
97

C H A P T E R

7
DBF Chapter

Note to UNIX and OS/390 Users 97
Import/Export Facility 97

Understanding DBF Essentials 98

DBF Files 98

DBF File Naming Conventions 99

DBF File Data Types 99
ACCESS Procedure Data Conversions 101

Handling Missing Values 101

ACCESS Procedure: DBF Specifics 101

ACCESS Procedure Statements for DBF Files 102

DBLOAD Procedure: DBF Specifics 103

DBLOAD Procedure Statements for DBF Files 103
How the SAS/ACCESS Interface Works 104

Note to UNIX and OS/390 Users
If you are running this SAS/ACCESS interface under the UNIX or OS/390 operating

environment, this chapter does not apply to you. Instead, see Chapter 3, “DBF and DIF
Procedures,” on page 33. Under UNIX and PC hosts, you can use these procedures to
convert a DBF or DIF file to a SAS data set or a SAS data set to a DBF or DIF file.
Under OS/390, you can use PROC DBF only to convert a DBF file to a SAS data set or a
SAS data set to a DBF file.

Import/Export Facility
UNIX and PC users can access DBF data through the Import/Export facility or by

using the IMPORT and EXPORT procedures. An overview is included in Chapter 5,
“Import/Export Facility and Procedures,” on page 51.

To use the point-and-click interface from a SAS PROGRAM EDITOR window, select
the File menu and then select the Import Data or Export Data item. Information
about how to import or export DBF data is available from the Help button. The
following is a sample Import window:

98 Understanding DBF Essentials 4 Chapter 7

Display 7.1 Import Window

To write code to import or export DBF data, refer to the detailed descriptions of the
IMPORT and EXPORT procedures in the SAS Procedures Guide. This documentation
also includes several examples.

Understanding DBF Essentials
This chapter introduces SAS System users to DBF files, which can be created using a

variety of microcomputer software programs. DBF files are a file format created by
dBASE, a relational database management system for microcomputer systems.

This chapter focuses on the terms and concepts that help you access DBF files with
SAS/ACCESS software. Then it describes DBF-specific statements you use in the
ACCESS and DBLOAD procedures. Finally, it also contains a section on how the
SAS/ACCESS interface works.

Note: The SAS/ACCESS interface cannot access DBF files created by Visual dBASE
7. 4

The SAS/ACCESS interface works with DBF files that are created by dBASE (II, III,
III PLUS, IV, and 5.0) and with DBF files that are created by other software products.

As an introduction to DBF files, this chapter describes DBF files that are created
using dBASE 5.0, rather than describing each version of dBASE and the differences
among them.* If you want more information on a dBASE concept or term, see the
dBASE documentation packaged with your system.

DBF Files
A DBF file contains data that are organized in a tabular format of database fields

and records. Each database field can contain one type of data, and each record can hold

* The term dBASE refers to dBASE 5.0 for Windows unless otherwise noted.

DBF Chapter 4 DBF File Data Types 99

one data value for each field. Figure 7.1 on page 99 illustrates four database fields from
CUSTOMER.DBF and highlights a database field and a record.

The SAS/ACCESS interface uses database files that have a .DBF extension. A DBF
file consists of a specific number of database fields and some number of records. DBF
files are one kind of file that you can select in a catalog. You can create DBF files in a
number of ways in dBASE, including using the CREATE command. See your dBASE or
other software products’ documentation for information about creating DBF files and
assigning field names, field types, and other attributes.

Figure 7.1 DBF File

database field

CUSTOMER CITY STATE COUNTRY

14324742 San Jose CA USA
14569877 Memphis TN USA record
14898029 Rockville MD USA
26422096 La Rochelle France
38763919 Buenos Aires Argentina
46783280 Singapore Singapore

The ACCESS procedure uses SAS/ACCESS descriptor files to reference DBF files for
reading or extracting data. It cannot use any dBASE indexes or indexes created by
other software products that are defined on the fields in a DBF file. You can use the
view descriptors you create to update DBF data. You can use the DBLOAD procedure to
create and load DBF files.

The ACCESS procedure cannot reference DBF files that are secured through
encryption. Like other files, DBF files are subject to any security restrictions imposed
by the operating system or network (if applicable).

DBF File Naming Conventions
Filenames must also follow operating-system specific conventions, so check the

documentation that comes with your dBASE product or other software products for
further information. The following conventions apply to DBF filenames and field names:

� Under Windows 95, Windows 98, Windows NT, and OS/2, the ACCESS and
DBLOAD procedures support long names that are specified in the PATH=
statement (such as path=’c:\sasdemo\library\customer99.dbf’;) However,
some applications that support dBASE files might not accept files with long names.

� Filenames or field names start with a letter, and they can contain any combination
of the letters A through Z, the digits 0 through 9, the colon (:) (in dBASE II field
names only), and the underscore (_).

� Database field names can be from one to ten characters long. Each field in a DBF
file has a unique name.

� Filenames or field names are not case sensitive; that is, CUSTOMER is the same
as Customer. Field names typed in lowercase are changed to uppercase on the
display.

DBF File Data Types
Every field in a DBF file has a name and a data type. The data type tells how much

physical storage to set aside for the database field and the form in which the data are
stored. The following section lists and describes each data type.

100 DBF File Data Types 4 Chapter 7

Character(N)
specifies a field for character string data. The maximum length of N is 254
characters. Characters can be letters, digits, spaces, or special characters. You can
abbreviate character to char in your programs.

Numeric(N,n)
specifies a packed decimal number, that is, a Binary Coded Decimal number. The
N value is the total number of digits (precision), and the n value is the number of
digits to the right of the decimal point (scale). The maximum values allowed
depend on the software product you are using. For dBASE products, the maximum
values allowed are

dBASE Version N,n

dBASE II 16,14

dBASE III 19,15

dBASE III PLUS 19,15

dBASE IV 20,18

dBASE 5.0 20,18

Numeric field types always preserve the precision of their original numbers.
However, the SAS System stores all numbers internally as double-precision,
floating-point numbers, so their precision is limited to 16 digits.

Note: If every available digit in a DBF file field is filled with a 9, the value of
the field is interpreted as missing by the SAS System. If a field in the SAS System
indicates a missing value (represented by a period), the SAS System writes a 9 for
each available digit in the corresponding DBF file database field. While in a SAS
session, if you fill every available digit in a DBF file field with 9s, scroll from the
field, and return to the field, the value is represented as missing. 4

Float(N,n)
specifies a floating-point binary number that is available in dBASE IV and later
versions. The maximum N,n value for Float is 20,18. Check with the
documentation that comes with other software products you may be using to create
DBF files to determine if those products support floating-point binary numbers.

Date
specifies a date value in a format that has numbers and a character value to
separate the month, day, and year. The default format is mm/dd/yy, for example,
02/20/95 for February 20, 1995.

Dates in DBF files can be subtracted from one another, with the result being the
number of days between the two dates. A number (of days) can also be added to a
date, with the result being a date.

Logical
specifies a type that answers a yes/no or true/false question for each record in a
file. This type is 1 byte long and accepts the following character values: Y, y, N, n,
T, t, F, and f.

dBASE also has data types called Memo, General, binary, and OLE, which are stored
in an associated memo text file (called a DBT file), but these data types are not
supported in the SAS/ACCESS interface to PC file formats.

“How the SAS/ACCESS Interface Works” on page 104 describes how the DBLOAD
procedure determines data types when creating DBF files.

DBF Chapter 4 ACCESS Procedure: DBF Specifics 101

ACCESS Procedure Data Conversions
The table below shows the default SAS System variable formats that the ACCESS

procedure assigns to each DBF file data type. If DBF file data fall outside of the valid
SAS data ranges, you get an error message in the SAS log when you try to read the
data.

DBF File Data Type SAS Variable Format

Character(n) $n .(n <= 200)

$200. (n > 200)

Numeric(N,n) (N,n)

Float(N,n)* (N,n)

Date MMDDYY8.

Logical $1.

* This data type applies to dBASE IV and later. Check with other software products’
documentation to see if this data type applies.

Handling Missing Values
Missing numeric values are filled in with 9s by default. The DBFMISCH is used to

change the default by specifying the character that the interface to DBF files uses to fill
missing numeric fields. For example, if you try to write a SAS file with a missing
numeric variable to a DBF file, the corresponding field in the DBF file would be filled
with the DBFMISCH character. Conversely, any numeric or float field in a DBF file
that is filled with the DBFMISCH character is treated as missing when read by the
SAS System.

You set the DBMISCH environment variable in the SAS configuration file using the
following syntax:

-set DBFMISCH <value>

Valid values are

<any single character>
Type in any single character. For example, to fill missing numeric values
with the zero character (0), enter -set DBFMISCH 0.

NULLS
To replace missing numeric values with binary zeros, enter -set DBFMISCH
NULLS.

BLANKS
To replace missing numeric values with blanks, enter -set DBFMISCH BLANKS.

ACCESS Procedure: DBF Specifics
Chapter 2, “ACCESS Procedure Reference,” on page 11 describes the generic options

and procedure statements that enable you to create access descriptors, view descriptors,
and SAS data files from PC file format data. The following section describes the PC
file-specific statements that you use in the SAS/ACCESS interface to DBF files.

102 ACCESS Procedure Statements for DBF Files 4 Chapter 7

ACCESS Procedure Statements for DBF Files
To create an access descriptor, you use the DBMS=DBF option and the

database-description statement PATH=. This PATH= statement supplies DBF-specific
information to the SAS System and must immediately follow the CREATE statement.
In addition to the database-description statements, you can use optional editing
statements when you create an access descriptor. These editing statements must follow
the database-description statements.

Database-description statements are only required when you create access
descriptors. Because the DBF information is stored in an access descriptor, you do not
need to repeat this information when you create view descriptors.

The SAS/ACCESS interface to DBF allows the following procedure statements:

Note: The SAS/ACCESS interface cannot read DBF files that are encrypted.
Therefore, you cannot define an access descriptor based on these files. 4

PROC ACCESS options;
CREATE libref.name.ACCESS|VIEW;
UPDATE libref.name.ACCESS|VIEW;

PATH= ’path-and-filename<.DBF>’|< ’>filename< ’>| fileref;
ASSIGN | AN <=> YES | NO;
DROP < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;
FORMAT < ’>column-identifier-1< ’><=>SAS-format-name-1

<…< ’>column-identifier-n< ’> <=>SAS-format-name-n>;
LIST <ALL | VIEW | < ’>column-identifier< ’>>;
RENAME < ’>column-identifier-1< ’><=>SAS-variable-name-1

<…< ’>column-identifier-n< ’><=>SAS-variable-name-n>;
RESET ALL | < ’>column-identifier-1< ’>

<…< ’>column-identifier-n< ’>>;
SELECT ALL | < ’>column-identifier-1< ’>

<…< ’>column-identifier-n< ’>>;
SUBSET selection criteria;
UNIQUE <=> YES | NO;

RUN;

The QUIT statement is also available in PROC ACCESS. However, its use causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

The following example creates an access descriptor and a view descriptor based on
DBF file data.

options linesize=80;
libname dbfliba ’SAS-data-library’;
libname dbflibv ’SAS-data-library’;

proc access dbms=dbf;
/* create access descriptor */

create adlib.custs.access;
path=’c:\dbfiles\dbcusts.dbf’;
assign=yes;
rename customer = custnum;
format firstorder date9.;

DBF Chapter 4 DBLOAD Procedure Statements for DBF Files 103

list all;

/* create usacust view */
create vlib.usacust.view;
select customer state zipcode name

firstorder;
run;

DBLOAD Procedure: DBF Specifics
Chapter 4, “DBLOAD Procedure Reference,” on page 41 describes the generic options

and procedure statements that enable you to create a PC data file. The following section
describes the file-specific statements you use in the SAS/ACCESS interface to DBF files.

DBLOAD Procedure Statements for DBF Files
To create and load a DBF table, the SAS/ACCESS interface to PC file formats uses

the following statements:

PROC DBLOAD <DBMS=DBF> <DATA=<libref.>SAS-data-set>;
PATH=’path-and-filename<.DBF>’ | <’>filename<’>|fileref;
VERSION= dBASE-product-number;
ACCDESC=<libref.>access-descriptor;
DELETE variable-identifier-1 <…variable-identifier-n>;
ERRLIMIT= error-limit;
LABEL;
LIMIT= load-limit;
LIST <ALL | FIELDS | variable-identifier>;
LOAD;
RENAME variable-identifier-1= < ’>database-field-name-1< ’>

<…variable-identifier-n = < ’>database-field-name-n< ’>>;
RESET ALL | variable-identifier-1 <…variable-identifier-n>;
TYPE variable-identifier-1=’database-field-type-1’

<…variable-identifier-n = ’database-field-type-n’>;
WHERE SAS-where-expression;

RUN;

The QUIT statement is also available in PROC DBLOAD. However, its use causes
the procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

VERSION= dBASE-product-number
specifies the number of the dBASE product you are using, such as dBASE IV. The
dBASE-product-number argument can be one of the following values: II, III, IIIP,
IV, V, 2, 3, 3P, 4, 5. The statement’s default value is V.

Specify VERSION= before the TYPE statement in order to get the correct data
types for your new .DBF table.

The following example creates a new .DBF table, EXCHANGE.DBF, from the data
file DLIB.RATEOFEX . An access descriptor DBFLIBA.EXCHANGE is also created,

104 How the SAS/ACCESS Interface Works 4 Chapter 7

based on the new table. You must be granted the appropriate privileges in order to
create new DBF tables.

libname dbfliba ’SAS-data-library’;
libname dbflibv ’SAS-data-library’;

proc dbload dbms=dbf data=dlib.rateofex;
path=’c:\dbfiles\sasdemo\exchange.dbf’;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
type country=’char(25)’;
load;

run;

TYPE variable-identifier-1 = ’database-field-name-1’
<… variable-identifier-n = ’database-field-name-n’>;

specifies a DBF file data type, which is based on the SAS variable format. The
database field name must be enclosed in quotation marks.

The following example defines the data types for several database fields. Notice
that you can specify the length of the data type.

proc dbload dbms=dbf data=employee;
path=’c:\sasdemo\employee.dbf’;
rename firstname = fname;
type empid = ’numeric(6)’

hiredate = ’date’
salary = ’numeric(10,2)’
jobcode = ’numeric(5)’;

run;

How the SAS/ACCESS Interface Works
For DBF files, the SAS/ACCESS interface is a read-write interface. When you use the

ACCESS procedure to create an access descriptor, the SAS System retrieves descriptive
information about the database fields directly from the DBF file. When you create a
view descriptor, the SAS System retrieves information from the access descriptor
without reading the DBF file again.

If the structure of a DBF file changes—for example, database fields are deleted—these
changes do not appear in the access descriptor that you created with the ACCESS
procedure. The changes also are not reflected in any view descriptors that created
previously on that access descriptor and, therefore, invalidate the view descriptors.

However, if the data in the DBF file change, the updated data do appear when they
are retrieved by a view descriptor. Suppose, for example, you have a view descriptor
defined on a DBF file, and you add 30 records to that file. When you perform a SAS
PRINT procedure using that view descriptor, both the old and new records are displayed.

To perform data manipulation tasks, the interface uses SAS commands and
statements. For example, in the ACCESS procedure, you use the SAS WHERE
statement to retrieve a subset of records from a DBF file. To sort DBF data, you must
first extract the data into a SAS data file, unless you are using the SQL procedure. (The
SQL procedure enables you to present output data in a sorted order with the ORDER
BY clause in the SELECT statement without extracting the data.) You can extract and
sort the DBF file data in one step using the OUT= option in the SORT procedure.

DBF Chapter 4 How the SAS/ACCESS Interface Works 105

The SAS System does not use dBASE indexes or indexes created by other software
products that are defined on fields in a DBF file. However, once you have extracted
DBF file data with a view descriptor, you can use the SQL or DATASETS procedure to
define SAS indexes on variables in the new SAS data file. Using SAS indexes often
enhances the performance of data manipulation and retrieval tasks.

When you use the DBLOAD procedure to create and load a DBF file from a SAS data
set, the procedure translates the SAS variable formats into field types that can be used
in dBASE or other software products. It stores the file in the path specified by the
PATH= statement so that dBASE and other software products can then read data from
the newly created DBF file.

When you use a view descriptor in a DATA step to display or edit DBF file data, the
SAS System’s DBF file interface view engine reads from or writes to the DBF file that
is stored in the path you specified.

106 How the SAS/ACCESS Interface Works 4 Chapter 7

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for PC File Formats: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for PC File Formats: Reference, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025–544–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

