
17

C H A P T E R

3
Using ADABAS Data in SAS
Programs

Introduction 17
Reviewing Variables 18

Printing Data 19

Charting Data 20

Calculating Statistics 22

Using the FREQ Procedure 22
Using the MEANS Procedure 22

Using the RANK Procedure 25

Selecting and Combining Data 25

Using the WHERE Statement 26

Using the SAS System SQL Procedure 27

Combining Data from Various Sources 27
Creating New Variables with the GROUP BY Clause 32

Updating a SAS Data File with ADABAS Data 33

Performance Considerations 36

Introduction
An advantage of the SAS/ACCESS interface to ADABAS is that it enables the SAS

System to read and write ADABAS data directly using SAS programs. This chapter
presents examples using ADABAS data accessed through view descriptors as input data
for SAS programs.

Throughout the examples, the SAS terms variable and observation are used instead
of comparable ADABAS terms because this chapter illustrates using SAS System
procedures and the DATA step. The examples include printing and charting data, using
the SQL procedure to combine data from various sources, and updating a Version 6 SAS
data file with ADABAS data. For more information about the SAS language and
procedures used in the examples, refer to the books listed at the end of each section.

At the end of this chapter, “Performance Considerations” on page 36, presents some
techniques for using view descriptors efficiently in SAS programs.

For definitions of all view descriptors referenced in this chapter, see Appendix 3,
"Example Data." This appendix also contains the ADABAS data and SAS data files
used in this book.

18 Reviewing Variables 4 Chapter 3

Reviewing Variables
If you want to use ADABAS data described by a view descriptor in your SAS

program but cannot remember the variable names or formats and informats, you can
use the CONTENTS or DATASETS procedures to display this information.

The following examples use the DATASETS procedure to give you information on the
view descriptor VLIB.CUSPHON, which references the NATURAL DDM named
CUSTOMERS.

proc datasets library=vlib memtype=view;
contents data=cusphon;

quit;

Output 3.1 on page 18 shows the information for this example. The data described by
VLIB.CUSPHON are shown in Output 3.9 on page 28.

Output 3.1 Using the DATASETS Procedure with a View Descriptor

The SAS System

DATASETS PROCEDURE

Data Set Name: VLIB.CUSPHON Observations: .
Member Type: VIEW Variables: 3
Engine: SASIOADB Indexes: 0
Created: 14:09 Friday, October 5, 1990 Observation Length: 80
Last Modified: 14:33 Friday, October 5, 1990 Deleted Observations: 0
Data Set Type: Compressed: NO
Label:

-----Engine/Host Dependent Information-----

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label
--
1 CUSTNUM Char 8 0 $8. $8. CUSTOMER
3 NAME Char 60 20 $60. $60. NAME
2 PHONE Char 12 8 $12. $12. TELEPHONE

Note the following points about this output:
� You cannot change a view descriptor’s variable labels using the DATASETS

procedure. The labels are generated to be the complete ADABAS data field name
when the view descriptor is created and therefore cannot be overwritten.

� The Created date is the date the access descriptor for this view descriptor was
created.

� The Last Modified date is the last time the view descriptor was updated.
� The Observations number field contains a null value.

Using ADABAS Data in SAS Programs 4 Printing Data 19

For more information about the DATASETS procedure, see the SAS Procedures
Guide.

Printing Data
Printing ADABAS data described by a view descriptor is like printing any other SAS

data set, as shown in the following examples.
The following example contains the code for printing the ADABAS data described by

the view descriptor VLIB.EMPINFO:

proc print data=vlib.empinfo;
title "Brief Employee Information";

run;

VLIB.EMPINFO accesses data from the NATURAL DDM named EMPLOYEE.
Output 3.2 on page 19 shows the output for this example.

Output 3.2 Results of the PRINT Procedure

Brief Employee Information

OBS EMPID DEPT LASTNAME

1 119012 CSR010 WOLF-PROVENZA
2 120591 SHP002 HAMMERSTEIN
3 123456 VARGAS
4 127845 ACC024 MEDER
5 129540 SHP002 CHOULAI
6 135673 ACC013 HEMESLY
7 212916 CSR010 WACHBERGER
8 216382 SHP013 PURINTON
9 234967 CSR004 SMITH
10 237642 SHP013 BATTERSBY
11 239185 ACC024 DOS REMEDIOS
12 254896 CSR011 TAYLOR-HUNYADI
13 321783 CSR011 GONZALES
14 328140 ACC043 MEDINA-SIDONIA
15 346917 SHP013 SHIEKELESLAM
16 356134 ACC013 DUNNETT
17 423286 ACC024 MIFUNE
18 456910 CSR010 ARDIS
19 456921 SHP002 KRAUSE
20 457232 ACC013 LOVELL
21 459287 SHP024 RODRIGUES
22 677890 CSR010 NISHIMATSU-LYNCH

When you use the PRINT procedure, you may want to use the OBS= option, which
enables you to specify the last observation to be processed. This is especially useful
when the view descriptor describes large amounts of data or when you just want to see
an example of the output. The following example uses the OBS= option to print the
first five observations described by the view descriptor VLIB.CUSORDR.

20 Charting Data 4 Chapter 3

proc print data=vlib.cusordr (obs=5);
title "First Five Observations Described

by VLIB.CUSORDR";
run;

VLIB.CUSORDR accesses data from the NATURAL DDM named ORDER. Output
3.3 on page 20 shows the result of this example.

Output 3.3 Results of Using the OBS= Option

First Five Observations Described by VLIB.CUSORDR

OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482

In addition to the OBS= option, the FIRSTOBS= option also works with view
descriptors. The FIRSTOBS= option does not improve performance significantly
because each observation must still be read and its position calculated. The POINT=
option in the SET statement is not currently supported by the SAS/ACCESS interface
to ADABAS.

For more information about the PRINT procedure, see the SAS Procedures Guide.
For more information about the OBS= and FIRSTOBS= options, see the SAS Language
Reference: Dictionary.

Charting Data

CHART procedure programs work with data described by view descriptors just as
they do with other SAS data sets. The following examples use the view descriptor
VLIB.ALLORDR to create a vertical bar chart of the number of orders per product.

proc chart data=vlib.allordr;
vbar stocknum;
title "Data Described by VLIB.ALLORDR";

run;

VLIB.ALLORDR accesses data from the NATURAL DDM named ORDER. Output
3.4 on page 21 shows the output for this example. STOCKNUM represents each
product; the number of orders for each product is represented by the height of the bar.

Using ADABAS Data in SAS Programs 4 Charting Data 21

Output 3.4 Vertical Bar Chart Showing Number of Orders per Product

Data Described by VLIB.ALLORDR

Frequency

8 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

7 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

6 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

5 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

4 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

3 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

2 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****

1 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
***** ***** ***** ***** ***** *****

750 2250 3750 5250 6750 8250 9750

STOCKNUM

For more information about the CHART procedure, see the SAS Procedures Guide.
If you have SAS/GRAPH software, you can create colored block charts, plots, and

other graphics based on ADABAS data. See the SAS/GRAPH Software: Reference for
more information about the types of graphics you can produce with SAS/GRAPH
software.

22 Calculating Statistics 4 Chapter 3

Calculating Statistics
You can also use statistical procedures on ADABAS data. This section shows simple

examples using the FREQ and MEANS procedures.

Using the FREQ Procedure
Suppose you wanted to find what percentage of your invoices went to each country

so that you can decide where to increase your overseas marketing. The following
example calculates the percentages of invoices for each country accessed by the
NATURAL DDM named INVOICE, using the view descriptor VLIB.INV.

proc freq data=vlib.inv;
tables country;
title "Data Described by VLIB.INV";

run;

Output 3.5 on page 22 shows the one-way frequency table this example generates.

Output 3.5 Frequency Table for Variable COUNTRY Described by View Descriptor VLIB.INV

Data Described by VLIB.INV

COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent
--
Argentina 2 11.8 2 11.8
Australia 1 5.9 3 17.6
Brazil 4 23.5 7 41.2
USA 10 58.8 17 100.0

Frequency Missing = 2

For more information about the FREQ procedure, see the SAS Procedures Guide.

Using the MEANS Procedure
In your analysis of recent orders, suppose you also wanted to determine some

statistics for each USA customer. In the following SAS program, the view descriptor
VLIB.USAORDR accesses data from the NATURAL DDM named ORDER, the SAS
WHERE statement selects observations that have a SHIPTO value beginning with a 1,
which indicates a USA customer, and the SAS BY statement sorts the data by order
number. (Note that both ORDERNUM and SHIPTO are ADABAS descriptor data
fields.)

Using ADABAS Data in SAS Programs 4 Using the MEANS Procedure 23

The following example generates the mean and sum of the length of material ordered
and the fabric charges for each USA customer. Also included are the number of
observations (N) and the number of missing values (NMISS).

proc means data=vlib.usaordr mean sum n nmiss
maxdec=0;

where shipto like "1%";
by ordernum;
var length fabricch;
title "Data Described by VLIB.USAORDR";

run;

Output 3.6 on page 24 shows the output for this example.

24 Using the MEANS Procedure 4 Chapter 3

Output 3.6 Statistics on Fabric Length and Charges for Each USA Customer

Data Described by VLIB.USAORDR

--------------------------------- ORDERNUM=11269 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 690 690
FABRICCH FABRICCHARGES 1 0 0 0

--------------------------------- ORDERNUM=11271 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 110 110
FABRICCH FABRICCHARGES 1 0 11063836 11063836

--------------------------------- ORDERNUM=11273 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 450 450
FABRICCH FABRICCHARGES 1 0 252149 252149

--------------------------------- ORDERNUM=11274 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 1000 1000
FABRICCH FABRICCHARGES 1 0 0 0

--------------------------------- ORDERNUM=11276 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 1500 1500
FABRICCH FABRICCHARGES 1 0 1934460 1934460

--------------------------------- ORDERNUM=11278 -------------------------------

Variable Label N Nmiss Mean Sum

LENGTH LENGTH 1 0 2500 2500
FABRICCH FABRICCHARGES 1 0 1400825 1400825

For more information about the MEANS procedure, see the SAS Procedures Guide.

Using ADABAS Data in SAS Programs 4 Selecting and Combining Data 25

Using the RANK Procedure
You can also use more advanced statistics procedures on ADABAS data. The

following example uses the RANK procedure to calculate the order of birthdays for a set
of employees. This example creates a SAS data file MYDATA.RANKEX from the view
descriptor VLIB.EMPS and assigns the name DATERANK to the new variable (in the
data file) created by the procedure.

proc rank data=vlib.emps out=mydata.rankex;
var birthdat;
ranks daterank;

run;
proc print data=mydata.rankex;

title "Order of Employee Birthdays";
run;

VLIB.EMPS accesses data from the NATURAL DDM named EMPLOYEE. Output
3.7 on page 25 shows the result of this example.

Output 3.7 Ranking of Employee Birthdays

Order of Employee Birthdays

OBS EMPID JOBCODE BIRTHDAT LASTNAME DATERANK

1 456910 602 24SEP53 ARDIS 5
2 237642 602 13MAR54 BATTERSBY 6
3 239185 602 28AUG59 DOS REMEDIOS 7
4 321783 602 03JUN35 GONZALES 2
5 120591 602 12FEB46 HAMMERSTEIN 4
6 135673 602 21MAR61 HEMESLY 8
7 456921 602 12MAY62 KRAUSE 9
8 457232 602 15OCT63 LOVELL 11
9 423286 602 31OCT64 MIFUNE 12

10 216382 602 24JUL63 PURINTON 10
11 234967 602 21DEC67 SMITH 13
12 212916 602 29MAY28 WACHBERGER 1
13 119012 602 05JAN46 WOLF-PROVENZA 3

For more information about the RANK procedure and other advanced statistics
procedures, see the SAS Procedures Guide.

Selecting and Combining Data
The great majority of SAS programs select and combine data from various sources.

The method you use depends on the configuration of the data. The next three examples
show you how to select and combine data using two different methods. When choosing

26 Using the WHERE Statement 4 Chapter 3

between these methods, you should consider the issues described in “Performance
Considerations” on page 36.

Using the WHERE Statement
Suppose you have two view descriptors, VLIB.USAINV and VLIB.FORINV, that list

the invoices for USA and foreign customers, respectively. You can use the SET
statement to concatenate these files into a SAS data file containing information on
customers who have not paid their bills and whose bills amount to at least $300,000.

The following example contains the code to create the SAS data file containing the
information you want on the customers:

data notpaid(keep=invoicen billedto amtbille
billedon paidon);

set vlib.usainv vlib.forinv;
where paidon is missing and

amtbille>=300000;
run;
proc print;

title "High Bills--Not Paid";
run;

In the SAS WHERE statement, you must use the SAS variable names, not the
ADABAS data field names. Both VLIB.USAINV and VLIB.FORINV access data in the
NATURAL DDM named INVOICE. Output 3.8 on page 26 shows the result of the new
temporary data file, WORK.NOTPAID.

Output 3.8 NOTPAID Data File Created Using a SAS WHERE Statement

High Bills--Not Paid

OBS INVOICEN BILLEDTO AMTBILLE BILLEDON PAIDON

1 12102 18543489 11063836.00 17NOV88 .
2 11286 43459747 12679156.00 10OCT88 .
3 12051 39045213 1340738760.90 02NOV88 .
4 12471 39045213 1340738760.90 27DEC88 .
5 12476 38763919 34891210.20 24DEC88 .

The first line of the DATA step uses the KEEP= data set option. This option works
with view descriptors just as it works with other SAS data sets; that is, the KEEP=
option specifies that you want only the listed variables to be included in the new data
file, NOTPAID, although you can use the other variables within the DATA step.

Notice that the WHERE statement includes two conditions to be met. First, it selects
only observations that have missing values for the variable PAIDON. As you can see, it
is important to know how the ADABAS data are configured before you can use this data
in a SAS program.

Using ADABAS Data in SAS Programs 4 Using the SAS System SQL Procedure 27

Second, the WHERE statement requires that the amount in each bill be higher than
a certain figure. Again, you need to be familiar with the ADABAS data so that you can
determine a reasonable figure for this expression.

When referencing a view descriptor in a SAS procedure or DATA step, it is more
efficient to use a SAS WHERE statement than to use a subsetting IF statement. A
DATA step or SAS procedure passes the SAS WHERE statement as a WHERE clause to
the interface view engine, which adds it (using the Boolean operator AND) to any
WHERE clause defined in the view descriptor. The view descriptor is then passed to
ADABAS for processing. Processing ADABAS data using a WHERE clause may reduce
the number of logical records read and therefore often improves performance.

For more information about the SAS WHERE statement, see the SAS Language
Reference: Dictionary.

Using the SAS System SQL Procedure
This section provides two examples of using the SAS System SQL procedure on

ADABAS data. The SQL procedure implements the Structured Query Language (SQL)
in Version 7 of the SAS System and is included in base SAS software. The first example
illustrates using the SQL procedure to combine data from three sources. The second
example shows how to use the PROC SQL GROUP BY clause to create new variables
from data described by a view descriptor.

Combining Data from Various Sources
The SQL procedure provides another way to select and combine data. For example,

suppose you have the view descriptors VLIB.CUSPHON and VLIB.CUSORDR based on
the NATURAL DDMs CUSTOMERS and ORDER, respectively, and a SAS data file,
MYDATA.OUTOFSTK, that contains names and numbers of products that are out of
stock. You can use the SQL procedure to join all these sources of data to form a single
output file. The SAS WHERE or subsetting IF statements would not be appropriate in
this case because you want to compare variables from several sources, rather than
simply merge or concatenate the data.

The following example contains the code to print the view descriptors and the SAS
data file:

proc print data=vlib.cusphon;
title "Data Described by VLIB.CUSPHON";

run;
proc print data=vlib.cusordr;

title "Data Described by VLIB.CUSORDR";
run;

proc print data=mydata.outofstk;
title "SAS Data File MYDATA.OUTOFSTK";

run;

Output 3.9 on page 28, Output 3.10 on page 29, and Output 3.11 on page 30 show the
results of the PRINT procedure performed on the data described by the view descriptors
VLIB.CUSPHON and VLIB.CUSORDER and on the SAS data file
MYDATA.OUTOFSTK.

28 Using the SAS System SQL Procedure 4 Chapter 3

Output 3.9 Data Described by the View Descriptor VLIB.CUSPHON

Data Described by VLIB.CUSPHON

OBS CUSTNUM PHONE

1 12345678 919/489-5682
2 14324742 408/629-0589
3 14569877 919/489-6792
4 14898029 301/760-2541
5 15432147 616/582-3906
6 18543489 512/478-0788
7 19783482 703/714-2900
8 19876078 209/686-3953
9 24589689 (012)736-202
10 26422096 4268-54-72
11 26984578 43-57-04
12 27654351 02/215-37-32
13 28710427 (021)570517
14 29834248 (0552)715311
15 31548901 406/422-3413
16 38763919 244-6324
17 39045213 012/302-1021
18 43290587 (02)933-3212
19 43459747 03/734-5111
20 46543295 (03)022-2332
21 46783280 3762855
22 48345514 213445

OBS NAME

1
2 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS
3 PRECISION PRODUCTS
4 UNIVERSITY BIOMEDICAL MATERIALS
5 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
6 LONE STAR STATE RESEARCH SUPPLIERS
7 TWENTY-FIRST CENTURY MATERIALS
8 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC.
9 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
10 SOCIETE DE RECHERCHES POUR DE CHIRURGIE ORTHOPEDIQUE
11 INSTITUT FUR TEXTIL-FORSCHUNGS
12 INSTITUT DE RECHERCHE SCIENTIFIQUE MEDICALE
13 ANTONIE VAN LEEUWENHOEK VERENIGING VOOR MICROBIOLOGIE
14 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
15 NATIONAL COUNCIL FOR MATERIALS RESEARCH
16 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR
17 LABORATORIO DE PESQUISAS VETERNINARIAS DESIDERIO FINAMOR
18 HASSEI SAIBO GAKKAI
19 RESEARCH OUTFITTERS
20 WESTERN TECHNOLOGICAL SUPPLY
21 NGEE TECHNOLOGICAL INSTITUTE
22 GULF SCIENTIFIC SUPPLIES

Using ADABAS Data in SAS Programs 4 Using the SAS System SQL Procedure 29

Output 3.10 Data Described by the View Descriptor VLIB.CUSORDR

Data Described by VLIB.CUSORDR

OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482
6 4789 15432147
7 3478 29834248
8 1279 14324742
9 8934 31548901
10 2567 14898029
11 9870 48345514
12 1279 39045213
13 8934 18543489
14 2567 19783482
15 9870 18543489
16 3478 24589689
17 1279 38763919
18 8934 43459747
19 2567 15432147
20 9870 14324742
21 9870 19876078
22 1279 39045213
23 8934 18543489
24 3478 29834248
25 2567 19783482
26 4789 15432147
27 3478 29834248
28 1279 14324742
29 8934 31548901
30 2567 14898029
31 9870 48345514
32 1279 39045213
33 8934 18543489
34 2567 19783482
35 9870 18543489
36 3478 24589689
37 1279 38763919
38 8934 43459747
39 2567 15432147
40 9870 14324742

30 Using the SAS System SQL Procedure 4 Chapter 3

Output 3.11 Data in the SAS Data File MYDATA.OUTOFSTK

SAS Data File MYDATA.OUTOFSTK

OBS FIBERNAM FIBERNUM

1 olefin 3478
2 gold 8934
3 dacron 4789

The following SAS code selects and combines data from these three sources to create
a PROC SQL view, SQL.BADORDR. The SQL.BADORDR view retrieves customer and
product information that the sales department can use to notify customers of
unavailable products.

proc sql;
create view sql.badordr as

select cusphon.custnum, cusphon.name,
cusphon.phone, cusordr.stocknum,
outofstk.fibernam as product

from vlib.cusphon, vlib.cusordr,
mydata.outofstk

where cusordr.stocknum=outofstk.fibernum
and cusphon.custnum=cusordr.shipto

order by cusphon.custnum, product;
title "Data Described by SQL.BADORDR";
select * from sql.badordr;

The CREATE VIEW statement incorporates a WHERE clause as part of its SELECT
statement. The last SELECT statement retrieves and displays the PROC SQL view,
SQL.BADORDR. To select all columns from the view, use an asterisk (*) in place of
variable names. The order of the columns displayed matches the order of the columns
as specified in the view descriptor SQL.BADORDR. (Note that an ORDER BY clause
requires an ADABAS descriptor data field.)

Output 3.12 on page 31 shows the data described by the SQL.BADORDR view. Note
that the SQL procedure uses the column labels in the output by default.

Using ADABAS Data in SAS Programs 4 Using the SAS System SQL Procedure 31

Output 3.12 Data Described by the PROC SQL View SQL.BADORDR

Data Described by SQL.BADORDR

CUSTOMER NAME
TELEPHONE STOCKNUM PRODUCT
--
15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

The view SQL.BADORDR lists entries for all customers who have ordered
out-of-stock products. However, it contains duplicate rows because some companies
have ordered the same product more than once. To make the data more readable for the
sales department, you can create a final SAS data file, MYDATA.BADNEWS, using the

32 Using the SAS System SQL Procedure 4 Chapter 3

results of the PROC SQL view as input in the SET statement and the special variable
FIRST.PRODUCT. This variable identifies which row is the first in a particular BY
group. You only need a customer’s name once to notify them that a product is out of
stock, regardless of the number of times the customer has placed an order for it.

data mydata.badnews;
set sql.badordr;
by custnum product;
if first.product;

run;

proc print;
title "MYDATA.BADNEWS Data File";

quit;

The data file MYDATA.BADNEWS contains an observation for each unique
combination of customer and out-of-stock product. Output 3.13 on page 32 displays this
data file.

Output 3.13 Data in the SAS Data File MYDATA.BADNEWS

MYDATA.BADNEWS Data File

OBS CUSTNUM NAME

1 15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
2 18543489 LONE STAR STATE RESEARCH SUPPLIERS
3 24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
4 29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
5 31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
6 43459747 RESEARCH OUTFITTERS

OBS PHONE STOCKNUM PRODUCT

1 616/582-3906 4789 dacron
2 512/478-0788 8934 gold
3 (012)736-202 3478 olefin
4 (0552)715311 3478 olefin
5 406/422-3413 8934 gold
6 03/734-5111 8934 gold

For more information about the FIRST.variable, see the SAS Language Reference:
Dictionary.

Creating New Variables with the GROUP BY Clause
It is often useful to create new variables with summarizing or variable functions

such as AVG or SUM. Although you cannot use the ACCESS procedure to create new
variables, you can easily use the SQL procedure with data described by a view
descriptor to display output that contains new variables.

Using ADABAS Data in SAS Programs 4 Updating a SAS Data File with ADABAS Data 33

This example uses the SQL procedure to retrieve and manipulate data accessed by
the view descriptor VLIB.ALLEMP, which accesses data in the NATURAL DDM named
EMPLOYEE. When this query (as a SELECT statement is often called) is submitted, it
calculates and displays the average salary for each department; the AVG function is the
SQL procedure’s equivalent of the SAS MEAN function.

proc sql;
title "Average Salary Per Department";
select distinct dept,

avg(salary) label="Average Salary"
format=dollar12.2

from vlib.allemp
where dept is not missing
group by dept;

The order of the variables displayed matches the order of the variables as specified in
the SELECT list of the query. Output 3.14 on page 33 shows the query’s result.

Output 3.14 Data Retrieved by a PROC SQL Query

Average Salary Per Department
Average

DEPT Salary

ACC013 $54,591.33
ACC024 $55,370.55
ACC043 $75,000.34
CSR004 $17,000.00
CSR010 $44,324.19
CSR011 $41,966.16
SHP002 $40,111.31
SHP013 $41,068.44
SHP024 $50,000.00

For more information about the SQL procedure, see the SQL chapter in the SAS
Procedures Guide.

Updating a SAS Data File with ADABAS Data
You can update a SAS data file with ADABAS data described by a view descriptor,

just as you can update a SAS data file with data from another data file. In this section,
the term transaction data refers to the new data that are to be added to the original
file. You can even do updates when the file to be updated is a Version 6 data file and
the transaction data are from a Version 7 source.

Suppose you have a Version 6 data file, LIB6.BIRTHDAY, that contains employee ID
numbers, last names, and birthdays. You want to update this data file with data

34 Updating a SAS Data File with ADABAS Data 4 Chapter 3

described by VLIB.EMPS, a view descriptor based on the EMPLOYEE DDM. To
perform the update, enter the following SAS statements.

proc sort data=lib6.birthday;
by lastname;

run;

proc print data=lib6.birthday;
title "LIB6.BIRTHDAY Data File";
format birthdat date7.;

run;

proc print data=vlib.emps;
title "Data Described by VLIB.EMPS";

run;

data mydata.newbday;
update lib6.birthday vlib.emps;
by lastname;

run;

proc print;
title ’MYDATA.NEWBDAY Data File’;

run;

In this example, the new, updated SAS data file, MYDATA.NEWBDAY, is a Version 7
data file. It is stored in the Version 7 SAS data library associated with the libref
MYDATA.

When the UPDATE statement references the view descriptor VLIB.EMPS and uses a
BY statement in the DATA step, the BY statement causes a BY clause to be generated
for the variable LASTNAME. (Note that a BY statement must reference an ADABAS
descriptor data field.) Thus, the BY clause causes the ADABAS data to be presented to
the SAS System in a sorted order for use in updating the MYDATA.NEWBDAY data
file. However, the data file LIB6.BIRTHDAY had to be sorted before the update,
because the UPDATE statement expects both the original file and the transaction file to
be sorted by the BY variable.

Output 3.15 on page 35, Output 3.16 on page 35, and Output 3.17 on page 36 show
the results of PRINT procedures on the original data file, the transaction data, and the
updated data file.

Using ADABAS Data in SAS Programs 4 Updating a SAS Data File with ADABAS Data 35

Output 3.15 Data in the Data File to Be Updated, LIB6.BIRTHDAY

LIB6.BIRTHDAY Data File

OBS EMPID BIRTHDAT LASTNAME

1 129540 31JUL60 CHOULAI
2 356134 25OCT60 DUNNETT
3 127845 25DEC43 MEDER
4 677890 24APR65 NISHIMATSU-LYNCH
5 459287 05JAN34 RODRIGUES
6 346917 15MAR50 SHIEKELESLAN
7 254896 06APR49 TAYLOR-HUNYADI

Output 3.16 Data Described by the View Descriptor VLIB.EMPS

Data Described by VLIB.EMPS

OBS EMPID JOBCODE BIRTHDAT LASTNAME

1 456910 602 24SEP53 ARDIS
2 237642 602 13MAR54 BATTERSBY
3 239185 602 28AUG59 DOS REMEDIOS
4 321783 602 03JUN35 GONZALES
5 120591 602 12FEB46 HAMMERSTEIN
6 135673 602 21MAR61 HEMESLY
7 456921 602 12MAY62 KRAUSE
8 457232 602 15OCT63 LOVELL
9 423286 602 31OCT64 MIFUNE
10 216382 602 24JUL63 PURINTON
11 234967 602 21DEC67 SMITH
12 212916 602 29MAY28 WACHBERGER
13 119012 602 05JAN46 WOLF-PROVENZA

36 Performance Considerations 4 Chapter 3

Output 3.17 Data in the Updated Data File MYDATA. NEWBDAY

MYDATA.NEWBDAY Data File

OBS EMPID BIRTHDAT LASTNAME JOBCODE

1 456910 24SEP53 ARDIS 602
2 237642 13MAR54 BATTERSBY 602
3 129540 31JUL60 CHOULAI .
4 239185 28AUG59 DOS REMEDIOS 602
5 356134 25OCT60 DUNNETT .
6 321783 03JUN35 GONZALES 602
7 120591 12FEB46 HAMMERSTEIN 602
8 135673 21MAR61 HEMESLY 602
9 456921 12MAY62 KRAUSE 602

10 457232 15OCT63 LOVELL 602
11 127845 25DEC43 MEDER .
12 423286 31OCT64 MIFUNE 602
13 677890 24APR65 NISHIMATSU-LYNCH .
14 216382 24JUL63 PURINTON 602
15 459287 05JAN34 RODRIGUES .
16 346917 15MAR50 SHIEKELESLAN .
17 234967 21DEC67 SMITH 602
18 254896 06APR49 TAYLOR-HUNYADI .
19 212916 29MAY28 WACHBERGER 602
20 119012 05JAN46 WOLF-PROVENZA 602

For more information about the UPDATE statement, see SAS Language Reference:
Dictionary.

Note: You cannot update ADABAS data directly using the DATA step, but you can
update ADABAS data using the following procedures: APPEND, FSEDIT, FSVIEW, and
SQL. For more information about updating ADABAS data, see Chapter 4, “Browsing
and Updating ADABAS Data,” on page 39. 4

Performance Considerations
While you can generally treat view descriptors like other SAS data sets in SAS

programs, here are a few things you should keep in mind:
� It is sometimes better to extract ADABAS data and place them in a SAS data file

rather than to read them directly. Here are some circumstances when you should
probably extract:

� If you plan to use the same ADABAS data in several procedures during the
same SAS session, you may improve performance by extracting the ADABAS
data. Placing these data in a SAS data file requires a certain amount of disk
space to store the data and I/O to write the data. However, SAS data files are
organized to provide optimal performance with PROC and DATA steps.
Programs using SAS data files often use less CPU time than programs that
directly read ADABAS data.

Using ADABAS Data in SAS Programs 4 Performance Considerations 37

� If you plan to read large amounts of ADABAS data and the data are being
shared by several users, your direct reading of the data could adversely affect
all users’ response time.

� If you are the creator of an ADABAS file and think that directly reading this
data would present a security risk, you may want to extract the data and not
distribute information about either the access descriptor or view descriptor.

� If you intend to use the data in a particular sorted order several times, it is
usually best to run the SORT procedure on the view descriptor, using the OUT=
option. This is more efficient than requesting the same sort repeatedly (with a BY
clause) on the ADABAS data. Note that you cannot run the SORT procedure on a
view descriptor unless you use the SORT procedure’s OUT= option.

� Sorting data can be resource-intensive, whether it is done with the SORT
procedure, with a BY statement (which generates a BY clause), or with a SORT
clause stored in the view descriptor. You should sort data only when it is needed
for your program.

� If you reference a view descriptor in SAS code and the code includes a BY
statement for a variable or variables (up to three) that corresponds to a descriptor
data field in the ADABAS file, the interface view engine is called, and it will
support the BY clause if possible. Thus, the BY clause sorts the ADABAS data
before it uses the data in your SAS program. If the ADABAS file is very large, this
sorting can affect performance.

If the view descriptor already has a SORT clause and you specify a BY statement
in your SAS code, the BY statement overrides the view descriptor’s SORT clause.

� When writing a SAS program and referencing a view descriptor, it is more efficient
to use a SAS WHERE statement in the program than it is to use a subsetting IF
statement. The SAS program passes the WHERE statement as a WHERE clause
to the interface view engine, which adds it (using the Boolean operator AND) to
any WHERE clause stored in the view descriptor. The view descriptor is then
passed to ADABAS for processing. Applying a WHERE clause to the ADABAS
data may reduce the number of logical records read; therefore, it often improves
performance.

� Refer to “Creating and Using View Descriptors Efficiently” on page 98 for more
details on creating efficient view descriptors.

38 Performance Considerations 4 Chapter 3

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Interface to ADABAS Software: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Interface to ADABAS Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–546–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

