
59

C H A P T E R

5
ACCESS Procedure Reference

Introduction 59
Case Sensitivity in the ACCESS Procedure 60

ACCESS Procedure Syntax 60

Description 61

PROC ACCESS Statement Options 62

Options 62
SAS System Passwords for SAS/ACCESS Descriptors 63

Assigning Passwords 63

DATASETS Procedure Method 63

Procedure Statements 64

Dictionary 65

WHERE Clause in a View Descriptor 92
View WHERE Clause Syntax 92

View WHERE Clause Examples 93

Specifying Conditions with the SPANS Operator 93

Specifying Expressions 93

Specifying Values in Character Fields 93
Specifying Numeric Format Values 94

Specifying Dates 94

Specifying Values in Superdescriptor Fields 94

Specifying Values in Subdescriptor Fields 95

Specifying Values in Multiple-Value Fields 96
Specifying Values in Periodic Group Fields 96

SORT Clause in a View Descriptor 97

View SORT Clause Syntax 97

SORT Clause Examples 97

Creating and Using View Descriptors Efficiently 98

ACCESS Procedure Formats and Informats 98
Effects of the SAS/ACCESS Interface on ADABAS Data 101

Introduction

The ACCESS procedure enables you to create and edit descriptor files used by the
SAS/ACCESS interface to ADABAS. This chapter provides reference information for
the ACCESS procedure statements, including procedure syntax and statement options.

Additionally, the following sections provide information to help you optimize the use
of the interface:

� “Creating and Using View Descriptors Efficiently” on page 98 presents efficiency
considerations for using the SAS/ACCESS interface to ADABAS

60 Case Sensitivity in the ACCESS Procedure 4 Chapter 5

� “ACCESS Procedure Formats and Informats” on page 98 summarizes how the
SAS/ACCESS interface converts each type of ADABAS data into its equivalent
SAS variable format.

� “Effects of the SAS/ACCESS Interface on ADABAS Data” on page 101 explains
how the SAS/ACCESS interface handles specific ADABAS data fields.

If you need help with SAS data sets and data libraries, their naming conventions, or
any terms used in regard to the ACCESS procedure, refer to the SAS Language
Reference: Dictionary and the SAS Companion for the MVS Environment, Version 6,
Second Edition .

Case Sensitivity in the ACCESS Procedure
SAS names are not case sensitive; they can be entered in either uppercase or

lowercase. The ACCESS procedure converts DBMS column names to uppercase
including names enclosed in quotes. Any DBMS names that contain special or national
characters must be enclosed in quotes.

ACCESS Procedure Syntax

PROC ACCESS <options>;

Creating and Updating Statements
CREATE libref.member-name.ACCESS | VIEW;
UPDATE libref.member-name.ACCESS|VIEW <password-level=SAS-password>;

Database-Description Statements
DDM = data-definition-module-name;
NSS (LIBRARY | LIB= library-identifier

USER= user-identifier
PASSWORD | PW= Natural-Security-password);

ADBFILE (NUMBER | NUM= Adabas-file-number
PASSWORD | PW= Adabas-password
CIPHER | CC= Adabas-cipher-code
DBID= Adabas-database-identifier);

SYSFILE (NUMBER | NUM= Adabas-system-file-number
PASSWORD | PW= Adabas-password
CIPHER | CC= Adabas-cipher-code
DBID= Adabas-database-identifier);

SECFILE (NUMBER | NUM= Natural-Security-system-file-number
PASSWORD | PW= Adabas-password
CIPHER | CC= Adabas-cipher-code
DBID= Adabas-database-identifier);

Editing Statements
ASSIGN <=> YES | NO | Y | N;

ACCESS Procedure Reference 4 Description 61

CONTENT column-identifier-1 <=> SAS-date-format | length | E
<… column-identifier-n <=> SAS-date-format | length | E >;

DROP column-identifier-1 <… column-identifier-n>;
EXTEND <ALL | VIEW | column-identifier-1 <… column-identifier-n>>;
FORMAT column-identifier-1 <=> SAS-format-name

<…column-identifier-n <=> SAS-format-name>;
INFORMAT column-identifier-1 <=> SAS-format-name

<… column-identifier-n <=> SAS-format-name>;
KEY<=> column-identifier-1 <…column-identifier-n>;
LIST <ALL | VIEW | column-identifier-1 <…column-identifier-n>>;
LISTINFO <ALL | VIEW | column-identifier-1 <…column-identifier-n>>;
LISTOCC column-identifier-1 <… column-identifier-n>;
MVF column-identifier

CONTENT occurrence-1 <=> SAS-date-format | length | E
<… occurrence-n <=> SAS-date-format| length| E>;
|
DROP occurrence-1 <<TO>… occurrence-n>;

|
FORMAT occurrence-1 <=> SAS-format-name
<… occurrence-n <=> SAS-format-name>;
|
INFORMAT occurrence-1 <=> SAS-format-name

<… occurrence-n <=> SAS-format-name>;
|
OCCURS <=> number-of-occurrences;
|
RENAME occurrence-1 <=> SAS-variable-name

<…occurrence-n <=> SAS-variable-name>;
|
RESET occurrence-1 <<TO>… occurrence-n>;

|
SELECT occurrence-1 <<TO>… occurrence-n>;

RENAME column-identifier-1 <=> SAS-variable-name
<… column-identifier-n <=> SAS-variable-name>;

RESET ALL | column-identifier-1 <… column-identifier-n>;
SECURITY <=> YES | NO | Y | N;
SELECT ALL | column-identifier-1 <… column-identifier-n>;
SUBSET selection-criteria;
QUIT;

RUN;

Description
You use the ACCESS procedure to create and edit access descriptors and view

descriptors, and to create SAS data files. Descriptor files describe DBMS data so that
you can read, update, or extract the DBMS data directly from within a SAS session or
in a SAS program.

The ACCESS procedure runs in interactive line and batch modes. The following
sections provide complete information on PROC ACCESS options and statements.

62 PROC ACCESS Statement Options 4 Chapter 5

PROC ACCESS Statement Options
The ACCESS procedure statement takes the following options:

PROC ACCESS options;

Depending on which options you use, the ACCESS procedure statement performs
several tasks.

You use the PROC ACCESS statement with database-description statements and
certain procedure statements to create descriptors or SAS data files from DBMS data.
See “Procedure Statements” on page 64 for information on which procedure statements
to use for each task. The following sections describe PROC ACCESS options in greater
detail.

Options

This section describes the options that you use to create and edit access descriptors
and view descriptors.

ACCDESC=libref.access-descriptor
specifies an access descriptor.

ACCDESC= is used with the DBMS= option to create a view descriptor that is
based on the specified access descriptor. You specify the view descriptor’s name in
the CREATE statement. You can also use a SAS data set option on the ACCDESC=
option to specify any passwords that have been assigned to the access descriptor.

The ACCDESC= option has two aliases: AD= and ACCESS=.

DBMS=ADABAS
specifies which database management system you want to use. DBMS= can be
used with the ACCDESC= option to create a view descriptor, which is then named
in the CREATE statement.

OUT=<libref.>member-name
specifies the SAS data file to which DBMS data are written. OUT= is used only
with the VIEWDESC= option.

VIEWDESC=<libref.>view-descriptor
specifies a view-descriptor that accesses the ADABAS data. VIEWDESC= is used
only with the OUT= option.

For example:

proc access dbms=adabas viewdesc=vlib.invq4
out=dlib.invq4;

run;

The VIEWDESC= option has two aliases: VD= and VIEW=.

CAUTION:
Altering a DBMS table can invalidate descriptors. Altering the format of a DBMS table
that has descriptor files defined on it might cause these descriptors to be out-of-date
or no longer valid. For example, if you add a column to a table and an existing access
descriptor is defined on that table, the access descriptor and any view descriptors
based on it do not show the new column. You must re-create the descriptors to be
able to show and select the new column. 4

ACCESS Procedure Reference 4 Assigning Passwords 63

SAS System Passwords for SAS/ACCESS Descriptors
The SAS System enables you to control access to SAS data sets and access

descriptors by associating one or more SAS System passwords with them. You must
first create the descriptor files before assigning SAS passwords to them.

Table 5.1 on page 63 summarizes the levels of protection that SAS System passwords
have and their effects on access descriptors and view descriptors:

Table 5.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor
from being read or
edited

view descriptor protects DBMS data
from being read or
updated

protects DBMS data
from being updated

protects descriptor
from being read or
edited

When you create view descriptors, you can use a SAS data set option after the
ACCDESC= option to specify the access descriptor’s password (if one exists). In this
case, you are not assigning a password to the view descriptor that is being created;
rather, using the password grants you permission to use the access descriptor to create
the view descriptor. For example:

proc access dbms=ababas accdesc=adlib.customer
(alter=rouge);

create vlib.customer.view;
select all;

run;

By specifying the ALTER-level password, you can read the ADLIB.CUSTOMER
access descriptor and therefore create the VLIB.CUSTOMER view descriptor.

For detailed information on the levels of protection and the types of passwords you
can use, refer to the SAS Language Reference: Dictionary. The following section
describes how you assign SAS System passwords to descriptors.

Assigning Passwords
To assign, change, or clear a password for an access descriptor, a view descriptor, or

another SAS file, use the DATASETS procedure.

DATASETS Procedure Method
To assign, change, or delete a SAS password, use the DATASETS procedure’s

MODIFY statement in the PROGRAM EDITOR window. Here is the basic syntax for
using PROC DATASETS to assign a password to an access descriptor, a view descriptor,
or a SAS data file:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;
MODIFY member-name (password-level =
password-modification);

64 Procedure Statements 4 Chapter 5

RUN;

In this syntax statement, the password-level argument can have one or more of the
following values: READ=, WRITE=, ALTER=, or PW=. PW= assigns read, write, and
alter privileges to a descriptor or data file. The password-modification argument
enables you to assign a new password or to change or delete an existing password.

For example, this PROC DATASETS statement assigns the password MONEY with
the ALTER level of protection to the access descriptor ADLIB.SALARIES.

proc datasets library=adlib memtype=access;
modify salaries (alter=money);

run;

In this case, users are prompted for the password whenever they try to browse or edit
the access descriptor or to create view descriptors that are based on ADLIB.SALARIES.

You can assign multiple levels of protection to a descriptor or SAS data file. However,
for more than one level of protection (that is, both READ and ALTER), be sure to use a
different password for each level. If you use the same password for each level, a user to
whom you grant READ privileges only (in order to read the DBMS data) would also
have privileges to alter your descriptor (which you do not want to allow).

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.JOBC204:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read the
DBMS data, or try to browse or edit the view descriptor VLIB.JOBC204 itself. You need
both levels to protect the data and descriptor from being read. However, a user could
still update the data accessed by VLIB.JOBC204, for example, by using a PROC SQL
UPDATE. Assign a WRITE level of protection to prevent data updates.

To delete a password on an access descriptor or any SAS data set, put a slash after
the password:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw/ alter=mydept/);

run;

Refer to the SAS Language Reference: Dictionary for more examples of assigning,
changing, deleting, and using SAS System passwords.

Procedure Statements
To invoke the ACCESS procedure you use the options described in “Options” on page

62 and certain procedure statements. The options and statements that you choose are
determined by your task.

� To create an access descriptor:

PROC ACCESS DBMS=ADABAS;
CREATE libref.member-name.ACCESS;

required database-description statements;
optional editing statements;

RUN;

ACCESS Procedure Reference 4 ADBFILE 65

� To create an access descriptor and a view descriptor:

PROC ACCESS DBMS=ADABAS;
CREATE libref.member-name.ACCESS;

required database-description statements;
optional editing statements;

CREATE libref.member-name.VIEW;
SELECT item-list;
optional editing statements;

RUN;

� To create a view descriptor from an existing access descriptor:

PROC ACCESS DBMS=ADABAS ACCDESC=libref.access-descriptor;
CREATE libref.member-name.VIEW;

SELECT item-list;
optional editing statements;

RUN;

� To update an access descriptor:

PROC ACCESS DBMS=ADABAS;
UPDATE libref.member-name.ACCESS;

procedure statements;

RUN;

� To update a view descriptor:

PROC ACCESS DBMS=ADABAS;
UPDATE libref.member-name.VIEW;

procedure statements;

RUN;

Dictionary

ADBFILE
Specifies the file number of the ADABAS file to be accessed.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: DDM, SECURITY

Syntax
ADBFILE (NUMBER | NUM = Adabas-file-number

66 ASSIGN 4 Chapter 5

PASSWORD | PW = Adabas-password
CIPHER|CC = Adabas-cipher-code
DBID = Adabas-database-identifier);

Details

The ADBFILE statement allows you to specify an ADABAS file number and optional
password, cipher code, and database identifier for the ADABAS file to be used when
reading the access descriptor. If you specified a NATURAL DDM using the DDM=
statement in an access descriptor, then the file number is supplied by the DDM and the
ADBFILE statement is not needed.

If you specified SECURITY=YES in the access descriptor, you cannot change the
values for the password and cipher code in the view descriptor. However, if no values
were entered in the access descriptor, you can enter them in the view descriptor, even if
the SECURITY=YES statement has been issued.

Number
is the ADABAS file number of the file to be accessed. The ADABAS file number is
a number from 1 to 255 that is assigned when the ADABAS files are created with
the ADABAS ADACMP utility.

Password
is an ADABAS password, which provides security protection at the file or
data-field level, or on the basis of a value at the logical-record level. The value is
not displayed as you enter it, and it is written to the access descriptor in encrypted
form.

Cipher Code
is an ADABAS cipher code, which is a numeric code for ciphering and deciphering
data into and from an ADABAS file. The value is not displayed as you enter it,
and it is written to the access descriptor in encrypted form.

DBID
is the ADABAS database identifier (number) to be accessed. The database
identifier is a numerical value from 1 to 255 that is assigned to each ADABAS
database.

ASSIGN

Indicates whether SAS variable names and formats are automatically generated.

Optional statement

Applies to: access descriptor

Interacts with: CONTENT, FORMAT, INFORMAT, KEY, MVF, RENAME, RESET

Default: NO

Syntax

ASSIGN<=>YES | NO | Y | N;

ACCESS Procedure Reference 4 CONTENT 67

Details
The ASSIGN statement indicates whether SAS variable names are automatically
generated and whether users can change SAS variable names and other column
information the view descriptors created from this access descriptor.

An editing statement, such as ASSIGN, must be specified after the CREATE and
database-description statements when you create an access descriptor. See “CREATE”
on page 68 for more information.

The value NO (or N) enables you to modify SAS variable names, formats, informats,
database contents, occurrence ranges, and BY keys when you create an access descriptor
and when you create view descriptors that are based on this access descriptor.

Specify a YES (or Y) value for this statement to generate unique SAS variable names
from the first eight characters of the DBMS column names, according to the rules listed
below. With YES, you can change the SAS variable names and other column information
only in the access descriptor. The SAS variable names and other column information
that are saved in an access descriptor are always used when view descriptors are
created from the access descriptor; you cannot change them in the view descriptors.

Default SAS variable names are generated according to these rules:
� If the column name is longer than eight characters, the SAS System uses only the

first eight characters. If truncating results in duplicate names, numbers are
appended to the ends of the names. For example, the DBMS names clientsname
and clientsnumber become the SAS names clientsn and clients1.

If the same descriptor has another set of columns with duplicate names, the
numeric suffix begins at the next highest number from the previous set of duplicate
names. For example, if the descriptor has the duplicate names above and also has
the DBMS names customername, customernumber, and customernode, the
default SAS names would be customer, custome1, and custome2.

� If the column name contains characters that are not valid in SAS names (including
national characters), the SAS System replaces these characters with underscores
(_). For example, the column name func$ becomes the SAS variable name func_.

If you specify YES for this statement, the SAS System automatically resolves any
duplicate variable names. However, if you specify YES, you cannot specify the
CONTENT, FORMAT, INFORMAT, KEY, MVF (with OCCURS option), RENAME, or
RESET statements when you create view descriptors that are based on the access
descriptor.

When the SAS/ACCESS interface encounters the next CREATE statement to create
an access descriptor, the ASSIGN statement is reset to the default NO value.

AN is the alias for the ASSIGN statement.

CONTENT

Specifies a SAS date format or length.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN

Syntax
CONTENT column-identifier-1 <=> SAS-date-format | length | E

68 CREATE 4 Chapter 5

<... column-identifier-n <=> SAS-date-format |length|E >;

Details
The CONTENT statement enables you to enter a SAS date format, a variable length, or
an extended time format. A date format means that the ADABAS data have the
specified representation. A variable length determines the number of characters to be
accessed. The extended time format (E) invokes NATURAL date, time, and datetime
values. The SAS System stores datetime values as the number of days and seconds
before and after January 1, 1960. The NATURAL 4th generation language stores date
and time values as the number of days and seconds since 0 A.D.

For ADABAS files, entering a SAS date or a variable length automatically changes
default values for SAS formats and informats. For NATURAL DDMs, entering a date
changes the default format and informat but entering a length does not. However, if
you have previously changed any format and informat values, specifying a CONTENT
value does not alter those values. Specifying extended time format changes default
values for SAS informat and format values to DATETIME16.

For groups and periodic groups, the CONTENT field is for information only and is set
to *GROUP* and *PGROUP*, respectively.

ADABAS does not have a specific date type; therefore, the CONTENT statement
enables you to identify dates for SAS processing. You can enter one of four SAS date
formats.

� YYMMDDw. where w is 6 for two-digit years or 8 for four-digit years

� MMDDYYw. where w is 6 for two-digit years or 8 for four-digit years

� DDMMYYw. where w is 6 for two-digit years or 8 for four-digit years

� JULIANw. where w is 5 for two-digit years or 7 for four-digit years.

If you specified Assign=YES when creating an access descriptor, you cannot change
the value for this statement when you later create a view descriptor based on that
access descriptor. If you specified Assign=NO, you can change the value for this
statement in a subsequent view descriptor.

You do not have to issue a SELECT statement for columns named in the CONTENT
statement.

Note: The SAS/ACCESS to ADABAS engine does not provide automatic conversion
to the extended time format in releases of the SAS System prior to Release 6.08
TSO420. However, it is possible to convert a value to the extended time format in a
SAS DATA step by using the following formulas:

SAS date value = NATURAL date value − 715874
SAS datetime value = (NATURAL datetime value / 10)

− (715874 * 3600 *24)
SAS time value = NATURAL time value / 10

4

CREATE

Creates a SAS/ACCESS descriptor file.

Required statement

Applies to: access descriptor or view descriptor

ACCESS Procedure Reference 4 CREATE 69

Syntax
CREATE libref.member-name.ACCESS | VIEW;

Details The CREATE statement identifies the access descriptor or view descriptor
that you want to create. This statement is required for creating a descriptor.

To create a descriptor, use a three-level name. The first level identifies the libref of
the SAS data library where you will store the descriptor. You can store the descriptor in
a temporary (WORK) or permanent SAS data library. The second level is the
descriptor’s name (member name). The third level is the type of SAS file: specify
ACCESS for an access descriptor or VIEW for a view descriptor.

You can use the CREATE statement as many times as necessary in one procedure
execution. That is, you can create multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can create access descriptors and view descriptors in
separate executions of the procedure.

Access descriptors When you create an access descriptor, you must place statements
or groups of statements in a certain order after the PROC ACCESS statement and its
options, as listed below:

1 CREATE statement for the access descriptor: must follow the PROC ACCESS
statement.

2 Database-description statements: must follow the CREATE statement. Use either
the ADBFILE or the DDM statement with the SECFILE and SYSFILE
statements. Additionally with the DDM statement, use the NSS statement. The
ADBFILE statement allows you to access an ADABAS file. The DDM statement
accesses a view to an ADABAS file that you can use to reference the ADABAS file
in NATURAL programs. In making your choice, note that the two statements use
different naming conventions for ADABAS data field names.

Information from database-description statements is stored in an access
descriptor; therefore, you do not need to repeat this information when you create
view descriptors. However, if no security values were entered in the access
descriptor or values were provided but the SECURITY statement was set to NO,
then you can use the database-description statements in a view descriptor to
supply or modify them.

3 Editing statements: must follow the database-description statements. ASSIGN,
CONTENT, DROP, EXTEND, FORMAT, INFORMAT, KEY, LIST, LISTINFO,
LISTOCC, MVF, RENAME, RESET, and SECURITY can all be used in an access
descriptor. QUIT is also an editing statement but using it terminates PROC
ACCESS without creating your descriptor.

4 RUN statement: this statement is used to process the ACCESS procedure.

The order of the statements within the database-description group does not matter.
For example, you could submit either the DDM= or the NSS() statement first. The
order of the statements within the editing group sometimes matters; see the individual
statement descriptions for any restrictions.

Note: Altering a DBMS table that has descriptor files defined on it might cause
these files to be out-of-date or not valid. For example, if you re-create a table and add a
new column to the table, an existing access descriptor defined on that table does not
show that column; in this case the descriptor is still valid. However, if you re-create a
table and delete an existing column from the table, the descriptor might not be valid. If

70 CREATE 4 Chapter 5

the deleted column is included in a view descriptor and this view is used in a SAS
program, the view fails and an error message is written to the SAS log. 4

View descriptors You can create view descriptors and access descriptors in the same
execution of the ACCESS procedure or in separate executions.

To create a view descriptor and the access descriptor on which it is based within the
same PROC ACCESS execution, you must place the statements or groups of statements
in a particular order after the PROC ACCESS statement and its options, as listed below:

1 Create the access descriptor except omit the RUN statement.
2 CREATE statement for the view descriptor: this statement must follow the PROC

ACCESS statements that created the access descriptor.
3 NSS and the password and cipher code parameters of ADBFILE, SECFILE, and

SYSFILE: the ADBFILE, SECFILE, and SYSFILE statements can be specified
only when SECURITY=NO or when SECURITY=YES and no values have been
specified in the access descriptor referenced by this view descriptor.

4 Editing statements: SELECT and SUBSET are used only when creating view
descriptors. CONTENT, FORMAT, INFORMAT, KEY, and MVF OCCURS can be
specified only when ASSIGN=NO is specified in the access descriptor referenced by
this view descriptor. QUIT is also an editing statement, but using it terminates
PROC ACCESS without creating your descriptor.

The order of the statements within this group usually does not matter; see the
individual statement descriptions for any restrictions.

5 RUN statement: this statement is used to process the ACCESS procedure.

To create a view descriptor based on an access descriptor that was created in a
separate PROC ACCESS step, you specify the access descriptor’s name in the
ACCDESC= option in the new PROC ACCESS statement. You must specify the
CREATE statement before any of the editing statements for the view descriptor.

If you create only one descriptor in a PROC step, the CREATE statement and its
accompanying statements are checked for errors when you submit PROC ACCESS for
processing. If you create multiple descriptors in the same PROC step, each CREATE
statement (and its accompanying statements) is checked for errors as it is processed.

When the RUN statement is processed, all descriptors are saved. If no errors are
found, the descriptor is saved. If errors are found, error messages are written to the
SAS log, and processing is terminated. After you correct the errors, resubmit your
statements.

The following example creates the access descriptor ADLIB.CUSTOMER on the
ADABAS CUSTOMER file using the ADBFILE statement to specify the ADABAS file.

/* Create access descriptor using ADABAS file */
proc access dbms=adabas;

create adlib.customer.access;
adbfile(number=45 password=cuspw

cipher=cuscc dbid=1);
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
assign=yes;
rename cu = custnum

ph = phone
ad = street;

format fo = date7.;
informat fo = date7.;

ACCESS Procedure Reference 4 CREATE 71

content fo = yymmdd8.;
mvf br occurs = 4

run;

The following example creates an access descriptor to the same data using the DDM
statement.

/* Create access descriptor using NATURAL DDM */
proc access dbms=adabas;

create adlib.customer.access;
nss(library=sasdemo user=demo password=demopw).
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
ddm=customers;
assign=yes;
rename customer = custnum

telephone = phone
streetaddress = street;

format firstorderdate = date7.;
informat firstorderdate = date7.;
content firstorderdate = yymmdd6.;
mvf "BRANCH-OFFICE" occurs = 4

run;

The following example creates an access descriptor ADLIB.EMPLOY on the ADABAS
EMPLOYEES file and a view descriptor VLIB.EMP1204 based on ADLIB.EMPLOY in
the same PROC ACCESS step. The ADABAS file to access is referenced by a DDM.

/* Create access and view descriptors in
one execution */
proc access dbms=adabas;

/* Create access descriptors */
create adlib.employ.access;
nss(library=sasdemo user=demo password=demopw);
sysfile(number=15 password=cuspwsys

cipher=cusccsys dbid=1);
secfile(number=16 password=cuspwsec

cipher=cusccsec dbid=1);
ddm=employee;
assign=no;
list all;

/* Create view descriptor */
create vlib.emp1204.view;
select empid lastname hiredate salary dept
sex birthdate;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime7.
birthdate datetime7.;

subset where jobcode=1204;
run;

72 DDM= 4 Chapter 5

The following example creates a view descriptor VLIB.BDAYS from the
ADLIB.EMPLOY access descriptor, which was created in a separate PROC ACCESS
step.

/* Create view descriptors in separate execution */
proc access dbms=adabas accdesc=adlib.employ;

create vlib.bdays.view;
select empid lastname birthdate;
format empid 6.

birthdate datetime7.;
run;

DDM=
Indicates the NATURAL Data Definition Module (DDM) name.

Optional statement
Applies to: access descriptor
Interacts with: NSS

Syntax
DDM= data-definition-module-name;

Details
The DDM= statement specifies the NATURAL DDM. The name assigned to a NATURAL
DDM references an ADABAS file and its data fields. Note that a DDM is often referred
to as an ADABAS file, even though it is only a view of an actual ADABAS file.

The name for a NATURAL DDM can be a maximum of 32 characters. In a
NATURAL DDM, data fields can be assigned a DDM external name of 3 to 32
characters. DDMs are stored in a system file that is simply another ADABAS file.

If you delete or rename a SAS/ACCESS descriptor file, you do not delete or rename
the descriptor file’s underlying ADABAS file or NATURAL DDM. However, changing
your DDM can affect your descriptor files. See “Effects of Changing an ADABAS File or
NATURAL DDM on Descriptor Files” on page 111 for more information on how
changing your DDM can affect your descriptor files.

DROP
Drops a column so that it cannot be selected in a view descriptor.

Optional statement
Applies to: access descriptor
Interacts with: RESET, SELECT

Syntax
DROP column-identifier-1 <...column-identifier-n>;

ACCESS Procedure Reference 4 EXTEND 73

Details
The DROP statement drops the specified column from an access descriptor. The column
therefore cannot be selected by a view descriptor that is based on the access descriptor.
However, the specified column in the DBMS table remains unaffected by this statement.

An editing statement, such as DROP, must follow the CREATE and
database-description statements when you create an access descriptor. See “CREATE”
on page 68 for more information on the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to drop the third and fifth columns, submit
the following statement:

drop 3 5;

If the column name contains special characters or national characters, enclose the
name in quotes. You can drop as many columns as you want in one DROP statement.

To display a column that was previously dropped, specify that column name in the
RESET statement. However, doing so also resets all the column’s attributes (such as
SAS variable name, format, and so on) to their default values.

EXTEND

Lists columns in the descriptor and gives information about them.

Optional statement
Applies to: access and view descriptors
Default ALL

Syntax
EXTEND <ALL | VIEW | column-identifier-1 <... column-identifier-n>>;

Details
The EXTEND statement lists information about the informat, DB content, occurrence
range, descriptor type, and BY key columns in the descriptor. For groups and periodic
groups, *GROUP* or *PGROUP* is displayed, respectively.

You can use the EXTEND statement when creating an access or a view descriptor.
The EXTEND information is written to your SAS log.

If you use an editing statement, such as EXTEND, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE” on page 68 for more information on the order of statements.

You can specify EXTEND as many times as you want while creating a descriptor;
specify EXTEND last in your PROC ACCESS code to see the completed descriptor
information. Or, if you are creating multiple descriptors, specify EXTEND before the
next CREATE statement to list all the information about the descriptor you are creating.

The EXTEND statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the positional equivalents, the
two–character ADABAS names, the SAS variable informats, the database
contents, occurrence ranges, descriptor types, and BY keys that are available for

74 FORMAT 4 Chapter 5

the access descriptor. When you are creating an access descriptor,
NON-DISPLAY appears next to the column description for any column that has
been dropped. When you are creating a view descriptor, *SELECTED* appears next
to the column description for columns that you have selected for the view.

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their two–character ADABAS names, their SAS
variable informats, the database contents, occurrence ranges, descriptor types, BY
keys, any subsetting clauses, and the word *SELECTED*. Any columns that are
dropped in the access descriptor are not displayed. The VIEW argument is valid
only for a view descriptor.

column-identifier
lists the specified DBMS column name, its positional equivalent, its two–character
ADABAS name, its SAS variable informat, the database content, occurrence range,
descriptor type, BY keys that are available for the access descriptor, and whether
the column has been selected or dropped. If the column name contains special
characters or national characters, enclose the name in quotes.

The column-identifier argument can be either the column name, the positional
equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor, or a list of column names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

extend 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

extend 5 6 8;

FORMAT

Changes a SAS format for a DBMS column.

Optional statement

Applies to: access descriptor or view descriptor

Interacts with: ASSIGN, CONTENT, DROP, RESET

Syntax
FORMAT column-identifier-1 <=> SAS-format-name

<...column-identifier-n <=> SAS-format-name>;

Details
The FORMAT statement changes a SAS variable format from its default format; the
default SAS variable format is based on the data type of the DBMS column. (See
“ACCESS Procedure Formats and Informats” on page 98 for information about the
default formats that the ACCESS Procedure assigns to your DBMS data types.)

ACCESS Procedure Reference 4 INFORMAT 75

An editing statement, such as FORMAT, must follow the CREATE statement and the
database-description statements when you create a descriptor. See “CREATE” on page
68 for more information on the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to associate the DATE9. format with the
BIRTHDATE column and with the second column in the access descriptor, submit the
following statement:

format 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS format is specified on the
right of the expression. The equal sign (=) is optional. If the column name contains
special characters or national characters, enclose the name in quotes. You can enter
formats for as many columns as you want in one FORMAT statement.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the FORMAT statement. The FORMAT statement selects the
columns. When you use the FORMAT statement in access descriptors, the FORMAT
statement reselects columns that were previously dropped with the DROP statement. 4

FMT is the alias for the FORMAT statement.

INFORMAT

Changes a SAS informat for a DBMS column.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, CONTENT, DROP, RESET

Syntax
INFORMAT column-identifier-1 <=> SAS-format-name

<...column-identifier-n <=> SAS-format-name>;

Details
The INFORMAT statement changes a SAS variable informat from its default informat;
the default SAS variable informat is based on the data type of the DBMS column. (See
“ACCESS Procedure Formats and Informats” on page 98 for information about the
default informats that the ACCESS Procedure assigns to your DBMS data types.)

An editing statement, such as INFORMAT, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE” on
page 68 for more information on the order of statements.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the access descriptor. For example, to associate the DATE9. informat with the
BIRTHDATE column and with the second column in the access descriptor, submit the
following statement:

76 KEY 4 Chapter 5

informat 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS informat is specified on the
right of the expression. The equal sign (=) is optional. If the column name contains
special characters or national characters, enclose the name in quotes. You can enter
informats for as many columns as you want in one INFORMAT statement.

You can use the INFORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the INFORMAT statement. The INFORMAT statement selects the
columns. When you use the INFORMAT statement with access descriptors, the
INFORMAT statement reselects columns that were previously dropped with the DROP
statement. 4

INFMT is the alias for the INFORMAT statement.

KEY

Specifies a BY key for an elementary data field that is designated as an ADABAS descriptor.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN
Default blank

Syntax
KEY<=> column-identifier-1 <...column-identifier-n>;

Details
The KEY statement specifies a BY key for an elementary data field. This field must be
an ADABAS descriptor.

A BY key, which is an optional set of match variables, is used only when the
interface view engine must examine additional ADABAS records in order to add a new
periodic group occurrence. The engine uses the BY key variables in temporary WHERE
clauses that are designed to locate a record for modification. Examining the additional
ADABAS records is required only if data are changed above the periodic group level
from one observation to the next in a view descriptor with a selected periodic group. It
is suggested that you use BY key variables even if they are not always needed.

A data field is a good candidate for a BY key variable if it uniquely identifies a
logical record. The incoming values of the data fields in a BY key variable are matched
to existing values in order to locate a position in which to insert new periodic groups.
(A BY key variable is similar to a BY group or a BY variable in the SAS System.)

The KEY statement can have the following values:

blank (default) indicates that the data field is not to be used as a KEY.

N specifies that the data field is not to be used as a KEY.

Y specifies that the data field is to be used as a KEY.

ACCESS Procedure Reference 4 LIST 77

An editing statement, such as KEY, must follow the CREATE statement and the
database-description statements when you create a descriptor. See “CREATE” on page
68 for more information on the order of statements.

You can use the KEY statement with a view descriptor only if the ASSIGN statement
that was used when creating the acess descriptor was specified with the NO value.

You do not have to issue a SELECT statement in a view descriptor for the columns
included in the KEY statement. The KEY statement selects the columns. When you use
the KEY statement with an access descriptor, the KEY statement reselects columns
that were previously dropped with the DROP statement.

LIST

Lists columns in the descriptor and gives information about them.

Optional statement

Applies to: access descriptor or view descriptor

Default: ALL

Syntax
LIST <ALL | VIEW | column-identifier-1 <... column-identifier-n>>;

Details
The LIST statement lists columns in the descriptor along with information about the
columns. The LIST statement can be used when creating an access descriptor or a view
descriptor. The LIST information is written to your SAS log.

If you use an editing statement, such as LIST, it must follow the CREATE statement
and the database-description statements when you create a descriptor. See “CREATE”
on page 68 for more information on the order of statements.

You can specify LIST as many times as you want while creating a descriptor; specify
LIST last in your PROC ACCESS code to see the completed descriptor information. Or,
if you are creating multiple descriptors, specify LIST before the next CREATE
statement to list all the information about the descriptor you are creating.

The LIST statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the positional equivalents, the SAS variable
names, and the SAS variable formats that are available for the access descriptor.
When you are creating an access descriptor, *NON-DISPLAY* appears next to the
column description for any column that has been dropped. When you are creating
a view descriptor, *SELECTED* appears next to the column description for columns
that you have selected for the view.

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their SAS names and formats, any subsetting clauses,
and the word *SELECTED* . Any columns that were dropped in the access
descriptor are not displayed. The VIEW argument is valid only for a view
descriptor.

78 LISTINFO 4 Chapter 5

column-identifier
lists the specified DBMS column name, its positional equivalent, its SAS variable
name and format, and whether the column has been selected or dropped. If the
column name contains special characters or national characters, enclose the name
in quotes.

The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor. For example, to list information about the fifth
and eighth columns in the descriptor, submit the following statement:

list 5 8;

LISTINFO
Shows additional data field information.

Optional statement
Applies to: access descriptor or view descriptor
Default: ALL

Syntax
LISTINFO <ALL | VIEW | column-identifier-1 <... column-identifier-n>>;

Details
The LISTINFO statement shows additional data field information for one or more
DBMS columns in the descriptor. The LISTINFO statement can be used when creating
an access or a view descriptor. The LISTINFO information is written to your SAS log.

An editing statement, such as LISTINFO, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE” on
page 68 for more information on the order of statements.

The LISTINFO statement is especially helpful for subfields, superfields, and
descriptor data fields. It shows the ADABAS level, ADABAS name, length, data type,
and first-last character positions for a given DBMS column.

When you are creating an access descriptor, *NON-DISPLAY* appears next to the
column description for any column that has been dropped. When you are creating a
view descriptor, *SELECTED* appears next to the column description for columns that
you have selected for the view.

The LISTINFO statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the ADABAS levels, the lengths, ADABAS
names, the data types, and the first-last character positions.

VIEW
lists the DBMS columns that are selected for the view descriptor, along with the
ADABAS levels, ADABAS names, the lengths, the data types, and the first-last
character positions. Any columns that are dropped in the access descriptor are not
displayed. The VIEW argument is valid only for a view descriptor.

column-identifier
lists the specified DBMS columns, the ADABAS levels, ADABAS names, the
lengths, the data types, the first-last character positions, and whether the column

ACCESS Procedure Reference 4 MVF 79

has been selected or dropped. If the column name contains special characters or
national characters, enclose the name in quotes.

The column-identifier argument can be either the column name, the positional
equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor, or a list of column names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

listinfo 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

listinfo 5 6 8;

LISTOCC
Lists occurrences for multiple value fields.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
LISTOCC column-identifier-1 <... column-identifier-n>;

Details
The LISTOCC statement lists all the requested occurrences for the specified
multiple-value fields along with information such as the ADABAS level, the SAS
variable name, the occurrence number, the SAS variable format and informat, the DB
content, the descriptor type, and whether the occurrence has been selected or dropped.
The LISTOCC statement can be used when creating an access descriptor or a view
descriptor. The LISTOCC information is written to your SAS log.

If you use an editing statement, such as LISTOCC, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE” on page 68 for more information on the order of statements.

The LISTOCC statement takes the following argument:

column-identifier
The column-identifier argument can be either the column name or the positional
equivalent from the LIST statement, which is the number that represents the
column’s place in the descriptor. For example, to list occurrences for the fifth
column in the descriptor, submit the following statement:

listocc 5;

The column-identifier must be a multiple-value field.

MVF
Modifies the occurrences of a multiple-value field.

80 MVF 4 Chapter 5

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN

Syntax
MVF column-identifier

CONTENT occurrence-1 <=> E| SAS-date-format | length
<...occurrence-n <=> E| SAS-date-format| length>;
|
DROP occurrence-1 <<TO> ... occurrence-n>;
|
FORMAT occurrence-1 <=> SAS-format-name
<… occurrence-n <=> SAS-format-name>;
|
INFORMAT occurrence-1 <=> SAS-format-name
<… occurrence-n <=> SAS-format-name>;
|
OCCURS<=> number-of-occurrences;
|
RENAME occurrence-1 <=> SAS-variable-name
< ... occurrence-n <=> SAS-variable-name>;
|
RESET occurrence-1 <<TO> ... occurrence-n>;
|
SELECT occurrence-1 <<TO> … occurrence-n>;

Details
You use the MVF statement to modify values for occurrences of a multiple-value field.
The MVF statement can be used when creating an access descriptor or a view descriptor.

If you use an editing statement, such as MVF, it must follow the CREATE statement
and the database-description statements when you create a descriptor. See “CREATE”
on page 68 for more information on the order of statements.

The MVF statement allows you to
� choose the number of occurrences by specifying a range of occurrences
� select individual occurrences or a range of occurrences
� drop individual occurrences or a range of occurrences
� reset individual occurrences or a range of occurrences
� change the format value for one or more occurrences
� change the informat value for one or more occurrences
� change the database content value for one or more occurrences
� rename the SAS variable name for one or more occurrences.

The column-identifier must be a multiple-value field, and can be the column name or
the positional equivalent from the LIST statement. The occurrence argument can be
the occurrence name or the occurrence number. If the column name or the occurrence
name contains special characters, like ’-’, enclose the name in quotes. The ’=’is
optional for all subcommands.

You can use the LISTOCC statement to review your changes.
You do not have to issue a SELECT statement in a view descriptor for occurrences

included in the CONTENT, FORMAT, INFORMAT, and RENAME subcommands. The
subcommands select the columns.

ACCESS Procedure Reference 4 MVF 81

The MVF statement can take one of the following subcommands:

OCCURS
allows you to specify a number of occurrences or an occurrence range. The default
occurrence range is displayed as 1 191, which is the maximum number of
occurrences allowed for multiple-value fields. If the value for the ASSIGN
statement in an access descriptor is YES, the number of occurrences or the
occurrence range cannot be changed in any view descriptor that is based on this
access descriptor.

For example, if you want the BRANCH-OFFICE column in the CUSTOMER
DDM to have 4 occurrences, submit the following statement:

mvf "BRANCH-OFFICE" occurs = 4

SELECT
allows you to select individual occurrences to be included in your descriptor. This
subcommand is used only when defining view descriptors.

You can select one or more individual occurrences or a range of occurrences. For
example, if you want to select occurrences one, two, and three of the
BRANCH-OFFICE column in the CUSTOMER DDM, submit the following
statement:

mvf "BRANCH-OFFICE" select 1 2 3;

or

mvf "BRANCH-OFFICE" select 1 to 3;

DROP
allows you to drop individual occurrences from your descriptor. If you drop all
occurrences of a column, the column is automatically dropped. This subcommand
is used only when defining access descriptors.

You can drop one or more individual occurrences or a range of occurrences. For
example, if you want to drop occurrences one, two, and three of the
BRANCH-OFFICE column in the CUSTOMER DDM, submit the following
statement:

mvf "BRANCH-OFFICE" drop 1 2 3;

or

mvf "BRANCH-OFFICE" drop 1 to 3;

RESET
allows you to reset the attributes of individual occurrences. This subcommand can
be used when creating an access or view descriptor. Specifying the RESET
subcommand for an occurrence has the same effect on occurrence attributes as
specifying the RESET statement for a column. See “RESET” on page 85 for more
information.

You can reset one or more individual occurrences or a range of occurrences. For
example, if you want to reset occurrences one, two, and three of the
BRANCH-OFFICE column in the CUSTOMER DDM, submit the following
statement:

mvf "BRANCH-OFFICE" reset 1 2 3;

or

mvf "BRANCH-OFFICE" reset 1 to 3;

82 MVF 4 Chapter 5

FORMAT
allows you to change the format attribute of individual occurrences. This
subcommand can be used when creating access or view descriptors. However, the
format attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the format attribute of one or more occurrences in one FORMAT
subcommand. For example, if you want to change the format attribute for
occurrences nine and ten of the BRANCH-OFFICE column in the CUSTOMER
DDM, submit the following statement:

mvf "BRANCH-OFFICE" format 9 $21.
branch10 = $8.;

INFORMAT
allows you to change the informat attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. However, the
informat attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the informat attribute of one or more occurrences in one
INFORMAT subcommand. For example, if the BRANCH-OFFICE column in the
CUSTOMER DDM is a multiple-value field, and you want to change the informat
attribute for occurrences nine and ten, submit the following statement:

mvf "BRANCH-OFFICE" informat 9 $21.
branch10 = $8.;

CONTENT
allows you to change the DB content attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. Changing the
DB content attribute of an occurrence has the same effect on the SAS formats and
informats for ADABAS files and NATURAL DDMs as changing the DB content
attribute of a column. See “CONTENT” on page 67 for more information. For
example, if the FIRSTORDERDATE column in the CUSTOMER DDM is a
multiple-value field, and you want to change the DB content attribute for
occurrences nine and ten, submit the following statement:

mvf firstorderdate content 9 yymmdd6.
branch10 = yymmdd6.;

RENAME
allows you to rename a SAS variable name for an individual occurrence. This
subcommand can be used when creating an access or view descriptor. However,
this subcommand has different effects on access and view descriptors based on the
value specified in the ASSIGN statement.

If you set ASSIGN=NO in the access descriptor, the SAS variable name can be
renamed. If you set ASSIGN=YES, the SAS variable name can be renamed in the
access descriptor but not in the view descriptor.

You can rename the SAS variable name for one or more occurrences in one
RENAME subcommand. For example, if you want to rename occurrences nine and
ten of the BRANCH-OFFICE column in the CUSTOMER DDM, submit the
following statement:

mvf "BRANCH-OFFICE" rename 9 london
branch10 = tokyo;

You can use the LISTOCC statement to review your changes.

ACCESS Procedure Reference 4 QUIT 83

NSS
Specifies the NATURAL SECURITY options in the access descriptor.

Optional statement
Applies to: access descriptor
Interacts with: DDM and SECURITY

Syntax
NSS (LIBRARY | LIB = library-identifier

USER = user-identifier
PASSWORD | PW = Natural-Security-password);

Details
Note: This statement is used only when a DDM is specified; otherwise, it is

ignored. 4

The NSS statement specifies NATURAL SECURITY options, including a library
identifier, user identifier, and a password.

If you specify YES for the SECURITY statement in an access descriptor, values
declared for Library, User, and Password cannot be changed in a subsequent view
descriptor based on the access descriptor.

Library
is an eight-character library identifier. The first character must be alphabetic. The
library identifier is the same as the application identifier in SAS/ACCESS
Interface to ADABAS, Version 6.

User
is an eight-character user identifier.

Password
is an eight-character ADABAS password. The value is written to the access
descriptor in encrypted form.

QUIT
Terminates the procedure.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
QUIT;

Details
The QUIT statement terminates the ACCESS procedure without any further descriptor
creation.

84 RENAME 4 Chapter 5

EXIT is the alias for the QUIT statement.

RENAME

Modifies the SAS variable name.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, RESET

Syntax
RENAME column-identifier-1 <=> SAS-variable-name

<...column-identifier-n <=> SAS-variable-name>;

Details
The RENAME statement enters or modifies the SAS variable name that is associated
with a DBMS column. The RENAME statement can be used when creating an access
descriptor or a view descriptor.

An editing statement, such as RENAME, must follow the CREATE statement and
the database-description statements when you create a descriptor. See “CREATE” on
page 68 for more information on the order of statements.

Two factors affect the use of the RENAME statement: whether you specify the
ASSIGN statement when you are creating an access descriptor, and the kind of
descriptor you are creating.

� If you omit the ASSIGN statement or specify it with a NO value, the renamed SAS
variable names that you specify in the access descriptor are retained throughout
the access descriptor and any view descriptor that is based on that access
descriptor. For example, if you rename the CUSTOMER column to CUSTNUM
when you create an access descriptor, that column continues to be named
CUSTNUM when you select it in a view descriptor unless a RESET statement or
another RENAME statement is specified.

When creating a view descriptor that is based on this access descriptor, you can
specify the RESET statement or another RENAME statement to rename the
variable again, but the new name applies only in that view. When you create other
view descriptors, the SAS variable names are derived from the access descriptor.

� If you specify the YES value in the ASSIGN statement, you can use the RENAME
statement to change SAS variable names only while creating a specific access
descriptor. As described earlier in the ASSIGN statement, SAS variable names
that are saved in an access descriptor are always used when creating view
descriptors that are based on it.

Renamed SAS variable names only apply to the current access descriptor that is
being created. The default SAS variable names will be used for any subsequent
access descriptors that are created in the same ACCESS procedure execution.

The column-identifier argument can be either the DBMS column name or the positional
equivalent from the LIST statement, which is the number that represents the column’s
place in the descriptor. For example, to rename the SAS variable names that are
associated with the seventh column and the nine-character FIRSTNAME column in a
descriptor, submit the following statement:

ACCESS Procedure Reference 4 RESET 85

rename 7 birthdy firstname=fname;

The DBMS column name (or positional equivalent) is specified on the left side of the
expression, with the SAS variable name on the right side. The equal sign (=) is optional.
If the column name contains special characters or national characters, enclose the name
in quotes. You can rename as many columns as you want in one RENAME statement.

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS variable
associated with a DBMS column, you do not have to issue a SELECT statement for that
column.

RESET

Resets DBMS columns to their default settings.

Optional statement

Applies to: access descriptor or view descriptor

Interacts with: ASSIGN, CONTENT, DROP, FORMAT, INFORMAT, KEY, MVF,
RENAME, SELECT

Syntax

RESET <ALL | column-identifier-1 <... column-identifier-n>>;

Details

The RESET statement resets either the attributes of all the columns or the attributes of
the specified columns to their default values. The RESET statement can be used when
creating an access descriptor or a view descriptor. However, this statement has
different effects on access and view descriptors, as described below.

If you use an editing statement, such as RESET, it must follow the CREATE
statement and the database-description statements when you create a descriptor. See
“CREATE” on page 68 for more information on the order of statements.

Access descriptors

When you create an access descriptor, the default setting for a SAS variable name is a
blank. However, if you have previously entered or modified any of the SAS variable
names, the RESET statement resets the modified names to the default names that are
generated by the ACCESS procedure. How the default SAS variable names are set
depends on whether you included the ASSIGN statement. If you omitted ASSIGN or
set it to NO, the default names are blank. If you set ASSIGN=YES, the default names are
the first eight characters of each DBMS column name.

The current SAS variable format and informat are reset to the default SAS format
and informat, which was determined from the column’s data type. The current DB
content, occurrence range, and BY key are also reset to the default values. Any columns
that were previously dropped, that are specified in the RESET command, become
available; they can be selected in view descriptors that are based on this access
descriptor.

86 SECFILE 4 Chapter 5

View descriptors
When you create a view descriptor, the RESET statement clears any columns that were
included in the SELECT statement (that is, it "de-selects" the columns).

When creating the view descriptor, if you reset a SAS variable and then select it
again within the same procedure execution, the SAS variable name, format, informat,
database content, occurrence range, and BY key are reset to their default values, (the
SAS name is generated from the DBMS column name, and the format and informat
values are generated from the data type). This applies only if you have omitted the
ASSIGN statement or set the value to NO when you created the access descriptor on
which the view descriptor is based. If you specified ASSIGN=YES when you created the
access descriptor, the RESET statement has no effect on the view descriptor.

The RESET statement can take one of the following arguments:

ALL
for access descriptors, resets all the DBMS columns that have been defined to
their default names and format settings and reselects any dropped columns.

For view descriptors, ALL resets all the columns that have been selected, so
that no columns are selected for the view; you can then use the SELECT
statement to select new columns.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor. For example, to reset the third column, submit the following statement:

reset 3;

If the column name contains special characters or national characters, enclose
the name in quotes. You can reset as many columns as you want in one RESET
statement, or use the ALL option to reset all the columns.

SECFILE

Specifies parameters for the NATURAL SECURITY system file.

Optional statement
Applies to: access descriptor or view descriptor
Interacts with: SECURITY

Syntax
SECFILE (NUMBER | NUM = Natural-Security-file-number

PASSWORD | PW = Adabas-password
CIPHER|CC = Adabas-cipher-code
DBID = Adabas-database-identifier);

Details The SECFILE statement allows you to specify the ADABAS file number,
password, cipher code, and database identifier for the NATURAL SECURITY system
file.

If you specified SECURITY=YES in the access descriptor, you cannot change the
values for the password and the cipher code in the view descriptor based on this access
descriptor. However, if no values were specified in the parent access descriptor, then the

ACCESS Procedure Reference 4 SECURITY 87

values can be entered in the view descriptor, even when the SECURITY=YES
statement has been issued.

Note that you can associate a password, cipher code, and database identifier with an
ADABAS file number, system file, and security file.

Number
is the ADABAS file number of the NATURAL SECURITY system file. This file
contains the NATURAL SECURITY library identifier, user identifier, and
passwords.

Password
is an ADABAS password, which provides security protection at the file or
data-field level, or on the basis of a value at the logical-record level. The value is
written to the access descriptor in encrypted form.

Cipher Code
is an ADABAS cipher code, which is a numeric code for ciphering and deciphering
data into and from an ADABAS file. The value is written to the access descriptor
in encrypted form.

DBID
is the ADABAS database identifier (number) to be accessed. The database
identifier is a numerical value from 1 to 255 that is assigned to each ADABAS
database.

SECURITY

Controls the enforcement of security specifications.

Optional statement

Applies to: access descriptor

Interacts with: ADBFILE, SECFILE, SYSFILE

Default: NO

Syntax

SECURITY<=> YES | NO | Y | N;

Details

The SECURITY statement has the default value NO. Its value controls the enforcement
of security specifications when you later create view descriptors based on this access
descriptor.

With a value of NO, when you create view descriptors based on this access descriptor,
you will be able to modify specified values for ADABAS passwords and cipher codes.

With a value of YES, when you create view descriptors based on this access
descriptor, you will not be able to modify specified values forADABAS passwords and
cipher codes. However, any values that are not specified in the access descriptor can be
specified in a view descriptor or with a data set option.

88 SELECT 4 Chapter 5

SELECT

Selects DBMS columns for the view descriptor.

Required statement
Applies to: view descriptor
Interacts with: RESET

Syntax
SELECT ALL | column-identifier-1 <...column-identifier-n>;

Details
The SELECT statement specifies which DBMS columns in the access descriptor to
include in the view descriptor. This is a required statement and is used only when
defining view descriptors.

If you use an editing statement, such as SELECT, it must follow the CREATE
statement when you create a view descriptor. See “CREATE” on page 68 for more
information on the order of statements.

The SELECT statement can take one of the following arguments:

ALL
includes in the view descriptor all the columns that were defined in the access
descriptor excluding dropped columns.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor on which the view is based. For example, to select the first three
columns, submit the following statement:

select 1 2 3;

If the column name contains special characters or national characters, enclose
the name in quotes. You can select as many columns as you want in one SELECT
statement.

SELECT statements are cumulative within the same view creation. That is, if you
submit the following two SELECT statements, columns 1, 5, and 6 are selected, not just
columns 5 and 6:

select 1;
select 5 6;

To clear all your current selections when creating a view descriptor, use the RESET
ALL statement; you can then use another SELECT statement to select new columns.

SUBSET

Adds or modifies selection criteria for a view descriptor.

Optional statement

ACCESS Procedure Reference 4 SYSFILE 89

Applies to: view descriptor

Syntax
SUBSET <selection-criteria>;

Details
You use the SUBSET statement to specify selection criteria when you create a view
descriptor. This statement is optional; if you omit it, the view retrieves all the data
(that is, all the rows) in the DBMS table.

An editing statement, such as SUBSET, must follow the CREATE statement when
you create a view descriptor. See “CREATE” on page 68 for more information on the
order of statements.

The selection-criteria argument can be either a WHERE clause or a SORT clause.
For more information on the WHERE clause, see “WHERE Clause in a View
Descriptor” on page 92. For more information on the SORT clause, see “SORT Clause in
a View Descriptor” on page 97. You can use either SAS variable names or DBMS
column names, in your selection criteria. Specify your WHERE clause and SORT clause
by using separate SUBSET statements. For example, you can submit the following
SUBSET statements:

subset where jobcode = 1204;
subset sort lastname;

The SAS System does not check the SUBSET statement for errors. The statement is
verified and validated only when the view descriptor is used in a SAS program.

To delete the selection criteria, submit a SUBSET statement without any arguments.

SYSFILE

Specifies parameters for the system file containing DDMs.

Optional statement

Applies to: access descriptor or view descriptor
Interacts with: SECURITY

Syntax
SYSFILE (NUMBER | NUM = Adabas-system-file-number

PASSWORD | PW = Adabas-password
CIPHER|CC = Adabas-cipher-code
DBID = Adabas-database-identifier);

Details
The SYSFILE statement allows you to specify the ADABAS file number, password,
cipher code, and database identifier for the system file containing DDMs.

If you specified SECURITY=YES in the access descriptor, you cannot change the
values for the password and cipher code in the view descriptor. However, if no values

90 UPDATE 4 Chapter 5

were entered in the access descriptor, you can enter them in the view descriptor, even if
the SECURITY=YES statement has been issued.

Note that you can associate a password, cipher code, and database identifier with an
ADABAS file number, system file, and security file.

Number
is the ADABAS file number of the system file containing DDMs.

Password
is an ADABAS password, which provides security protection at the file or
data-field level, or on the basis of a value at the logical-record level. The value is
written to the access descriptor in encrypted form.

Cipher Code
is an ADABAS cipher code, which is a numeric code for ciphering and deciphering
data into and from an ADABAS file. The value is written to the access descriptor
in encrypted form.

DBID
is the ADABAS database identifier (number) to be accessed. The database
identifier is a numerical value from 1 to 255 that is assigned to each ADABAS
database.

UPDATE

Updates a SAS/ACCESS descriptor file.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
UPDATE libref.member-name.ACCESS | VIEW

<password-level=SAS-password>;

Details The UPDATE statement identifies an existing access descriptor or view
descriptor that you want to update. The descriptor can exist in either a temporary
(WORK) or permanent SAS data library. If the descriptor has been protected with a
SAS password that prohibits editing of the ACCESS or VIEW descriptor, then the
password must be specified on the UPDATE statement.

Note: It is recommended that you re-create (or overwrite) your descriptors rather
than update them. SAS does not validate updated descriptors. If you create an error
while updating a descriptor, you will not know of it until you use the descriptor in a
SAS procedure such as PROC PRINT. 4

To update a descriptor, use its three-level name. The first level identifies the libref of
the SAS data library where you stored the descriptor. The second level is the descriptor’s
name (member name). The third level is the type of SAS file: ACCESS or VIEW.

You can use the UPDATE statement as many times as necessary in one procedure
execution. That is, you can update multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can update access descriptors and view descriptors in
separate executions of the procedure.

ACCESS Procedure Reference 4 UPDATE 91

You can use the CREATE statement and the UPDATE statement in the same
procedure execution.

If you update only one descriptor in a procedure execution, the UPDATE and its
accompanying statements are checked for errors when you submit the procedure for
processing. If you update multiple descriptors in the same procedure execution, each
UPDATE statement (and its accompanying statements) is checked for errors as it is
processed. In either case, the UPDATE statement must be the first statement after the
PROC ACCESS statement (Note: The ACCDESC= parameter cannot be specified on the
PROC ACCESS statement).

When the RUN statement is processed, all descriptors are saved. If errors are found,
error messages are written to the SAS log, and processing is terminated. After you
correct the errors, resubmit your statements.

The following statements are not supported when using the UPDATE statement:
ASSIGN, RESET, SECURITY, SELECT, and MVF subcommands RESET and SELECT.

Note: You cannot create a view descriptor after you have updated a view descriptor
in the same procedure execution. You can create a view descriptor after updating or
creating an access descriptor or after creating a view descriptor. 4

The following example updates the access descriptor MYLIB.ORDER on the ADABAS
file ORDER. In this example, the column names are changed and formats are added.

proc access dbms=adabas;
update mylib.order.access;
rename ordernum ord_num

fabriccharges fabrics;
format firstorderdate date7.;
informat firstorderdate date7.;
content firstorderdate yymmdd6.;

run;

The following example updates an access descriptor ADLIB.EMPLOY on the
ADABAS file EMPLOYEE and then re-creates a view descriptor VLIB.EMP1204, which
was based on ADLIB.EMPLOY. The original access descriptor included all of the
columns in the file. Here, the salary and birthdate columns are dropped from the access
descriptor so that users cannot see this data. Because RESET is not supported when
UPDATE is used, the view descriptor VLIB.EMP1204 must be re-created in order to
omit the salary and birthdate columns.

proc access dbms=adabas;
/* update access descriptor */
update adlib.employ.access;
drop salary birthdate;
list all;

/* re-create view descriptor */
create vlib.emp1204.view;
select empid hiredate dept jobcode sex

lastname firstname middlename phone;
format empid 6.

hiredate date7.;
subset where jobcode=1204;

run;

The following example updates a view descriptor VLIB.BDAYS from the
ADLIB.EMPLOY access descriptor, which was created in a separate procedure
execution. In this example, the WHERE clause replaces the WHERE clause that was
specified in the original view descriptor.

92 WHERE Clause in a View Descriptor 4 Chapter 5

proc access dbms=adabas
update vlib.bdays.view;
subset;
subset where empid GT 212916;

run;

WHERE Clause in a View Descriptor
You can use a WHERE clause in a view descriptor to select specific ADABAS records.

View WHERE Clause Syntax
A view WHERE clause consists of the SUBSET and WHERE (or WH) keywords,

followed by one or more conditions that specify criteria for selecting records. A
condition has one of the following forms:

field-name<(occurrence)> operator value
field-name<(occurrence)> range-operator

low-value * high-value

The user-supplied elements of the WHERE clause conditions are described below:

field-name
is the ADABAS name of the data field or corresponding SAS variable name for
which you are specifying criteria. This data field must be selected in the view
descriptor. (The procedure will assume that any name in a condition is a SAS
name. If it is not, the procedure will treat it as an ADABAS name.) If the field’s
ADABAS name is not unique within a NATURAL DDM, you must specify its
external name.

A referenced data field must be an ADABAS descriptor field in the following
situations:

� The view WHERE clause contains more than one condition.
� The view WHERE clause uses the SPANS or NE operator.
� You are also specifying a view SORT clause.
� You are also planning to issue a SAS BY statement or a SAS ORDER BY

clause in a SAS program that references a view descriptor containing a view
WHERE clause.

� You are also planning to issue a SAS WHERE clause in a SAS program that
references a view descriptor containing a view WHERE clause.

(occurrence)
is a numeric value from 1 to 99 identifying the nth occurrence of a periodic group.
You must use parentheses around the number. This is an optional value. If you do
not specify an occurrence number, all occurrences are selected.

operator
can be one of the following comparison and logical operators:

= or EQ equal to

> or GT greater than

< or LT less than

!= or = or NE not equal to

ACCESS Procedure Reference 4 Specifying Values in Character Fields 93

≥ or GE or GTE greater than or equal to

≤ or LE or LTE less than or equal to

range-operator
can be one of the following operators:

= or EQ or
SPANS

within the range (inclusive)

value or high-value or low-value
is a valid value for the data field.

View WHERE Clause Examples
This section gives brief examples using the WHERE clause and explains what each

example does.

Specifying Conditions with the SPANS Operator
When comparing low and high values, the asterisk is required. For example, the

following WHERE clause selects those employees with employee numbers between 2300
and 2400:

subset where personnel-number spans 2300 * 2400

The following WHERE clause selects those employees with last names up through
Smith:

subset where name spans ’A’ * ’Smith’

Specifying Expressions
You can combine conditions to form expressions. Two conditions can be joined with

OR (|) or AND (&). Since expressions within parentheses are processed before those
outside, use parentheses to have the OR processed before the AND.

subset where cost = .50 & (type = ansi12 |
class = sorry)

The following WHERE clause selects all records where AVAIL is Y or W:

subset where avail eq y | avail eq w

The next WHERE clause selects all records where PART is 9846 and ON-HAND is
greater than 1,000:

subset where part = 9846 & on-hand > 1000

Specifying Values in Character Fields
For character fields, you can use quoted or unquoted strings. Any value entered

within quotes is left as is; all unquoted values are uppercased and redundant blanks
are removed. For example, the following clause extracts data for SMITH:

subset where lastname = Smith

The next example extracts data for Smith:

94 Specifying Numeric Format Values 4 Chapter 5

subset where lastname = ’Smith’

The next WHERE clause selects all records where CITY is TRUTH OR
CONSEQUENCES or STZIP is NM 87901. Notice in the first condition that quotes
prevent OR from being used as an operator. In the second condition, they prevent the
extra space between NM and 87901 from being removed.

subset where city = ’TRUTH OR CONSEQUENCES’ |
stzip = ’NM 87901’

The following example selects all records where SHOP is Joe’s Garage. Because the
value is enclosed in quotes, the two consecutive single quotes are treated as one.

subset where shop = ’Joe’’s Garage’

You can also use double quotes, for example,

subset where shop = "Joe’s Garage"

Specifying Numeric Format Values
For numeric values, use decimal or scientific notation. For example,

subset where horsepower = 2.5

Specifying Dates
Numeric values representing dates in an ADABAS file are not automatically

converted to SAS date values. They are simply treated as numbers. For example,
103098 is considered less than 113188.

However, the ACCESS procedure provides you the ability to specify a SAS date
format with the CONTENT statement. Then, numeric values are converted to SAS
dates. To reference them in a view WHERE clause, use informat representation
(without the ’D at the end as in the SAS System). See “CONTENT” on page 67 for more
information on specifying a SAS date format with the CONTENT statement.

Specifying Values in Superdescriptor Fields
A superdescriptor field is treated as if it has an alphanumeric (character) ADABAS

standard format unless all of the parent fields from which it is derived have a binary
(numeric) format.

When you enter a value for a numeric superdescriptor or an alphanumeric
superdescriptor where one or more of its parent fields have a numeric format, the value
must be in character hexadecimal format because many data types and from-to
specifications can be contained in one superdescriptor value. When you enter a value
for a character superdescriptor, the value must be entered as character data.

Note: By assigning a SAS format of HEXw. to superdescriptors that are derived
from one or more numeric fields in a view descriptor, you can see the internal
hexadecimal values. You can then use these values as a guide for entering like values
in the WHERE clause. 4

For example, the NATURAL DDM named CUSTOMERS has the character
superdescriptor field STATE-ZIPLAST2, which is defined as

’SP=ST(1,2),ZI(1,2)’

The two data fields that make up STATE-ZIPLAST2 are defined as

ACCESS Procedure Reference 4 Specifying Values in Subdescriptor Fields 95

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------
STATE ST A 2
ZIPCODE ZI U 5

If you want to select the value TX from the data field STATE and the value 78701 from
the data field ZIPCODE, the view WHERE clause would be as follows:

subset where state_zi = E3E7F0F1

The comparable SAS WHERE clause would be

where state_zi = ’E3E7F0F1’x

F0F1 is the hexadecimal internal representation of a positive zoned decimal value of
01. If ZIPCODE were defined as packed and the from-to specification were the same,
the hexadecimal representation 001F would represent the value 01. Similarly, 0001
would be the correct representation for either binary or fixed. A sign (+ or -) must also
be entered according to type and ADABAS requirements.

Suppose you want to access a character superdescriptor field named DEPT-PERSON,
which is defined as

’S2=DP(1,6),LN(1,18)’

The two data fields that make up DEPT-PERSON are defined as

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------

DEPT DP A 6
LASTNAME LN A 18

If you want to select the value TECH01 from the data field DEPT and the value BOYER
from the data field LASTNAME, the view WHERE clause would be as follows. (Note
that unquoted values in the view WHERE clause are uppercased.)

subset where dept-person = tech01boyer

A comparable SAS WHERE clause would be

where dept-person = ’TECH01BOYER’

Specifying Values in Subdescriptor Fields

Subdescriptors take the ADABAS type of their parent and the length of their from-to
specification. Unlike superdescriptors, subdescriptor values consist of only one data
type.

For example, the NATURAL DDM named CUSTOMERS has the numeric
subdescriptor field ZIPLAST, which is defined as

’SB=ZI(1,2)’

The data field that ZIPLAST is based on is defined as

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------
ZIPCODE ZI U 5

If you want to select the values 78701, 82701, and 48301, the view WHERE clause and
the SAS WHERE clause would be as follows.

View WHERE clause:

96 Specifying Values in Multiple-Value Fields 4 Chapter 5

subset where ziplast2 = 01

SAS WHERE clause:

where ziplast2 = 01

Now suppose you want to access a character subdescriptor field named DEPT-CODE,
which is defined as

’DC=DP(1,4)’

The data field that DEPT-CODE is based on is defined as

DDM Name ADABAS ID ADABAS TYPE LENGTH
-------- --------- ----------- ------

DEPT DP A 6

If you want to select the values TECH01, TECH04, and TECH23, the view WHERE clause
would be

subset where dept-code = tech

The comparable SAS WHERE clause would be

where dept-code = ’TECH’

Specifying Values in Multiple-Value Fields
If the field name refers to a multiple-value field, all values for the field are compared

with the value that you specify. For example, if CARD is a multiple-value field, the
following view WHERE clause selects all records where any one of the values of CARD
is VISA.

subset where card eq visa

Note that in a SAS WHERE clause, you cannot specify a value for a multiple-value
field; however, in a SAS WHERE clause, you can specify an occurrence, which you
cannot do in a view WHERE clause.

For more information and examples of using multiple-value fields in selection
criteria, see “Using Multiple-Value Fields in Selection Criteria” on page 127.

Specifying Values in Periodic Group Fields
If the field is in a periodic group, use field-name(occurrence) to identify the field in

the nth occurrence of the group. For example, the following WHERE clause selects all
records where PHONE is 234-9876 in the second occurrence of the periodic group
containing PHONE.

subset where phone(2) eq 234-9876

Note that the 2 after PHONE refers to the second occurrence of its parent periodic
group and not to the second occurrence of PHONE.

If you do not specify an occurrence number, all occurrences are checked. For
example, the following WHERE clause selects all records where PHONE is 234-9876 in
any occurrence of the periodic group containing PHONE.

subset where phone eq 234-9876

For more information and examples of using periodic group fields in selection
criteria, see “Using Multiple-Value Fields in Selection Criteria” on page 127.

ACCESS Procedure Reference 4 SORT Clause Examples 97

SORT Clause in a View Descriptor
When you define a view descriptor, you can also include a SORT clause to specify

data order. You can reference only the data fields selected for the view descriptor, and
the data fields must be descriptors; that is, they must have indexes. Without a SORT
clause or a SAS BY statement, the data order is determined by ADABAS.

A SAS BY statement automatically issues a SORT clause to ADABAS. If a view
descriptor already contains a SORT clause, the BY statement overrides the sort for that
program. An exception is when the SAS procedure includes the NOTSORTED option.
Then, the SAS BY statement is ignored, and the view descriptor SORT clause is used; a
message is written to the log when NOTSORTED causes a SAS BY statement to be
ignored.

View SORT Clause Syntax
The syntax for the SORT clause is

SUBSET SORT field-name <,field-name> <,field-name> <option>
The elements of the SORT clause are described below.

field-name
is the name of an ADABAS data field or its corresponding SAS variable name to
sort by. The data field must be an ADABAS descriptor; that is, it must be a key
data field. You can use the data field’s ADABAS field name or its DDM name.

You can specify up to three data fields; optionally, you can separate them with
commas. If you specify more than one field name, the values are ordered by the
first named field, then the second, and so on.

option
is one of the following, which applies to all specified field names. That is, you
cannot specify an option for one field name and a different option for another field
name.

<ASCENDING|ASCENDISN|DESCENDING>

ASCENDING
indicates the sort is to be in ascending order (low-to-high). For example, A, B, C, D
or 1, 2, 3 4. The default is ASCENDING.

ASCENDISN
indicates the sort is to be in ascending ISN (internal sequence number) order.
Each logical record in an ADABAS file has an assigned ISN for identification. If
you specify ASCENDISN, you cannot specify a data field name.

DESCENDING
indicates the sort is to be in descending order (high-to-low). For example, Z, Y, X,
W or 9, 8, 7 6.

SORT Clause Examples
The following SORT clause causes the ADABAS values to be presented in ascending

order. Based on the data fields included in the VLIB.USACUST view descriptor, the
logical records are presented first by the values in the data field CUSTOMER, then by
the values in data field ZIPCODE, and then by the values in the data field
FIRSTORDERDATE.

subset sort customer, zipcode, firstorderdate

98 Creating and Using View Descriptors Efficiently 4 Chapter 5

The following SORT clause causes logical records that are accessed by the
VLIB.CUSPHON view descriptor to be presented in descending order based on the
values in the NAME data field:

subset sort name descending

Creating and Using View Descriptors Efficiently
When creating and using view descriptors, follow these guidelines to minimize

ADABAS processing and your operating system resources and to reduce the time
ADABAS takes to access data.

� Specify selection criteria to subset the number of logical records ADABAS returns
to the SAS System.

� Write selection criteria that allow ADABAS to use inverted lists when possible.
This applies whether you specify the selection criteria as part of the view
descriptor or in a SAS program. This is especially important when accessing a
large ADABAS file.

When ADABAS cannot use an inverted list, it sequentially scans the entire file.
You cannot guarantee that ADABAS will use an inverted list to process a condition
on a descriptor data field, but you can write selection criteria that allow ADABAS
to use available inverted lists effectively.

� Select only the data fields your program needs. Selecting unnecessary data fields
adds extra processing time and requires more memory.

� Use a BY statement to specify the order in which logical records are presented to
the SAS System only if the SAS System needs the data in a particular order for
subsequent processing. You can use ADABAS descriptor data fields only.

As an alternative to using a BY statement, which consumes CPU time each
time you access the ADABAS file, you could use the SORT procedure with the
OUT= option to create a sorted SAS data file. In this case, the SAS System, not
ADABAS, does the sorting. This is a better approach for data that you want to use
many times.

� If a view descriptor describes a large amount of ADABAS data and you will use
the view descriptor often, it might be more efficient to extract the data and place
them in a SAS data file. See “Performance Considerations” on page 36 for more
information on when it is best to extract data.

� If you don’t need all occurrences of multiple-value fields, limit the number of
occurrences with the MVF statement.

� If you reference data fields in selection criteria that are not ADABAS descriptors,
it is generally more efficient to put those conditions in a SAS WHERE clause, not
in the view descriptor WHERE clause.

� To optimize WHERE clause processing, the ADABAS interface view engine uses
the ADABAS L3 command when possible. However, a number of restrictions must
be satisfied before the L3 command can be used. For these restrictions, see “How
the SAS/ACCESS Interface to ADABAS Works” on page 106.

ACCESS Procedure Formats and Informats
When you create SAS/ACCESS descriptor files from ADABAS data, the ACCESS

procedure converts data field types and lengths to default SAS System variable formats
and informats.

ACCESS Procedure Reference 4 ACCESS Procedure Formats and Informats 99

The following summary information will help you understand the data conversion.

� The ADABAS interface view engine uses ADABAS standard length and type for
reading and updating ADABAS data (except for variable-length fields and DB
Content overrides). NATURAL DDMs have no effect other than to use DDM
length and decimals to set SAS formats.

� Length and decimal points specified by DDMs might conflict with the ADABAS file
definition (for example, not big enough, too big, and so on). If so, the ADABAS
standard length is used to set default SAS formats.

� Packed, unpacked, and binary types can hold very large numeric data values. The
SAS System can maintain precision up to sixteen digits. Unpacked fields larger
than sixteen bytes are converted to the character hexadecimal type upon which no
numeric operations can occur. Therefore, precision is not a problem. For large
packed and binary fields, however, you must be aware that precision can be lost
when data values exceed sixteen digits.

� If the standard length is 0 (that is, if the data field has a variable length), the
ACCESS procedure chooses a default length.

� The default length for an alphanumeric is 20.

� The default length for a numeric is the maximum length before assuming a
character hexadecimal type. Packed is 15 bytes (29 digits and a sign),
unpacked is 16 bytes (16 digits and a sign), binary is 8 bytes, fixed is 4 bytes,
and float is 8 bytes.

� Superdescriptors and subfields are given an ADABAS type of character unless all
of the parent fields are numeric. Then, they are given an ADABAS type of binary.
Their length is calculated by totaling the number of bytes in the individual parent’s
from-to specification. If the length of a binary superdescriptor or subdescriptor is
greater than 8, the SAS format is changed from numeric to character hexadecimal.

� Subdescriptors and subfields take the type of their parent and the length of their
from-to specification.

� Phonetic descriptors are alphanumeric and use the length of the phonetic parent.
Any retrieval of a phonetic descriptor is actually retrieval of its parent.

� If ADABAS data fall outside the valid SAS data ranges, you will get an error
message in the SAS log when you try to read the data. For example, an ADABAS
date might not fall in the valid SAS date range.

The following table shows the default SAS System variable formats and informats
that the ACCESS procedure assigns to each ADABAS data type in an ADABAS file.

ADABAS Type Description
Standard Length in
Bytes SAS Format and Informat

A alphanumeric <=200 $ADBLEN.

>200 $200

B binary < = 4 (2 x ADBLEN) + 1

(unsigned) > 4 and < =8 (2 x ADBLEN).

> 8 and < =100 $HEX(2 x ADBLEN) .

> 100 $HEX200.

F fixed (signed) 8.

100 ACCESS Procedure Formats and Informats 4 Chapter 5

ADABAS Type Description
Standard Length in
Bytes SAS Format and Informat

G floating point (signed) BEST12.

P packed decimal
(signed)

(2 x ADBLEN + 1).

U unpacked decimal < = 16 (ADBLEN + 1).

(zoned decimal) > 16 $HEX(2 x ADBLEN).

(signed)

The following information applies to this table:
� ADBLEN = ADABAS standard length (in bytes). If the standard length equals 0,

then the interface view engine sets the length based on the data type, as follows:
A=20, B=8, F=4, G=8, P=15, and U=16.

� Binary data that are
� < = 4 bytes are treated as signed numbers
� < = 8 bytes and > 4 bytes are treated as positive (unsigned) numbers
� > 8 bytes are treated as character hexadecimal data.

� Numeric values greater than 16 displayable digits can lose precision.

The following table shows the default SAS System variable formats and informats
that the ACCESS procedure assigns to each ADABAS data type in a NATURAL DDM.

ADABAS
Type Description

Standard Length in
Bytes SAS Format and Informat

A alphanumeric < = 200 $DDMLEN.

> 200 $200.

B binary (unsigned) < = 4 (DDMLEN + DECPT + SIGNPT) .

> 4 and < = 8 (DDMLEN +DECPT) .

> 8 and < = 100 $HEX(2 x ADBLEN).

> 100 $HEX200.

F fixed (signed) (DDMLEN + DECPT + SIGNPT) .

G floating point
(signed)

BEST12.

P packed decimal
(signed)

(DDMLEN + DDMDEC + DECPT +
SIGNPT) . DDMDEC.

U unpacked decimal
(zoned decimal)
(signed)

< = 16 (DDMLEN + DDMDEC + DECPT +
SIGNPT) . DDMDEC.

> 16 $HEX(2 x ADBLEN).

The following information applies to this table:
� DDMLEN = DDM digits to the left of the decimal point.
� DDMDEC = DDM digits to the right of the decimal point.
� ADBLEN = ADABAS standard length in bytes. If the standard length equals 0,

then the interface view engine sets the length based on the data type, as follows:
A=20, B=8, F=4, G=8, P=15, and U=16.

� DECPT = 1 when DDM digits to the right of the decimal point are greater than 0.

ACCESS Procedure Reference 4 Effects of the SAS/ACCESS Interface on ADABAS Data 101

� DECPT = 0 when DDM digits to the right of decimal point are equal to 0.
� SIGNPT = 1 when numeric type is signed data (fixed, float, packed, unpacked, and

binary ≤4).
� SIGNPT = 0 when numeric type is unsigned data (binary > 4 and ≤ l8).
� Binary data that are

� ≤ 4 bytes are treated as signed numbers
� ≤ 8 bytes and > 4 bytes are treated as positive (unsigned) numbers
� > 8 bytes are treated as character hexadecimal data.

� Numeric values greater than 16 displayable digits can lose precision.

Effects of the SAS/ACCESS Interface on ADABAS Data
When you access ADABAS data through the SAS/ACCESS interface, the interface

view engine maps the ADABAS data into SAS observations.
� Multiple-value field occurrences are mapped to multiple SAS variables. For

example, if the ADABAS data have a multiple-value field named JOBTITLE with
two occurrences, the resulting SAS variables would be JOBTITL1 and JOBTITL2.

� Periodic group occurrences are mapped to multiple SAS observations. For example,
if the ADABAS data have a periodic group field named EDUCATION consisting of
data fields COLLEGE, DEGREE, and YEAR, there would be one observation for
COLLEGE, DEGREE, and YEAR for each periodic group occurrence.

When you create SAS/ACCESS descriptor files for ADABAS data, you need to be
aware of how some data fields are affected by the ACCESS procedure and how you can
use them as variables in SAS programs.

� When you create a SAS/ACCESS descriptor file for ADABAS data, the ACCESS
procedure automatically creates a SAS variable named ISN. This variable gives
you access to the ISNs (internal sequence numbers) for all the ADABAS logical
records.

� Selecting either a subdescriptor or a superdescriptor data field creates a SAS
variable for the data field. The variable can be retrieved and used in a WHERE
clause; however, the variable cannot be updated.

� Selecting a phonetic descriptor data field creates a SAS variable for that phonetic
descriptor. The values of the data field for which the phonetic descriptor is defined
are retrieved, and the phonetic descriptor can be used in a WHERE clause.
However, this variable cannot be updated.

If you use a variable for a phonetic descriptor in a SAS WHERE clause, the
interface view engine must be able to process the entire SAS WHERE clause.

� For a multiple-value data field, the ACCESS procedure creates SAS variables that
reference individual occurrences and a SAS variable that references all
occurrences to perform special WHERE clause queries. For example, in the
NATURAL DDM named CUSTOMERS, the BRANCH-OFFICE data field is a
multiple-value data field with four occurrences. The ACCESS procedure creates
SAS variables named BRANCH_1, BRANCH_2, and so on, and a SAS variable
named BR_ANY. For more information and examples, see “Using Multiple-Value
Fields in Selection Criteria” on page 127.

� For a periodic group data field, the ACCESS procedure creates a SAS variable for
the occurrence number within the periodic group. For example, in the NATURAL
DDM named CUSTOMERS, the SIGNATURE-LIST data field is a periodic group
for data fields LIMIT and SIGNATURE. PROC ACCESS creates a SAS variable
named SL_OCCUR for the occurrence numbers. For more information and
examples, see “Using Periodic Group Fields in Selection Criteria” on page 129.

102 Effects of the SAS/ACCESS Interface on ADABAS Data 4 Chapter 5

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Interface to ADABAS Software: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS/ACCESS® Interface to ADABAS Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–546–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

