
131

C H A P T E R

10
XLS Chapter

Note to UNIX and OS/390 Users 131
Import/Export Facility 131

Understanding XLS Essentials 132

XLS Files 133

XLS File Naming Conventions 134

XLS Data Types 134
How the SAS System Handles Date and Time Values 135

Datetime Conversions in the ACCESS Procedure 135

Datetime Conversions in the DBLOAD Procedure 136

ACCESS Procedure Data Conversions 136

DBLOAD Procedure Data Conversions 140

Setting Environment Variables 142
ACCESS Procedure: XLS Specifics 143

ACCESS Procedure Statements for XLS 143

DBLOAD Procedure: XLS Specifics 146

DBLOAD Procedure Statements for XLS 146

How the SAS/ACCESS Interface Works 147
Accessing the Data 147

Creating and Loading the Data 148

Note to UNIX and OS/390 Users

If you are running this SAS/ACCESS interface under the UNIX or OS/390 operating
environment, this chapter does not apply to you. Instead, see Chapter 3, “DBF and DIF
Procedures,” on page 33. Under UNIX and PC hosts, you can use these procedures to
convert a DBF or DIF file to a SAS data set or a SAS data set to a DBF or DIF file.
Under OS/390, you can use PROC DBF only to convert a DBF file to a SAS data set or a
SAS data set to a DBF file.

Import/Export Facility

UNIX and PC users can access Excel (or XLS) data—including Excel 97
files—through the Import/Export facility or by using the IMPORT and EXPORT
procedures. An overview is included in Chapter 5, “Import/Export Facility and
Procedures,” on page 51.

To use the point-and-click interface from a SAS PROGRAM EDITOR window, select
the File menu and then select the Import Data or Export Data item. Information

132 Understanding XLS Essentials 4 Chapter 10

about how to import or export Excel data is available from the Help button. The
following is a sample Import window:

Display 10.1 Import Window

To write code to import or export Excel data, refer to the detailed descriptions of the
IMPORT and EXPORT procedures in the SAS Procedures Guide. This documentation
also includes several examples.

Understanding XLS Essentials

This chapter introduces SAS System users to XLS files. It focuses on the terms and
concepts that help you use the SAS/ACCESS interface and includes descriptions of

� XLS files

� XLS file naming conventions

� XLS file data types

� how the SAS/ACCESS interface works.

XLS files contain data in the form of Microsoft Excel spreadsheets. Unless otherwise
noted, Excel 4 and Excel 5 files are referred to collectively throughout this report as
XLS. Excel 5 files are not supported under OS/2.

Note: The ACCESS and DBLOAD procedures do not support files in the Excel 97
(Version 8) format. However, you can still access Excel 97 files through the SAS Import/
Export facility. From a SAS session’s PROGRAM EDITOR window, select the File
menu and then select the Import Data or Export Data item. Information about how
to import and export Excel data is available from the Help button. To write code to
import or export Excel data, refer to the IMPORT or EXPORT procedure description in
the SAS Procedures Guide. 4

4 XLS Files 133

XLS Files
Various software products, such as the Microsoft Excel spreadsheet, enable you to

use spreadsheet or database files to enter, organize, and perform calculations on data.
Spreadsheets are most often used for general ledgers, income statements, and other
types of financial record keeping. Database files also enable you to organize related
information, such as the data in an accounts-receivable journal.

In spreadsheets, the data are organized according to certain relationships among
data items. These relationships are expressed in a tabular form—in columns and rows.
Each column represents one category of data, and each row can hold one data value for
each column.

A Microsoft Excel 5.0 worksheet, for example, is an electronic spreadsheet consisting
of a grid of 256 columns and 16,384 rows. The intersection of a column and a row is
called a cell. Display 10.2 on page 133 illustrates a portion of a standard Excel
worksheet.

Display 10.2 Columns and Rows of Data in an XLS File

Column letters for each column appear above the worksheet. Columns are lettered A
through IV (A to Z, AA to AZ, BA to BZ, and so on to IV). Row numbers for each row
appear to the left of the worksheet. Rows are numbered 1 to 16,384. For Excel 4 files,
only one worksheet (worksheet 1) is allowed per file, but more than one worksheet can
be stored in a workbook. You must convert any worksheets you store in a workbook
back to worksheets before you can use the data in a SAS program.

134 XLS Data Types 4 Chapter 10

A range is a subset of cells in a worksheet. A range is identified by its address, which
begins with the name of the top left cell and ends with the name of the bottom right cell
separated by two periods. For example, the range B3..D6 is the range address for a
rectangular block of 12 cells whose top left cell is B3 and whose bottom right cell is D6
(as shaded in the display).

XLS File Naming Conventions
The following conventions apply to XLS filenames. Filenames must also follow

operating-system specific conventions, so check the documentation that comes with your
Microsoft Excel product or other software products for further information.

� Under Windows 95, Windows 98, Windows NT, and OS/2, the ACCESS and
DBLOAD procedures support long names that are specified in the PATH=
statement (such as path=
’c:\sasdemo\library\new_customer_1999.xls’;). However, XLS files with
long names might not accepted by some versions of Microsoft Excel.

� Filenames start with a letter, and they can contain any combination of the letters
A through Z, the digits 0 through 9, the underscore (_), the hyphen (-), and spaces
(blanks) within filenames.

� Filenames can contain spaces. Filenames that contain spaces or lowercase letters
are supported by the ACCESS and DBLOAD procedures, but they might not be
accepted by some versions of Microsoft Excel.

XLS Data Types
Microsoft Excel software has two data types: character and numeric. Microsoft Excel

character data may be entered as labels or formula strings; Microsoft Excel numeric
data may be entered as numbers or formulas.

Character data are generally considered text and can include dates and numbers.
Numeric data can include numbers (0 through 9), formulas, and cell entries that

begin with one of the following symbols: +, $, @, −, =, or #. When you create and load
an Excel file with PROC DBLOAD, the SAS/ACCESS engine supplies #NA for a
missing, numeric value.

Numeric data also can include date and time values. In Microsoft Excel software, a
date value is the integer portion of a number that can range from 01 January 1900 to
31 December 2078, that is, 1 to 65380. A Microsoft Excel software time value is the
decimal portion of a number that represents time as a proportion of a day. For example,
0.0 is midnight, 0.5 is noon, and 0.999988 is 23:59:59 (on a 24-hour clock). While a
number can have both a date and a time portion, the formats in Microsoft Excel display
a number only in a date, time, or datetime format. For information on how the
SAS/ACCESS interface handles date and time values and formats, see “How the SAS
System Handles Date and Time Values” on page 135.

When you create an access descriptor, the interface software uses the column types
and formats in the XLS file to determine the corresponding SAS variable formats. The
SAS System generates its default formats based on the values that you specify for the
SCANTYPE, SKIPROWS, and GETNAMES statements (or in the corresponding fields
in the Access Descriptor Identification window). You can change the formats generated
by the software interface. For more information, see “How the SAS/ACCESS Interface
Works” on page 147.

When you create an access descriptor, any data value that does not match the
column type (character or numeric) is treated as a missing value. This is the default
action. However, you can use the MIXED=YES statement to convert numeric data
values in a character column to their character representation.

4 How the SAS System Handles Date and Time Values 135

You can also set the SS_MIXED environment variable to YES in your SAS
configuration file so that both numeric and character data are displayed as SAS
character data. Add this line to your SAS configuration file:

-SET SS_MIXED YES

See “Setting Environment Variables” on page 142 for more information on
environment variables. For more information on changing the column type from the
type determined by SAS/ACCESS software when you create an access descriptor, refer
to the sections on XLS-specific procedure statements later in this chapter.

How the SAS System Handles Date and Time Values
The conversion of date and time values between SAS data sets and Microsoft Excel

spreadsheets is transparent to users. However, you are encouraged to understand the
differences between them.

Microsoft Excel date and time values and formats are described in “XLS Data Types”
on page 134.

Datetime Conversions in the ACCESS Procedure
As described earlier in this chapter, an XLS date value is the integer portion of a

number that represents the number of days between January 1, 1900 and a specified
date. An XLS time value is a decimal portion of a number that represents time as a
portion of the day. For example, 0.0 is 12:00:00 a.m., and 0.9999884 is 11:59:59 p.m.
While a number can have both a date and a time portion, the formats in XLS display a
number only in a date format or in a time format. For example, for 1:00 p.m., March
12, 1994, the XLS date value is 34405, the time value is 0.5416667, and the datetime
value is 34405.5416667.*

The SAS System handles date and time values differently than XLS. A SAS date
value is an integer that represents the number of days between January 1, 1960 and a
specified date. A SAS time value is an integer that represents the number of seconds
since midnight of the current day. When a date and a time are both present, the SAS
System stores the value as the number of seconds since midnight, January 1, 1960. For
example, for 1:00 p.m., March 12, 1994, the SAS date value is12489, and the SAS time
value is 46800. Therefore, the SAS datetime value is 1079096400.

When you create an access descriptor, the SAS System converts an XLS datetime
format to its corresponding SAS datetime format if an XLS datetime format is specified
for the variable in the XLS file. Note that if the datetime value does not have an XLS
format in the XLS file, the SAS System treats the datetime value like a numeric value.

To convert an XLS datetime format to a SAS datetime format, you need a SAS
datetime format in the access descriptor. For example, changing the default SAS
numeric format (15.2) to a SAS date format in the descriptor causes the XLS date value
(based on January 1, 1900) to be converted to an equivalent SAS date value (based on
January 1, 1960). In other words, the XLS numeric value for January 1, 1960 (which is
21916) is converted to the equivalent SAS representation of January 1, 1960 (which is
0) only if a SAS datetime format is assigned in the descriptor for that column.
Otherwise, the XLS value of 21916 is treated as a SAS numeric value of 21916.

The following table shows how the SAS System uses a Microsoft Excel datetime
value to convert to a SAS datetime format.

* In this description, datetime (in lowercase) refers to any value or format that represents a date, a time, or both a date and a
time.

136 ACCESS Procedure Data Conversions 4 Chapter 10

Table 10.1 Value-to-Format Conversions

For a SAS format SAS System uses

date integer portion of the Microsoft Excel number

time decimal portion of the Microsoft Excel number

date-and-time integer and decimal portion of the Microsoft Excel number

Datetime Conversions in the DBLOAD Procedure
If a SAS variable is specified with a date, time, or datetime format in the FORMAT

statement, the interface view engine converts that SAS datetime format into the
equivalent Microsoft Excel datetime format when the new XLS file is created.

However, if a SAS datetime format is not specified in the input SAS data set, you
have to assign a format by using a PROC DBLOAD FORMAT statement. Doing so
assigns a Microsoft Excel datetime format to the SAS variable when the variable is
loaded into an XLS file. If you do not assign a SAS datetime format, the SAS numeric
value for the date is written to the XLS file. Because SAS dates are based on January
1, 1960, and Microsoft Excel dates are based on January 1, 1900, the date value in the
XLS file will be inaccurate.

To maintain a SAS variable format in the input data set, yet change it just while the
DBLOAD procedure is in progress, use the FORMAT statement in PROC DBLOAD.
This statement enables you to assign a temporary format to a SAS variable for the
duration of the procedure without affecting the input SAS data set.

For example, if the SAS format for the BIRTHDAT variable in the
MYDATA.SASEMPS access descriptor is left at the default 15.2 format, you can specify
the FORMAT statement to change the variable’s format to DATE7. while you are
creating and loading the XLS file. When you load the XLS file, the DATE7. format
becomes an equivalent Microsoft column format, DDMMMYY. When the DBLOAD
procedure has completed, the SAS format for the BIRTHDAT variable returns to the
15.2 format.

You can specify the FORMAT statement in the PROC DBLOAD statement when you
invoke the procedure using any of the methods of processing.

ACCESS Procedure Data Conversions
Use PROC ACCESS to define descriptors that identify spreadsheet data and the

conversions necessary to use the data in SAS programs. The Microsoft Excel label data
type is formatted as a SAS character type, and the Microsoft Excel number data type is
formatted as a SAS numeric type.

Fonts, attributes, and colors in the XLS files are not read into the SAS data sets.
However, the ACCESS procedure supports most of the XLS number formats and
automatically converts them to the corresponding SAS formats. Any XLS data strings
longer than 200 characters are truncated while being converted into SAS data sets, and
any SAS data file created from XLS files can contain up to 256 variables and 16,384
observations.

Table 10.2 on page 137 shows the default SAS System variable formats that the
ACCESS procedure assigns to each type of standard XLS file data. Table 10.3 on page
139 provides SAS System variable formats for customized XLS format strings. XLS file
numeric data include date and time values. See “How the SAS System Handles Date
and Time Values” on page 135 for more information.

4 ACCESS Procedure Data Conversions 137

Table 10.2 Default SAS System Variable Formats for XLS File Data

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Char1 @2 Char $w.

Numeric3 General Num BEST

Numeric 0 Num w.d

Numeric 0.00 Num w.d

Numeric #,##0 Num COMMAw.d

Numeric #,##0.00 Num COMMAw.d

Numeric #,##0_);(#,##0) Num NEGPARENw.d

Numeric #,##0_);[Red](#,##0) Num NEGPARENw.d

Numeric #,##0.00_);(#,##0.00) Num NEGPARENw.d

Numeric #,##0.00_);[Red](#,##0.00) Num NEGPARENw.d

Numeric $#,##0_);($#,##0) Num DOLLARw.d

Numeric $#,##0_);[Red]($#,##0) Num DOLLARw.d

Numeric ($#,##0.00_);($#,##0.00) Num DOLLARw.d

Numeric ($#,##0.00_);[Red]($#,##0.00) Num DOLLARw.d

Numeric _($*#,##0_);_($*(#,##0);_($*"-
"_);_(@_)

Num DOLLARw.d

Numeric _(*#,##0_);_(*(#,##0);_(*"-
"_);_(@_)

Num NEGPARENw.d

Numeric _($*#,##0.00_);_($*(#,##0.00);_($*"-
"??_);_(@_)

Num DOLLARw.d

Numeric _(*#,##0.00_);_(*(#,##0.00);_(*"-
"??_);_(@_)

Num NEGPARENw.d

Numeric 0% Num PERCENTw.d

Numeric 0.00% Num PERCENTw.d

Numeric 0.00E+00 Num Ew.d

Numeric ##0.0E+0 Num Ew.d

Numeric m/d/yy Num MMDDYYw.

Numeric d-mmm-yy Num MMDDYYw.

Numeric d-mmm Num DATEw.

Numeric mmm-yy Num MONYYw.

Numeric h:mm AM/PM Num TIMEw.

Numeric h:mm:ss AM/PM Num TIMEw.

Numeric h:mm Num TIMEw.

Numeric hh:mm Num TIMEw.

Numeric h:mm:ss Num TIMEw.

138 ACCESS Procedure Data Conversions 4 Chapter 10

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Numeric hh:mm:ss Num TIMEw.

Numeric m/d/yy h:mm Num DATETIMEw.

Numeric ddmmmyy Num DATEw.

Numeric ddmmmyyyy:hh:mm:ss Num DATETIMEw.

Numeric dd Num DATEw.

Numeric dd/mm/yy Num DDMMYYw.

Numeric dddd Num DATEw.

Numeric mm/dd/yy Num MMDDYYw.

Numeric mm:ss Num MMSSw.

Numeric mm yy Num MONYYw.

Numeric mm yyyy Num MONYYw.

Numeric mm:yy Num MONYYw.

Numeric mm:yyyy Num MONYYw.

Numeric mm-yy Num MONYYw.

Numeric mm-yyyy Num MONYYw.

Numeric mmyy Num MONYYw.

Numeric mmyyyy Num MONYYw.

Numeric mm.yy Num MONYYw.

Numeric mm.yyyy Num MONYYw.

Numeric mm/yy Num MONYYw.

Numeric mm/yyyy Num MONYYw.

Numeric mmmm Num MONYYw.

Numeric m Num MONYYw.

Numeric mmmyy Num MONYYw.

Numeric mmmyyyy Num MONYYw.

Numeric dddd, mmmm dd, yyyy Num MONYYw.

Numeric dddd, dd mmmm yyyy Num MONYYw.

Numeric mmmm dd, yyyy Num MONYYw.

Numeric dd mmmm yyyy Num MONYYw.

Numeric yy Num YYMMDDw.

Numeric yyyy Num YYMMDDw.

Numeric yy mm Num YYMMDDw.

Numeric yyyy mm Num YYMMDDw.

Numeric yy:mm Num YYMMDDw.

Numeric yyyy:mm Num YYMMDDw.

Numeric yy-mm Num YYMMDDw.

4 ACCESS Procedure Data Conversions 139

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Numeric yyyy-mm Num YYMMDDw.

Numeric yymm Num YYMMDDw.

Numeric yyyymm Num YYMMDDw.

Numeric yy.mm Num YYMMDDw.

Numeric yyyy.mm Num YYMMDDw.

Numeric yy/mm Num YYMMDDw.

Numeric yyyy/mm Num YYMMDDw.

Numeric yy-mm-dd Num YYMMDDw.

Numeric yymmm Num YYMMDDw.

Numeric yyyymmm Num YYMMDDw.

1 Label data.
2 The XLS character format for Excel Version 5.0.
3 Number, formula, or missing data.

Table 10.3 Default SAS System Variable Formats for Customized XLS Format Strings

XLS File Data SAS Variable Format

Data Type XLS Format String Type Format

Numeric "$" Num DOLLARw.d

Numeric "E" Num Ew.d

Numeric "m, d and y" Num MMDDYYw.

Numeric "m and h" Num TIMEw.d

Numeric "m and s" Num TIMEw.d

Numeric "m and y" Num MONYYw.

Numeric "m" Num DATEw.

Numeric "d" Num DATEw.

Numeric "y" Num DATEw.

Numeric "0.0" Num w.d

Numeric Fraction values (#?/?) Num BESTw.d

Numeric Percent values (0.0%) Num PERCENTw.d

Numeric All others Num BESTw.d

Note that w is based on Excel column width; .d is controlled by the Excel format
string.

If XLS file data fall outside of the valid SAS data ranges, you receive an error
message in the SAS log when you try to access the data.

The SAS/ACCESS interface does not fully support the Microsoft Excel hidden and
text formats. XLS data in hidden format are displayed in SAS data sets; however, you
can drop the hidden column when you are creating the access descriptor. If you want to
display the formula in the text format, add a space to indicate that the formula entry is
a label. Otherwise, the results of the formula are displayed.

140 DBLOAD Procedure Data Conversions 4 Chapter 10

If you have set the SS_MIXED environment variable to YES, the numerical values in
XLS files are converted to character strings in SAS data sets if the corresponding SAS
variable type is specified as character.

DBLOAD Procedure Data Conversions
This section explains how SAS data are read into Microsoft Excel data when a table

is loaded. In this conversion, the SAS character data type is converted into the
Microsoft Excel label type and the SAS numeric type is converted into the Microsoft
Excel number type.

The SAS/ACCESS interface automatically converts SAS formats to the same or
associated Microsoft Excel formats and column widths. However, you can temporarily
assign other formats and column widths to SAS variables by using the FORMAT
statement so that the loaded XLS file columns have the formats you want. Table 10.4
on page 140 shows the SAS System variable types and formats and the XLS data types,
formats, and column widths that you can assign them to.

Note: The FORMAT statement in PROC DBLOAD only changes the format of SAS
variables while you are creating and loading the XLS files. When the procedure is
completed, the formats of SAS variables return to their original settings. 4

XLS values are numeric data. See “How the SAS System Handles Date and Time
Values” on page 135 for more information.

Table 10.4 Converting SAS System Variable Formats to XLS File Data

SAS Variable Format XLS File Data

Type Format XLS Format String Data Type

Char " " General LABEL

Char $CHAR General LABEL

Char $ General LABEL

Num BESTw.d General NUMBER

Num COMMAw.d #,##0 NUMBER

Num COMMAXw.d #,##0 NUMBER

Num DATEw. ddmmmyy NUMBER

Num DATETIMEw.d ddmmmyyyy:hh:mm:ss NUMBER

Num DAYw. dd NUMBER

Num DDMMYYw. dd/mm/yy NUMBER

Num DOLLARw.d "$"#,##0_);("$"#,##0) NUMBER

Num DOLLARXw.d "$"#,##0_);("$"#,##0) NUMBER

Num DOWNAMEw.d dddd NUMBER

Num Ew. 0.00E+00 NUMBER

Num HHMMw.d h:mm NUMBER

Num HOURw.d h:mm NUMBER

Num JULDAYw. m/d/yy NUMBER

4 DBLOAD Procedure Data Conversions 141

SAS Variable Format XLS File Data

Type Format XLS Format String Data Type

Num JULIANw. m/d/yy NUMBER

Num MMDDYYw. mm/dd/yy NUMBER

Num MMSSw.d mm:ss NUMBER

Num MMYYxw. mm yy NUMBER

Num MMYYC mm:yy NUMBER

Num MMYYD mm-yy NUMBER

Num MMYYN mmyy NUMBER

Num MMYYP mm.yy NUMBER

Num MMYYS mm/yy NUMBER

Num MONNAMEw. mmmm NUMBER

Num MONTHw. m NUMBER

Num MONYYw. mmmyy NUMBER

Num NEGPARENw.d #,##0_);(#,##0) NUMBER

Num NENGOw. m/d/yy NUMBER

Num PERCENTw.d 0% NUMBER

Num QTRw. m/d/yy NUMBER

Num QTRRw. m/d/yy NUMBER

Num SSNw. 000-00-0000 NUMBER

Num TIMEw.d h:mm:ss NUMBER

Num TODw. h:mm:ss NUMBER

Num W 0 NUMBER

Num WEEKDATEw. dddd, mmmm dd, yyyy NUMBER

Num WEEKDATXw. dddd, dd mmmm yyyy NUMBER

Num WEEKDAYw. m/d/yy NUMBER

Num WORDDATEw. mmmmdd, yyyy NUMBER

Num WORDDATXw. dd mmmm yyyy NUMBER

Num YEARw. yy or yyyy NUMBER

Num YYMM yy mm NUMBER

Num YYMMC yy:mm NUMBER

Num YYMMD yy-mm NUMBER

Num YYMMN yymm NUMBER

Num YYMMP yy.mm NUMBER

Num YYMMS yy/mm NUMBER

Num YYMMDDw. yy-mm-dd NUMBER

Num YYMONw. yymmm NUMBER

142 Setting Environment Variables 4 Chapter 10

SAS Variable Format XLS File Data

Type Format XLS Format String Data Type

Num Zw.d 0w.d NUMBER

Num FRACTw. # ?/? NUMBER

Note that Excel column widths are set to w and displayed in the column. If data are
larger than column width, the data are displayed as pound signs (###), in which case
the data can be viewed by adjusting the column width.

Setting Environment Variables
You can change the default behavior of the SAS/ACCESS interface by setting

environment variables in your SAS configuration file. You can set three SAS/ACCESS
environment variables: SS_MIXED, SS_NAMES, and SS_SCAN. Setting these
variables in your SAS configuration file changes how the interface works by default .

The configuration file omits the following environment variables. When the
environment variables are omitted, the default value for them is NO.

SS_MIXED YES | NO
YES allows both Microsoft Excel numeric and character data in a column to be
displayed as SAS character data. The Microsoft Excel numeric data are converted
to their character representation when their corresponding SAS variable type is
defined as character.

NO does not convert Microsoft Excel numeric data in a column into SAS
character data. Microsoft Excel numeric data are read in as SAS missing values
when their corresponding SAS variable type is defined as character. NO is the
default.

Setting the SS_MIXED environment variable changes the default value of the
MIXED statement in PROC ACCESS.

SS_NAMES YES | NO
YES in PROC ACCESS generates SAS variable names from column names in the
first row of the worksheet or the specified range of the worksheet and reads data
from the second row. YES in PROC DBLOAD writes column names using SAS
variable names or SAS variable labels to the first row of the new XLS file, reads
data from the data set, and writes them to the XLS file beginning with the second
row.

NO in PROC ACCESS generates the SAS variable names VAR0, VAR1, VAR2,
and so on, and reads data from the first row of the worksheet or specified range.
NO in PROC DBLOAD reads the data from the data set and writes them to the
XLS file beginning with the first row. NO is the default.

Setting the SS_NAMES environment variable changes the default value of the
GETNAMES statement in PROC ACCESS and the PUTNAMES statement in
PROC DBLOAD.

SS_SCAN YES | NO | number-of-rows
YES scans the data type and format of rows in a worksheet or specified range
after skipping the number of rows specified in the SKIPROWS statement.
SS_SCAN finds the most common Microsoft Excel data type and format in order to

4 ACCESS Procedure Statements for XLS 143

generate the default SAS data type and format. If a number of rows is specified,
SAS/ACCESS software scans only the data type and format from these rows.

NO uses the type and format of the first row in a worksheet or specified range
after skipping the number of rows specified in SKIPROWS to generate the default
SAS data type and format. NO is the default.

Number-of-rows scans the type and format of the specified number of rows only.
Setting the number of rows is more efficient because data are read only from the
specified number of rows rather than from the entire file.

Setting the SS_SCAN environment variable changes the default value of the
SCANTYPE statement in PROC ACCESS.

ACCESS Procedure: XLS Specifics
Chapter 2, “ACCESS Procedure Reference,” on page 11 describes the generic options

and procedure statements that enable you to create access descriptors, view descriptors,
and SAS data files from PC file format data. The following section describes the PC
file-specific statements you use in the SAS/ACCESS interface to XLS data.

ACCESS Procedure Statements for XLS
To create an access descriptor, you use the DBMS=XLS option and six

database-description statements: PATH=, GETNAMES, RANGE, SCANTYPE,
SKIPROWS, and WORKSHEET. These database-description statements supply
XLS-specific information to the SAS System, and must immediately follow the CREATE
statement that specifies the access descriptor to be created. In addition to the
database-description statements, you can use editing statements when you create an
access descriptor. These editing statements must follow the database-description
statements.

Database-description statements are only required when you create access
descriptors. Because XLS information is stored in an access descriptor, you do not need
to repeat this information when you create view descriptors.

The SAS/ACCESS interface to XLS uses the following procedure statements in batch
mode:

PROC ACCESS DBMS=XLS | EXCEL;
CREATE libref.member-name.ACCESS | VIEW;

UPDATE libref.member-name.ACCESS | VIEW;

GETNAMES <=> YES | NO | Y | N;

PATH= ’path-and-filename’<.XLS> ’| < ’>filename< ’> | fileref;
RANGE <=> < ’>range-name< ’> | ’range-address’;

SCANTYPE <=> YES | NO | Y | N | <number-of-rows>;
SKIPROWS <=> number-of-rows-to-skip;

WORKSHEET <=> worksheet-name;
ASSIGN <=> YES | NO | Y | N ;

DROP < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;
FORMAT < ’>column-identifier-1< ’> <=> SAS-format-name-1

<…< ’>column-identifier-n< ’> <=> SAS-format-name-n> ;
LIST <ALL | VIEW | < ’>column-identifier< ’>> ;

144 ACCESS Procedure Statements for XLS 4 Chapter 10

MIXED <=> YES | NO | Y | N;
RENAME < ’>column-identifier-1< ’> <=> SAS-variable-name-1

<…< ’>column-identifier-n< ’> <=> SAS-variable-name-n> ;
RESET ALL | < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>> ;
SELECT ALL | < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>> ;
SUBSET selection-criteria ;
TYPE column-identifier-1 <=> C | N <… column-identifier-n <=> C | N>;
UNIQUE <=> YES | NO | Y | N ;

RUN;

Note: By default, PROC ACCESS uses Excel 5.0. Excel 5.0 files have the identical
format to Excel 95 (Version 7) files. 4

The QUIT statement is also available in PROC ACCESS. However, its use causes the
procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

GETNAMES <=> YES | NO | Y | N;
determines whether SAS variable names are generated from column names in the
first row of the range when an access descriptor is created. When you update a
descriptor, you are not allowed to specify the GETNAMES statement.

The GETNAMES statement is optional. If you omit it, the default value
GETNAMES=NO is used, and the XLS interface generates the SAS variable
names VAR0, VAR1, VAR2, and so on. If you specify GETNAMES=YES, SAS
variable names are generated from column names in the first row of the range.
GETNAMES=YES also sets the SKIPROWS value to 1.

You can change the default value from NO to YES by setting the SS_NAMES
environment variable. See “Setting Environment Variables” on page 142 for more
information on setting and changing environment variables.

The GETNAMES statement is a database-description statement. It must follow
the CREATE statement and precede any editing statements when you create a
descriptor.

MIXED <=> YES | NO | Y | N;
determines whether to convert Microsoft Excel numeric data values in a column to
their character representation when the corresponding SAS variable is expecting a
character value.

The MIXED statement is optional. Use the MIXED statement if you have both
Microsoft Excel numeric and character data in a column. Specifying YES allows
both numeric and character data to be displayed as SAS character data. NO, the
default, treats any data in a column that does not match the specified data type as
missing values.

You can change the default value to YES by setting the SS_MIXED
environment variable. See “Setting Environment Variables” on page 142 for more
information on setting and changing environment variables.

The MIXED statement is an editing statement, and it must follow any database
descriptions when you create an access descriptor.

RANGE <=> <’>range-name<’> | ’range-address’;
subsets a specified section of an XLS file worksheet. The range-name is the name
that is assigned to a range address within the worksheet. Range names can be up
to 15 characters long and are not case-sensitive.

The range-address is identified by the top left cell that begins the range and the
bottom right cell that ends the range within the XLS worksheet file. The

4 ACCESS Procedure Statements for XLS 145

beginning and ending cells are separated by two periods; for example, the range
address C9..F12 indicates a cell range that begins at cell C9, ends at cell F12 and
includes all cells in between.

The RANGE statement is optional. If you omit RANGE, the entire worksheet is
accessed as the default range.

The RANGE is a database-description statement. It must follow the CREATE
statement and precede any editing statements when you create a descriptor.

SCANTYPE <=> YES | NO | Y | N | <number-of-rows>;
finds the most common Excel data type and format for each column in a specified
number of rows in an XLS worksheet to generate the SAS format. By default, SAS
variable formats are generated from the Excel formats found in the first row of the
entire worksheet or in the first row of a range (if specified) in the worksheet.

The SCANTYPE statement is optional, and its default value is NO. If you
specify YES, the ACCESS procedure scans the data types and formats of all rows
in each column of the worksheet or range and uses the most common one to
generate the default SAS format for each column. If you specify a number of rows,
PROC ACCESS scans the specified number of rows only and returns the most
common format.

If you specify the SKIPROWS statement, the ACCESS procedure skips the
specified rows and starts scanning from the next row. For example, if you specify
SKIPROWS=3, PROC ACCESS skips the first three rows and begins scanning the
data type and format on the fourth row.

You can change the default value to YES by setting the SS_SCAN environment
variable. See “Setting Environment Variables” on page 142 for more information
on setting and changing environment variables.

Specifying SCANTYPE=0 is equivalent to specifying SCANTYPE=NO.
The SCANTYPE statement is a database-description statement. It must follow

the CREATE statement and precede any editing statements when you create a
descriptor.

SKIPROWS <=> number-of-rows-to-skip;
specifies the number rows, beginning at the top of the range in the XLS file, to
ignore when reading data from the XLS file. The default value for SKIPROWS is
0. The skipped (or ignored) rows often contain information such as column labels
or names or underscores rather than input data.

If GETNAMES=YES, the default value of SKIPROWS automatically changes to
1. The first row of data and formats after SKIPROWS in a range is used to
generate the SAS variable types and formats. However, you can use the
SCANTYPE statement to scan the formats of a specified number of rows and to
use the most common data type and format to generate the default SAS variable
types and formats. See “Setting Environment Variables” on page 142 for more
information on setting and changing environment variables.

The SKIPROWS statement is a database-description statement. It must follow
the CREATE statement and precede any editing statements when you create a
descriptor.

TYPE column-identifier-1 <=> C | N < . . . column-identifier-n <=> C | N >;
changes the expected data types of SAS variables. SAS data sets have two data
types: character (C) and numeric (N). Spreadsheet files have the same two data
types: character (for labels and formula strings) and numeric (for numbers and
formulas). Changing the default data type of a SAS variable in a descriptor file
also changes its associated default format in the loaded file.

If you omit the TYPE statement, the database field types are generated from
the PC file data types. You can change as many database field types as you want
in one TYPE statement.

146 DBLOAD Procedure: XLS Specifics 4 Chapter 10

WORKSHEET <=> <’>worksheet-name<’>;
identifies one worksheet from a group of worksheets while you are reading from an
XLS file. The worksheet-name is a 31-character name and is not case-sensitive.
For example, specifying WORKSHEET=SHEET2 identifies worksheet 2 from a
group of worksheets

The WORKSHEET statement is optional. For Excel 4 files, there is only one
worksheet identifier, WORKSHEET1; therefore, the WORKSHEET statement is
ignored. Under Excel 5, the default value is SHEET1. If you change the default
worksheet from within Excel, you can either supply the new worksheet name or
supply the worksheet’s value (such as Sheet5).

The WORKSHEET statement is a database-description statement. It must
follow the CREATE statement and precede any editing statements when you
create an access descriptor.

DBLOAD Procedure: XLS Specifics
Chapter 4, “DBLOAD Procedure Reference,” on page 41 describes the generic options

and procedure statements that enable you to create a PC file format table and to insert
data in it. The following section describes the file-specific statements you use in the
SAS/ACCESS interface to XLS.

DBLOAD Procedure Statements for XLS
To create and load an XLS table, the SAS/ACCESS interface to XLS uses the

following statements in batch mode:

PROC DBLOAD DBMS=XLS | EXCEL <DATA=<libref.>SAS-data-set>;
PATH=’path-and-filename<.XLS>’ | < ’>filename< ’> | fileref;
VERSION <=> EXCEL-product-number;
PUTNAMES <=> YES | NO | Y | N;
ACCDESC= <libref.>access-descriptor;
DELETE variable-identifier-1 <…variable-identifier-n>;
ERRLIMIT= error-limit;
FORMAT SAS-variable-name-1 SAS-format-1 <=>

<…SAS-variable-name-n SAS-format-n>;
LABEL;
LIMIT=load-limit;
LIST <ALL | COLUMNS | FIELDS | variable-identifier>;
RENAME variable-identifier-1 <=> < ’>column-name-1< ’>

<…variable-identifier-n = < ’>column-name-n< ’>>;
RESET ALL | variable-identifier-1 <…variable-identifier-n>;
WHERE SAS-where-expression ;
LOAD ;

RUN ;

The QUIT statement is also available in PROC DBLOAD. However, its use causes
the procedure to terminate. QUIT is used most often in the interactive line and
noninteractive modes to exit the procedure without exiting SAS.

4 Accessing the Data 147

FORMAT SAS-variable-name-1 SAS-format-1 <…SAS-variable-name-n
SAS-format-n>;

assigns a temporary format to a SAS variable in the input SAS data set. This
format temporarily overrides any other format for the variable. The assignment
lasts only for the duration of the procedure. Assign formats to as many variables
as you want in one FORMAT statement.

Use FORMAT when you want to change the format, column width, or the
number of decimal digits for columns being loaded into the PC file. For example, if
you change the SAS variable format 12.1 to DOLLAR15.2, the column format of
the loaded data changes from a fixed numeric format with a column width of 12
and one decimal digit to a currency format with a column width of 15 and two
decimal digits.

PUTNAMES <=> YES|NO|Y|N;
writes column names to the first row of the new XLS file. The column names can
be default SAS variables names or, if you specify the LABEL statement, SAS
variable labels. You can modify the column names using the RENAME statement.

The PUTNAMES statement is optional. If you omit PUTNAMES, data are read
from the data set and written to the XLS file beginning in the first row of the XLS
file, and no column names are written to the file.

You can change the default value to YES by setting the SS_NAMES
environment variable. See “Setting Environment Variables” on page 142 for more
information on setting and changing environment variables.

VERSION <=> EXCEL-product-number;
specifies the version number of the Excel product you are using, such as Excel 5.0.
The EXCEL-product-number argument can be one of the following values: 3, 4, 5,
or 7.

The DBLOAD procedure chooses the default version of Excel depending on
which operating environment you use. If you use Windows, DBLOAD uses Excel
5.0. Excel 5 files have the identical format to Excel 95 (Version 7) files. If you use
OS/2, DBLOAD uses Excel 4.0 because OS/2 does not support OLE2.

PROC DBLOAD does not support Excel 97 (Version 8) files. For information
about accessing these files, see “Understanding XLS Essentials” on page 132.

Specify VERSION before the TYPE statement in order to get the correct data
types for your new .XLS table.

How the SAS/ACCESS Interface Works
The SAS/ACCESS interface accesses data in the Microsoft Excel XLS files directly. It

enables you to create SAS data sets from XLS files or directly read the XLS file data
without creating SAS data sets. The interface does not allow you to update, add, or
delete data in XLS files.

Accessing the Data
To access the data, the interface accesses a range in a worksheet as a table. If the

range is not specified, the interface accesses the entire worksheet as a table. By default,
the interface uses the Microsoft Excel formats of columns in the first row of the range to
determine the formats of variables in SAS/ACCESS descriptors.

148 Creating and Loading the Data 4 Chapter 10

However, you can manipulate where the interface begins to read data and what
format the interface generates by using the SKIPROWS and SCANTYPE statements in
the ACCESS procedure. SKIPROWS skips a specified number of rows before reading
data. SCANTYPE finds the most common data type and format from among a specified
number of rows within an XLS range (after skipping the number of rows specified in
SKIPROWS) and uses it to generate the default data type and format for SAS variables.

The ACCESS procedure enables you to create access descriptors and view descriptors
for XLS files. You then can use the view descriptors as SAS data sets.

You can retrieve a subset of data using the WHERE statement .
To sort XLS file data, you must first extract the data from an XLS file and place

them in a SAS data file, unless you are using the SQL procedure. (The SQL procedure
enables you to present output data in a sorted order using the ORDER BY clause of the
SELECT statement.) You can extract and sort XLS file data in one step with the OUT=
option in the SORT procedure, using a view to the XLS file as input to PROC SORT.

Creating and Loading the Data
When you use PROC DBLOAD to create and load XLS files, the procedure translates

the SAS data set into an XLS file. The file is stored in the location specified by the
PATH= statement. Only one SAS data set can be loaded into an XLS file at one time.
The loaded XLS file can contain only one worksheet. Microsoft Excel then reads data
from the loaded XLS file directly.

In the DBLOAD procedure, you can specify the PUTNAMES statement to place the
SAS variable names in the first row of the spreadsheet and the first observation in the
second row, and so on. If PUTNAMES is not specified, the first observation is placed in
the first row, the second observation is placed in the second row, and so on. Columns do
not have names. The formats for SAS variables are automatically converted to the
closest corresponding Microsoft Excel data types and formats. See the descriptions of
individual statements for more information on how the data and columns are read.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for PC File Formats: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Software for PC File Formats: Reference, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025–544–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

