Retrieved by an SQL Procedure Query

Average Salary Per ACC Department

Average
DEPT Salary

ACC013 $54,591.33
ACC024 $55,370.55
ACC043 $75,000.34

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

/* delete the password */
proc datasets library=work memtype=view;

modify allemp (read=money/);
run;

For more information about SAS System passwords, see “SAS System Passwords for
SAS/ACCESS Descriptors” on page 14.

72 Reading PC Files Data into a SAS/AF Application 4 Chapter 6

Reading PC Files Data into a SAS/AF Application
The following example shows you how to use a view descriptor in a SAS/AF

application just as you would any other SAS data set. In this example, you create an
application by using SAS/AF software and Screen Control Language (SCL). The
application enables you to enter an employee ID (EMPID in the EMPLOYEE.DBF file)
in order to display the employee’s name and phone extension.

Follow these steps to create a SAS/AF application that uses a view descriptor:
1 Use PROC ACCESS to create the access descriptor ADLIB.EMPLOY and view

descriptor VLIB.ALLEMP.proc access dbms=dbf;
/* create access descriptor */
create adlib.employ.access;
path=’c:\sasdemo\employee.dbf’;
assign=yes;
format empid 6.0

salary dollar12.2
jobcode 5.0
birthdate date9.
hiredate date9.;

list all;

/* create vlib.allemp view */
create vlib.allemp.view;

select all;
run;

2 To start building a SAS/AF PROGRAM entry for this application, submit the
following statements:libname scllib ’SAS-data-library’;

/* assign a libref */

/* create the catalog entry */
proc build
catalog=scllib.employee.example.program;

run;

3 Use the features available in the DISPLAY window to create the window shown in
Display 6.1 on page 73. For more information about these features, refer to the
online help information for SAS/AF software

Using PC Files Data in SAS Programs 4 Reading PC Files Data into a SAS/AF Application 73

Display 6.1 DISPLAY Window for EXAMPLE Application

After designing the DISPLAY window, open the ATTR window (with the ATTR
command) and change the default values for the ID and PHN attributes. The type for ID
should be changed from CHAR to NUM.

The &PHN field is shown in Display 6.2 on page 73. Notice that the field name PHN is
assigned to the variable PHONE, which is listed as the alias. This variable is only four
characters wide (as shown in the Length field) but the name PHONE is five characters
long. Therefore, a shorter field name is assigned–three characters (PHN) plus the &.
For more information about window attributes, refer to the online help information for
SAS/AF software.

Display 6.2 ATTR Window for EXAMPLE Application

Issue the SOURCE command to open the SOURCE window so that you can enter the
SCL program into it, as shown in Example Code 6.1 on page 73.

Example Code 6.1 SCL Program for the Source Window

/* SCL program to be added to the Source window */
INIT:

/* Open the view descriptor VLIB.ALLEMP for reading (input mode) */
dsid=open(’vlib.allemp’,’i’);
call set(dsid);

74 Reading PC Files Data into a SAS/AF Application 4 Chapter 6

return;

MAIN:

/* When an employee id is entered, subset the view */
/* descriptor and fetch in values for the employee’s */
/* first name, last name, and phone extension */
if modified(id) and id ne _blank_ then

do;
rc=where(dsid,’empid = ’||put(id,6.));
rc=fetch(dsid);
if rc ne 0 then
msg = ’Employee id not found. Please re-enter’;

end;
return;
TERM:

/* Close the view descriptor */
if (dsid > 0) then dsid=close(dsid);

return;

Compile and test the program. Your SAS/AF application window is displayed. Enter
an employee’s ID (EMPID) from EMPLOYEE.DBF, as shown in Display 6.3 on page 74.

Display 6.3 User’s View of the Application

Press ENTER and the employee’s name and phone extension are automatically
supplied from the DBF file, as shown in Display 6.4 on page 75.

Using PC Files Data in SAS Programs 4 Using the FSVIEW Procedure to Browse PC File Data 75

Display 6.4 PC Files Data Supplied by the Application

Browsing and Updating Data with SAS/FSP Procedures
If your site has SAS/FSP software as well as SAS/ACCESS software, you can use it

to browse PC files data or to browse and update the data in DBF files. You have a
choice of using three SAS/FSP procedures: FSBROWSE, FSEDIT, and FSVIEW.

Note: Only DBF files can be edited. If you try to edit other PC file formats, SAS
defaults to browse mode. 4

Using the FSVIEW Procedure to Browse PC File Data
All of the SAS/FSP procedures work in a similar way and therefore only the FSVIEW

procedure is shown. The FSVIEW procedure enables you to browse or edit data from a
view descriptor or other SAS data set. The data are displayed in a tabular format
similar to the format of the PRINT procedure output. You specify the PROC FSVIEW
statement in the PROGRAM EDITOR window. Display 6.5 on page 76 creates a view
descriptor, VLIB.ORDSHIPD, and specifies it in a PROC FSVIEW statement:

proc access dbms=dbf;
create adlib.orders.access;
path=’c:\sasdemo\orders.dbf’;
assign=yes;
drop delete_flg specinstr;
format shipped=date9.;
list all;
create vlib.ordshipd.view;
select ordernum stocknum fabcharges

shipto shipped processby;
run;

proc fsview data=vlib.ordshipd;
run;

76 Using the FSVIEW Procedure to Update PC File Data 4 Chapter 6

Display 6.5 Browsing Data in an FSVIEW Window

Using the FSVIEW Procedure to Update PC File Data

If you are not a file’s owner or creator, you must be granted update permissions on
that file before you can edit it. Consult your site’s DBA for more information about
permissions.

There are two ways to use the FSVIEW procedure to open a window in editing mode.
The most direct is to specify the edit command in the PROC FSVIEW statement:

proc fsview data=vlib.ordshipd edit;
run;

If you open an FSVIEW window in browse mode and then decide to edit the DBF
data, you can follow these steps to change to edit mode:

1 Select the SAS icon in the top, left corner and then select the Menu item. Doing so
opens a list of menus.

2 Select the Edit menu and then select the Update... item. An Update window
opens and asks whether you want record-level or member-level locking on the DBF
file.

You can now edit the DBF data. For information about using PROC FSVIEW, select
the Using this Window item from the Help menu.

Using PC Files Data in SAS Programs 4 Using the SAS Viewer on PC File Data 77

Using the SAS Viewer on PC File Data
While your DBF data is displayed in an FSVIEW window, you can save it to a data

file and then re-open that file using the SAS Viewer (VIEWTABLE window). Take these
steps to save your FSVIEW output to a data file:

1 Select the SAS icon in the top, left corner and then select the Menu item. Doing so
opens a listing of menus.

2 Select the File menu and then the Save As item.
3 A Save As window opens and asks you for the directory and filename information

for the file that you want to save. In the Save as type: field, click on the down
button to select Data Files.

4 Press the Save button. In this example, the output is stored to a file named
VLIB.ORDSHP.

When your file is saved, you can go to the SAS Explorer window and double-click on
the libref.name of your new file, in this case, VLIB.ORDSHP. Doing so opens the
VIEWTABLE window, as shown in Display 6.6 on page 78:

You can browse or edit the PC file data from the VIEWTABLE window. For
information about using this window, select the Using this Window item from the
Help menu.

78 Reading and Updating Data with the SQL Procedure 4 Chapter 6

Display 6.6 Browsing or Editing Data through the VIEWTABLE Window

Reading and Updating Data with the SQL Procedure

The SAS System’s SQL procedure enables you to retrieve data from PC files and
update data in DBF files. You can read and display PC files data by specifying a view
descriptor or other SAS data set in the SQL procedure’s SELECT statement.

To update DBF data, you can specify view descriptors in the SQL procedure’s
INSERT, DELETE, and UPDATE statements. You can also use these statements to

Using PC Files Data in SAS Programs 4 Reading Data with the SQL Procedure 79

modify SAS data files. However, the ability to update data in a DBF file is subject to
the following conditions:

� As in other PROC and DATA steps, you can use only a view descriptor or other
SAS data set in an SQL procedure statement, not an access descriptor.

� If you did not create the DBF file, you must be granted the appropriate file access
privileges before you can select, insert, delete, or update the data.

� You must also be granted the appropriate file access privileges before you select
the data from DIF, WKn, or XLS files. The SAS/ACCESS interface to these files is
read-only, so the SELECT statement is the only one of the four PROC SQL
statements (in this section) that can reference a view descriptor based on DIF,
WKn, or XLS data.

A summary of some of the SQL procedure statements follows:

SELECT retrieves, manipulates, and displays PC file data that is described by
a view descriptor. SELECT can also use data described by a PROC
SQL or DATA step view or data in a SAS data file. A SELECT
statement is usually referred to as a query because it queries the
table for information.

DELETE deletes rows from a SAS data file or from a DBF file that is
described by a view descriptor. When you reference a view
descriptor that is based on a DBF file in the DELETE statement,
the records in the DBF file are marked for deletion.

INSERT inserts rows into a DBF file or a SAS data file.

UPDATE updates the data values in a DBF file or in a SAS data file.

Because the SQL procedure is based on the Structured Query Language, it works
somewhat differently than some SAS procedures. For example, the SQL procedure
executes without a RUN statement when a procedure statement is submitted. The SQL
procedure also displays any output automatically without using the PRINT procedure.

By default, PROC SQL uses the LABEL option to display output. LABEL displays
SAS variable labels, which default to PC files column names. If you prefer to use SAS
variable names in your output, specify NOLABEL in the OPTIONS statement.

For more information about this procedure, its options, and example, see the SQL
procedure chapter in SAS Procedures Guide.

Reading Data with the SQL Procedure
You can use the SQL procedure’s SELECT statement to display PC files data that are

described by a view descriptor or by another SAS data set. In the following example,
the query uses the VLIB.PRODUCT view descriptor to retrieve a subset of the data in
the SPECPROD.DIF file.

The asterisk (*) in the SELECT statement indicates that all the columns in
VLIB.PRODUCT are retrieved. The WHERE clause retrieves a subset of the rows. The
ORDER BY clause causes the data to be presented in ascending order according to the
table’s FIBERNAME column.

proc access dmbs=dif;
create adlib.product.access;
/* create access descriptor */
path="c:\sasdemo\specprod.dif";
diflabel;
assign=yes;
rename productid prodid;

80 Updating Data with the SQL Procedure 4 Chapter 6

format productid 4.
weight e16.9
fibersize e20.13
width e16.9;

list all;

create vlib.product.view;
/* create view descriptor */
select all;
list view;

run;

options nodate linesize=120;
title ’DIF File Data Retrieved with a SELECT

Statement’;

proc sql;
select *
from vlib.product
where cost is not null
order by fibernam;

quit;

Output 6.9 on page 80 displays the query’s output. Notice that the SQL procedure
displays the DIF file’s column names, not the SAS variable names.

Output 6.9 PC Files Data Retrieved with a PROC SQL Query

DIF File Data Retrieved with a SELECT Statement

PRODUCTID WEIGHT FIBERNAME FIBERSIZE COST PERUNIT WIDTH

--

1279 1.278899910E-01 asbestos 6.3476000000000E-10 1289.64 m 2.227550050E+02

2567 1.258500220E-01 fiberglass 5.1880000000000E-11 560.33 m 1.205000000E+02

8934 1.429999950E-03 gold 2.3800000000000E-12 100580.33 cm 2.255999760E+01

Updating Data with the SQL Procedure
You can use the SQL procedure’s UPDATE statement to update the data in a DBF

file, as illustrated by the following example. Because you are referencing a view
descriptor, you use the SAS variable names in the UPDATE statement; however, the
SQL procedure displays the DBF column names.

proc sql;
update vlib.empeeoc

set salary=26678.24,
gender=’M’,

Using PC Files Data in SAS Programs 4 Deleting Data with the SQL Procedure 81

birthdat=’28AUG1959’d
where empid=123456;

options linesize=120;
title ’Updated Data in EMPLOYEES Table’;
select empid, hiredate, salary, dept, jobcode,

gender, birthdat, lastname
from vlib.empeeoc
where empid=123456;

quit;

Output 6.10 on page 81 displays the updated row of data retrieved from the view
descriptor VLIB.EMPEEOC.

Output 6.10 DBF File Data Updated with the UPDATE Statement

Updated Data in EMPLOYEES Table

EMPID HIREDATE SALARY DEPT JOBCODE GENDER BIRTHDATE LASTNAME

--

123456 04APR1989 $26,678.24 ACC043 1204 M 28AUG1959 VARGAS

Deleting Data with the SQL Procedure
You can use the SQL procedure’s DELETE statement to delete rows from a DBF file.

In the following example, the row that contains the value 346917 in the EMPID column
is deleted from the EMPLOYEE.DBF.

proc sql;
delete from vlib.empeeoc
where empid=346917;

quit;

The deleted observation is marked with an asterisk (*) in the DELETE_FLG field. This
is the only indicator you have that a record in a DBF field has been marked for
deletion. If you have a number of rows to delete, you could use a macro variable
EMPID instead of the individual EMPID values. Doing so would enable you to change
the values more easily.

%let empid=346917;

proc sql;
delete from vlib.empeeoc
where empid=&empid;

quit;

CAUTION:
Use a WHERE clause in the DELETE statement. If you omit the WHERE clause from the
DELETE statement, you delete all the data in the SAS data file or the DBF file. 4

82 Inserting Data with the SQL Procedure 4 Chapter 6

Inserting Data with the SQL Procedure
You can use the SQL procedure’s INSERT statement to add rows to a DBF file. In

the following example, the row that contains the value 346917 in the EMPID column is
inserted back into the EMPLOYEE.DBF file.

proc sql;
insert into vlib.allemp
values(’’,346917,’02MAR1987’d,46000.33,’SHP013’,204,

’F’,’15MAR1950’d,’SHIEKELESLAM’,’SHALA’,
’Y.’,’8745’);

quit;

A message is written to the SAS log to indicate that the row has been inserted, as
shown in Output 6.11 on page 82:

Output 6.11 Message Displayed in the SAS Log When a Row Is Inserted

6698
6699
6700
6701
6702
6703 proc sql;
6704 insert into vlib.allemp
6705 values(’’,346917,’02MAR1987’d,46000.33,
6706 ’SHP013’,204,’F’,’15MAR1950’d,
6707 ’SHIEKELESLAM’,’SHALA’,’Y.’,
6708 ’8745’);

NOTE: 1 row was inserted into VLIB.ALLEMP.

6709 quit;

Updating PC Files Data with the MODIFY Statement
The MODIFY statement extends the capabilities of the DATA step by enabling you to

modify DBF file data accessed by a view descriptor or a SAS data file without creating
an additional copy of the data. To use the MODIFY statement with a view descriptor,
you must have UPDATE privileges on the view’s underlying DBF file.

You can specify either a view descriptor or a SAS data file as the master data set in
the MODIFY statement. In the following example, the master data set is the view
descriptor VLIB.MASTER, which describes data in the ORDERS.DBF file. You also
create a transaction data file, DLIB.TRANS, that you use to update the master data set
(and therefore, the ORDERS.DBF table). The SAS variable names, formats, and

Using PC Files Data in SAS Programs 4 Updating PC Files Data with the MODIFY Statement 83

informats of the transaction data file must correspond to those described by the view
descriptor VLIB.MASTER.

Using the VLIB.MASTER view descriptor, the MODIFY statement updates the
ORDERS.DBF table with data from the DLIB.TRANS data file. The SAS System reads
one observation (or row) of the ORDERS.DBF table for each iteration of the DATA step,
and performs any operations that the code specifies. In this case, the IF-THEN
statements specify whether the information for an order is to be updated, added, or
deleted.

proc access dmbs=dbf;
/* create access descriptor */
create adlib.orders.access;

path="c:\sasdemo\orders.dbf";
assign=yes;
rename dateorderd = dateord;

processdby = procesby;
format dateorderd date9.

shipped date9.
ordernum 5.0
length 4.0
stocknum 4.0
takenby 6.0
processdby 6.0
fabcharges 12.2;

/* create vlib.master view */
create vlib.master.view;
select all;

run;

data dlib.trans;
ordernum=12102;
/*Obs. 1 specifies Update for

ORDERNUM=12102*/
shipped=’05DEC1998’d;
type=’U’;
output;

ordernum=12160;
/*Obs. 2 specifies Update for

ORDERNUM=12160*/
shipped=.;
takenby=456910;
type=’U’;
output;

ordernum=13000;
/*Obs. 3 specifies Add for new

ORDERNUM=13000*/
stocknum=9870;
length=650;
fabcharg=.;
shipto=’19876078’;
dateord=’18JAN1999’d;

84 Updating PC Files Data with the MODIFY Statement 4 Chapter 6

shipped=’29JAN1999’d;
takenby=321783;
procesby=120591;
specinst=’Customer agrees to certain

limitations.’;
type=’A’;
output;

ordernum=12465;
/*Obs. 4 specifies Delete for

ORDERNUM=12465*/
type=’D’;
output;

run;

data vlib.master;
/* MODIFY statement example */
modify vlib.master dlib.trans;
by ordernum;
select (_iorc_);

when (%sysrc(_dsenmr)) do;
/* No match in MASTER - Add */

if type=’A’
then output vlib.master;

error = 0;
end;
when (%sysrc(_sok)) do;

/* Match located - Update or Delete */
if type=’U’

then replace vlib.master;
else if type=’D’

then remove vlib.master;
end;
otherwise do;

/* Traps unexpected outcomes */
put ’Unexpected ERROR condition:

IORC = ’ _iorc_ ;
put _all_;

/* This dumps all vars in the PDV */
error = 0;

end;
end;

run;

options linesize=120;
/* prints the example’s output */

proc print data=vlib.master;
where ordernum in(12102 12160 13000 12465);
title ’DBF File Data Updated with the MODIFY

Statement’;
run;

The DATA step uses the SYSRC macro to check the value of the _IORC_ automatic
variable. It also prevents an error message from being generated when no match is

Using PC Files Data in SAS Programs 4 Updating PC Files Data with the MODIFY Statement 85

found in the VLIB.MASTER file for an observation that is being added. It prevents the
error message by resetting the _ERROR_ automatic variable to 0. The PRINT
procedure specifies a WHERE statement so that it displays only the observations that
are included in the transaction data set. The observation with ORDERNUM 12465 is
deleted by the MODIFY statement, so it does not appear in the results. The results of
this example are shown in Output 6.12 on page 85.

Output 6.12 Revising PC Files Data with a MODIFY Statement

DBF File Data Updated with the MODIFY Statement

OBS DELETE_F ORDERNUM STOCKNUM LENGTH FABCHARG SHIPTO DATEORD SHIPPED TAKENBY PROCESBY

22 12102 8934 110 11063836.00 18543489 15NOV1998 05DEC1998 456910 .

23 12160 3478 1000 . 29834248 19NOV1998 . 456910 .

26 * 12465 3478 1000 . 29834248 23DEC1998 . 234967 .

39 13000 9870 650 . 19876078 18JAN1999 29JAN1999 321783 120591

OBS SPECINST

22

23 Customer agrees to pay in full.

26

39 Customer agrees to certain limitations.

In this example, any column value that you specify in the transaction data set carries
over to any subsequent observations if the values for the subsequent observations are
missing. For example, the first observation sets the value of SHIPPED to 05DEC1998.
The second observation sets the value to missing. If the value of SHIPPED was not set
to missing in the second observation, the value 05DEC1998 would be incorrectly
supplied. Therefore, you may want to create your transaction data set in a particular
order to minimize having to reset variables.

There are some differences in the way you use a MODIFY statement to update a SAS
data file and to update DBF file data through a view descriptor. When you use a view
descriptor as the master data set in a MODIFY statement, the following conditions
apply:

� You cannot use the POINT= option because observation numbers are not available
in a DBF file.

� The NOBS= option displays the largest positive integer value available on the host
operating system.

� Each PC files statement that is issued, whether an INSERT, DELETE, or
UPDATE, is a separate transaction and is saved in the DBF file. You cannot undo
(or reverse) these changes without re-editing.

For more information about the MODIFY statement, see SAS Language Reference:
Dictionary.

86 Updating a SAS Data File with PC Files Data 4 Chapter 6

Updating a SAS Data File with PC Files Data

You can update a SAS data file with DBF file data that are described by a view
descriptor just as you can update a SAS data file with data from another SAS data file.

Suppose you have a SAS data set, DLIB.BIRTHDAY, that contains employee ID
numbers, last names, and birthdays. (See Appendix 1, “Sample Data,” on page 151 for a
description of DLIB.BIRTHDAY.) You want to update this data set with data described
by VLIB.EMPBDAY, a view descriptor that is based on the EMPLOYEE.DBF file. To
perform this update, enter the following SAS statements:

options linesize=80;

proc access dbms=dbf;
create adlib.employ.access;
/* create access descriptor */
path="c:\sasdemo\employee.dbf";
assign=yes;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate date9.
birthdate date9.;

list all;

create vlib.empbday.view;
/* create view descriptor */
select empid birthdate lastname

firstname phone;
run;

proc sort data=dlib.birthday;
by lastname;

run;

proc print data=dlib.birthday;
/* examples */
format birthdat date9.;
title ’DLIB.BIRTHDAY Data File’;

run;

proc print data=vlib.empbday;
format birthdat date9.;
title ’Data Described by VLIB.EMPBDAY’;

run;

proc sort data=vlib.empbday out=work.empbirth;
by lastname;

run;

data dlib.newbday;
update dlib.birthday work.empbirth;
by lastname;

run;

Using PC Files Data in SAS Programs 4 Updating a SAS Data File with PC Files Data 87

proc print;
format birthdat date9.;
title ’DLIB.NEWBDAY Data File’;

run;

In this example, a PROC SORT statement with the OUT= option extracts DBF file
data, places them in the SAS data file WORK.EMPBIRTH, and sorts the data by the
LASTNAME variable. (When using a DATA step, PC files data must be extracted before
you can sort them.) When the UPDATE statement references the SAS data file
WORK.EMPBIRTH and you use a BY statement in the DATA step, the BY statement
causes the interface view engine to generate an ORDER BY clause for the variable
LASTNAME. Thus, the ORDER BY clause causes the DBF data to be presented to the
SAS System in sorted order for use in updating the DLIB.NEWBDAY data file.
However, the SAS data file DLIB.BIRTHDAY must be sorted before the update because
the UPDATE statement expects both the original file and the transaction file to be
sorted by the same BY variable.

Output 6.13 on page 87, Output 6.14 on page 88, and Output 6.15 on page 89 show
the results of the PRINT procedures.

Output 6.13 Data File to Be Updated, DLIB.BIRTHDAY

DLIB.BIRTHDAY Data File

OBS EMPID BIRTHDAT LASTNAME

1 254196 06APR1949 CHANG
2 459288 05JAN1934 JOHNSON
3 127815 25DEC1943 WOLOSCHUK

88 Updating a SAS Data File with PC Files Data 4 Chapter 6

Output 6.14 DBF File Data Described by the View Descriptor VLIB.EMPBDAY

Data Described by VLIB.EMPBDAY

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM PHONE

1 119012 05JAN1946 WOLF-PROVENZA G. 3467
2 120591 12FEB1946 HAMMERSTEIN S. 3287
3 123456 28AUG1959 VARGAS CHRIS
4 127845 25DEC1943 MEDER VLADIMIR 6231
5 129540 31JUL1960 CHOULAI CLARA 3921
6 135673 21MAR1961 HEMESLY STEPHANIE 6329
7 212916 29MAY1928 WACHBERGER MARIE-LOUISE 8562
8 216382 24JUL1963 PURINTON PRUDENCE 3852
9 234967 21DEC1967 SMITH GILBERT 7274
10 237642 13MAR1954 BATTERSBY R. 8342
11 239185 28AUG1959 DOS REMEDIOS LEONARD 4892
12 254896 06APR1949 TAYLOR-HUNYADI ITO 0231
13 321783 03JUN1935 GONZALES GUILLERMO 3642
14 328140 02JUN1951 MEDINA-SIDONIA MARGARET 5901
15 346917 15MAR1950 SHIEKELESLAM SHALA 8745
16 356134 25OCT1960 DUNNETT CHRISTINE 4213
17 423286 31OCT1964 MIFUNE YUKIO 3278
18 456910 24SEP1953 ARDIS RICHARD 4351
19 456921 12MAY1962 KRAUSE KARL-HEINZ 7452
20 457232 15OCT1963 LOVELL WILLIAM 6321
21 459287 05JAN1934 RODRIGUES JUAN 5879
22 677890 24APR1965 NISHIMATSU-LYNCH CAROL 6245
23 346917 15MAR1950 SHIEKELESLAM SHALA

Using PC Files Data in SAS Programs 4 Appending Data with the APPEND Procedure 89

Output 6.15 Data in the Updated Data File DLIB.NEWBDAY

DLIB.NEWBDAY Data File

OBS EMPID BIRTHDAT LASTNAME FIRSTNAM PHONE

1 456910 24SEP1953 ARDIS RICHARD 4351
2 237642 13MAR1954 BATTERSBY R. 8342
3 254196 06APR1949 CHANG
4 129540 31JUL1960 CHOULAI CLARA 3921
5 239185 28AUG1959 DOS REMEDIOS LEONARD 4892
6 356134 25OCT1960 DUNNETT CHRISTINE 4213
7 321783 03JUN1935 GONZALES GUILLERMO 3642
8 120591 12FEB1946 HAMMERSTEIN S. 3287
9 135673 21MAR1961 HEMESLY STEPHANIE 6329
10 459288 05JAN1934 JOHNSON
11 456921 12MAY1962 KRAUSE KARL-HEINZ 7452
12 457232 15OCT1963 LOVELL WILLIAM 6321
13 127845 25DEC1943 MEDER VLADIMIR 6231
14 328140 02JUN1951 MEDINA-SIDONIA MARGARET 5901
15 423286 31OCT1964 MIFUNE YUKIO 3278
16 677890 24APR1965 NISHIMATSU-LYNCH CAROL 6245
17 216382 24JUL1963 PURINTON PRUDENCE 3852
18 459287 05JAN1934 RODRIGUES JUAN 5879
19 346917 15MAR1950 SHIEKELESLAM SHALA 8745
20 234967 21DEC1967 SMITH GILBERT 7274
21 254896 06APR1949 TAYLOR-HUNYADI ITO 0231
22 123456 28AUG1959 VARGAS CHRIS
23 212916 29MAY1928 WACHBERGER MARIE-LOUISE 8562
24 119012 05JAN1946 WOLF-PROVENZA G. 3467
25 127815 25DEC1943 WOLOSCHUK

Appending Data with the APPEND Procedure
You can append data from any data set to a SAS data file or view descriptor.

Specifically, you can append PC files data described by one view descriptor to another,
or you can append a SAS data file. Because the SAS/ACCESS interface to DIF, WKn,
and XLS files is read-only, you cannot append data to those files. You can however,
append data from them to a DBF file or to a SAS data file.

The following example uses the APPEND procedure’s FORCE option to append a
SAS data file with extra variables to the data file referenced by the view descriptor
VLIB.SQLEMPS. You must have DBF INSERT privileges in order to add rows to the
EMPLOYEES.DBF file.

You can append data to a table that is referenced by a view descriptor even if the
view descriptor contains a subset of columns and a subset of rows. If a PC files column
is defined as NOT NULL, some restrictions apply when appending data. For more
information, see the APPEND procedure in SAS Procedures Guide.

The FORCE option forces PROC APPEND to concatenate two data sets even though
they may have some different variables or variable attributes. The SAS data file,
DLIB.TEMPEMPS, has DEPT, FAMILYID, and GENDER variables that have not been
selected in the view descriptor, VLIB.SQLEMPS. The extra variables are dropped from
DLIB.TEMPEMPS when it and the BASE= data set, VLIB.SQLEMPS, are concatenated.
A message is displayed in the SAS log indicating that the variables are dropped.

90 Appending Data with the APPEND Procedure 4 Chapter 6

proc access dbms=dbf;
/* create access descriptor */
create adlib.employ.access;
path=’c:\sasdemo\employee.dbf’;
assign=no;
drop salary;
list all;

create vlib.sqlemps.view;
/* create view descriptor */
select empid hiredate lastname

firstname middlename;
format empid 6.0

hiredate date9.;
run;

proc print data=vlib.sqlemps;
/* examples */
title ’Data Described by VLIB.SQLEMPS’;

run;

proc print data=dlib.tempemps;
title ’Data in DLIB.TEMPEMPS Data File’;

run;

The view descriptor VLIB.SQLEMPS is displayed in Output 6.16 on page 91, and the
SAS data file DLIB.TEMPEMPS is displayed in Output 6.17 on page 91.

Using PC Files Data in SAS Programs 4 Appending Data with the APPEND Procedure 91

Output 6.16 Data Described by VLIB.SQLEMPS

Data Described by VLIB.SQLEMPS

OBS EMPID HIREDATE LASTNAME FIRSTNAM MIDDLENA

1 119012 01JUL1968 WOLF-PROVENZA G. ANDREA
2 120591 05DEC1980 HAMMERSTEIN S. RACHAEL
3 123456 04APR1989 VARGAS CHRIS J.
4 127845 16JAN1967 MEDER VLADIMIR JORAN
5 129540 01AUG1982 CHOULAI CLARA JANE
6 135673 15JUL1984 HEMESLY STEPHANIE J.
7 212916 15FEB1951 WACHBERGER MARIE-LOUISE TERESA
8 216382 15JUN1985 PURINTON PRUDENCE VALENTINE
9 234967 19DEC1988 SMITH GILBERT IRVINE

10 237642 01NOV1976 BATTERSBY R. STEPHEN
11 239185 07MAY1981 DOS REMEDIOS LEONARD WESLEY
12 254896 04APR1985 TAYLOR-HUNYADI ITO MISHIMA
13 321783 10SEP1967 GONZALES GUILLERMO RICARDO
14 328140 10JAN1975 MEDINA-SIDONIA MARGARET ROSE
15 346917 02MAR1987 SHIEKELESLAM SHALA Y.
16 356134 14JUN1985 DUNNETT CHRISTINE MARIE
17 423286 19DEC1988 MIFUNE YUKIO TOSHIRO
18 456910 14JUN1978 ARDIS RICHARD BINGHAM
19 456921 19AUG1987 KRAUSE KARL-HEINZ G.
20 457232 15JUL1985 LOVELL WILLIAM SINCLAIR
21 459287 02NOV1964 RODRIGUES JUAN M.
22 677890 12DEC1988 NISHIMATSU-LYNCH CAROL ANNE
23 346917 02MAR1987 SHIEKELESLAM SHALA Y.

Output 6.17 Data in DLIB.TEMPEMPS

Data in DLIB.TEMPEMPS Data File

OBS EMPID HIREDATE DEPT GENDER LASTNAME FIRSTNAM MIDDLENA FAMILYID

1 765111 04MAY1998 CSR011 M NISHIMATSU-LYNCH RICHARD ITO 677890
2 765112 04MAY1998 CSR010 M SMITH ROBERT MICHAEL 234967
3 219776 15APR1998 ACC024 F PASTORELLI ZORA .
4 245233 10APR1998 ACC013 ALI SADIQ H. .
5 245234 10APR1998 ACC024 F MEHAILESCU NADIA P. .
6 326721 01MAY1998 SHP002 M CALHOUN WILLIS BEAUREGARD .

The APPEND procedure also accepts a WHERE= data set option or a SAS WHERE
statement to retrieve a subset of the observations. In this example, a subset of the

92 Appending Data with the APPEND Procedure 4 Chapter 6

observations from DLIB.TEMPEMPS is added to VLIB.SQLEMPS by using a SAS
WHERE statement; the WHERE statement applies only to the DATA= data set.

proc append base=vlib.sqlemps
data=dlib.tempemps force;

where hiredate >= ’01JAN1998’d;
run;

proc print data=vlib.sqlemps;
title ’Subset of SAS Data Appended

to a View Descriptor’;
run;

Output 6.18 on page 92 shows VLIB.SQLEMPS with three rows from
DLIB.TEMPEMPS appended to it.

Output 6.18 Subset of Data Appended with the FORCE Option

Subset of SAS Data Appended to a View Descriptor

OBS EMPID HIREDATE LASTNAME FIRSTNAM MIDDLENA

1 119012 01JUL1968 WOLF-PROVENZA G. ANDREA
2 120591 05DEC1980 HAMMERSTEIN S. RACHAEL
3 123456 04APR1989 VARGAS CHRIS J.
4 127845 16JAN1967 MEDER VLADIMIR JORAN
5 129540 01AUG1982 CHOULAI CLARA JANE
6 135673 15JUL1984 HEMESLY STEPHANIE J.
7 212916 15FEB1951 WACHBERGER MARIE-LOUISE TERESA
8 216382 15JUN1985 PURINTON PRUDENCE VALENTINE
9 234967 19DEC1988 SMITH GILBERT IRVINE

10 237642 01NOV1976 BATTERSBY R. STEPHEN
11 239185 07MAY1981 DOS REMEDIOS LEONARD WESLEY
12 254896 04APR1985 TAYLOR-HUNYADI ITO MISHIMA
13 321783 10SEP1967 GONZALES GUILLERMO RICARDO
14 328140 10JAN1975 MEDINA-SIDONIA MARGARET ROSE
15 346917 02MAR1987 SHIEKELESLAM SHALA Y.
16 356134 14JUN1985 DUNNETT CHRISTINE MARIE
17 423286 19DEC1988 MIFUNE YUKIO TOSHIRO
18 456910 14JUN1978 ARDIS RICHARD BINGHAM
19 456921 19AUG1987 KRAUSE KARL-HEINZ G.
20 457232 15JUL1985 LOVELL WILLIAM SINCLAIR
21 459287 02NOV1964 RODRIGUES JUAN M.
22 677890 12DEC1988 NISHIMATSU-LYNCH CAROL ANNE
23 346917 02MAR1987 SHIEKELESLAM SHALA Y.
24 765111 04MAY1994 NISHIMATSU-LYNCH RICHARD ITO
25 765112 04MAY1998 SMITH ROBERT MICHAEL
26 219776 15APR1998 PASTORELLI ZORA
27 245233 10APR1998 ALI SADIQ H.
28 245234 10APR1998 MEHAILESCU NADIA P.
29 326721 01MAY1998 CALHOUN WILLIS BEAUREGARD

Using PC Files Data in SAS Programs 4 Appending Data with the APPEND Procedure 93

See Output 6.19 on page 93 for a copy of the SAS log screen and the messages about
the FORCE option.

Output 6.19 SAS Log with Messages about the FORCE Option

10504
10505
10506
10507
10508
10509 proc append base=vlib.sqlemps
10510 data=dlib.tempemps force;
10511 where hiredate <= ’30APR1998’d;
10512 run;

NOTE: Appending DLIB.TEMPEMPS to VLIB.SQLEMPS.
WARNING: Variable DEPT was not found on BASE
file.
WARNING: Variable GENDER was not found on BASE
file.
WARNING: Variable FAMILYID was not found on
BASE file.
NOTE: FORCE is specified, so dropping/
truncating will occur.
NOTE: 3 observations added.
NOTE: The data set VLIB.SQLEMPS has .
observations and 5 variables.

Because the BASE= data set is a view descriptor in this example, PROC APPEND
generates a SQL INSERT statement for the rows to be appended to the DBF file.

The number of observations in the EMPLOYEES.DBF file is not displayed in the
SAS log because when the view descriptor is opened by the DBF engine, the number of
rows in the underlying file is not known.

For more information on the APPEND procedure, see SAS Procedures Guide.

94 Appending Data with the APPEND Procedure 4 Chapter 6

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for PC File Formats: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for PC File Formats: Reference, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025–544–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

