
21

C H A P T E R

3
SAS/AF Catalog Entry Types

Overview 22
CBT Entries 22

CBT Entry Displays 23

Scrolling Controls 23

Query Frames 24

Frame Indicator Syntax 25
Frame Indicator Options 25

Feedback Indicator Syntax 28

Feedback Indicator Options 28

CBT Entry General Attributes 29

CBT Entry Child Attribute 30

CLASS Entries 30
FRAME Entries 31

HELP Entries 32

INTRFACE Entries 32

LIST Entries 33

MENU Entries 34
MENU Entry Displays 34

MENU Entry General Attributes 34

MENU Entry Selection Attributes 34

PROGRAM Entries 35

PROGRAM Entry Displays 36
Fields 36

Choice Groups 36

Selection Lists 37

Extended Tables 37

PROGRAM Entry General Attributes 37

PROGRAM Entry Field Attributes 37
Field Types 42

PROGRAM Entry SCL Programs 45

RANGE Entries 46

RESOURCE Entries 47

SCL Entries 48
Calling SCL Entries from Other SAS/AF Programs 49

Using CALL DISPLAY to Execute SCL Entries 49

Using CALL METHOD to Execute SCL Routines 49

General Attributes for Application Windows 50

22 Overview 4 Chapter 3

Overview
You can use the BUILD procedure in SAS/AF software to create and edit the

following types of catalog entries. Other types of entries (for example, SLIST entries
containing SCL lists or PMENU entries containing menu definitions) can appear in the
catalog along with these entry types, but you cannot edit other types with the BUILD
procedure.

Entry Type Purpose

CBT Provides sequences of text and responses to user input for tutorials or
computer-based training courses. You can also build Help facilities with
CBT entries.

CLASS Stores class definitions for FRAME objects, including the attributes,
methods, events, event handlers, and interfaces that are used within a
class. See also the RESOURCE entry type.

EDPARMS Stores default colors, highlighting attributes, and general editing
specifications for the SAS text editor that is used to build the displays for
CBT, HELP, MENU, and PROGRAM entries.

FORM Stores printing device, paper, destination, and special print control
information. The form information is used when output is routed to a
printer.

FRAME Stores graphical user interfaces for object-oriented applications.

HELP Provides assistance and instructions for users.

INTRFACE Stores method definitions that determine whether and how model/view
FRAME components can communicate.

KEYS Associates commands with function keys.

LIST Stores lists of values that are used to validate user input to fields in
PROGRAM entries.

MENU Provides menus of options that users can select to run other entries.

PROGRAM Stores the display, field attributes, and the SAS Component Language
program code for character-based applications.

RANGE Stores range definitions that control traffic lighting in FRAME entry
objects.

RESOURCE Stores a collection of classes for FRAME applications.

SCL Stores a SAS Component Language (SCL) program and its compiled code,
but does not include a DISPLAY window.

The EDPARMS, FORM, and KEYS entries are catalog entry types that the BUILD
procedure opens as a convenience for application developers. Refer to base SAS
documentation for information about the EDPARMS, FORM, and KEYS entries. The
remaining SAS/AF entry types are discussed in the following sections.

CBT Entries
CBT entries store interactive user assistance or tutorial applications, which consist of

SAS/AF Catalog Entry Types 4 CBT Entry Displays 23

� a display that provides information and questions to users and which accepts user
responses

� general attributes that control the appearance and behavior of the window in
which the CBT entry executes

� a child attribute that specifies another entry to which control can be passed when
users reach the last frame in the CBT entry.

The following sections describe each of these components of a CBT entry.

CBT Entry Displays
You use the BUILD procedure’s DISPLAY window to design the displays for CBT

entries. The displays can use any of the text color features and highlighting features
that the SAS text editor supports. In addition to static text, the display can include
fields in which users can enter or select answers to questions, as well as graphics.

The display for a CBT entry is divided into a sequence of frames. Frame boundaries
in the display are indicated with either a frame indicator line or a divider line that
consists of dash (-) characters across the full width of the DISPLAY window. (You can
use the FILL command in the DISPLAY window to create divider lines.) Refer to “Frame
Indicator Syntax” on page 25 for information about the syntax of frame indicator lines.

In addition to presenting information to users, frames in CBT entries can pose both
fill-in-the-blank and multiple-choice questions. Refer to “Query Frames” on page 24 for
details about creating frames that present questions. If the frame contains a question
for users, it must begin with a frame indicator line, and it must include one or more
feedback indicator lines that determine how the entry responds to user input. Refer to
“Feedback Indicator Syntax” on page 28 for information about the syntax of feedback
indicator lines.

If a frame does not present a question, users can press ENTER to advance to the
next frame in the sequence. If the frame presents a question, users must either attempt
to answer the question or use the FORWARD command to skip the question. Users can
issue the BACKWARD command to scroll back to previous frames in the sequence.
When a user issues an END command to close the CBT entry, the current entry name is
stored as the AF checkpoint (unless the CHECKLAST=NO option was specified in the
AF command that started the application). Users can issue the SAVE command to save
the current frame number and end the current SAS session. When the user opens the
CBT entry again, it resumes at the frame that was displayed when the SAVE command
was issued.

You can define frames that branch unconditionally to other SAS/AF catalog entries.
To define a frame that jumps to another entry, use a divider line to begin the frame, and
enter three uppercase P characters in the first three columns of the next line. Follow
the PPP with the name of the entry to open.

Scrolling Controls
If you design a frame that has more lines than the current window size, only the

number of lines that fit in the window are initially displayed. Users must issue a
FORWARD command to display the remaining lines of the frame. You can designate a
portion of the frame that does not scroll. Enter three caret (^) or NOT () characters in
the first three columns of a line to delineate the nonscrolling region of the frame. Any
text and fields above the line that contains the ^^^ or remain visible as long as the
current frame is displayed; FORWARD and BACKWARD commands scroll only the
region below the nonscrolling area.

You can define pause indicators in the display to delay the presentation of portions of
the text. Enter three at (@) characters in the first three columns of a line to define a

24 CBT Entry Displays 4 Chapter 3

pause. Only the text between the beginning of the frame and the first pause indicator
(@@@) appears when the frame is initially displayed. When the user presses ENTER, the
text from the current pause indicator up to the next pause indicator (or up to the end of
the frame, if there are no more pause indicators) is added to the frame, and so on.

You can use the LOCK option in the frame indicator to segment frames. A frame
indicator line with the LOCK option ends a sequence of frames. Users cannot press the
ENTER key or issue FORWARD or BACKWARD commands to move into or out of a
locked frame. Locked frames are displayed only when they are specifically called, such
as in a branch from a feedback item in another frame.

Query Frames
CBT entries can pose either fill-in-the-blank or multiple-choice questions. If a frame

poses a question, the user cannot press the ENTER key to move to the next frame
without attempting to answer the question. However, the FORWARD command can be
used to skip the question, unless the field is locked.

You designate the response field for a fill-in-the-blank question with an initial
ampersand (&), followed by underscore (_) characters to pad the field to the length
required to hold the largest answer value. A response field can be as short as a single &
or as long as the width of a display line. The ampersand and pad characters do not
appear when the frame is displayed to the user.

Use the CORRECT= option in the frame indicator to specify the correct answer to the
fill-in-the-blank question. You can use feedback indicators to define the entry’s response
to correct or incorrect answers. The feedback indicators can either display messages or
branch to other frames or entries.

Designate the response fields for multiple-choice questions with underscore (_)
characters. The underscore for each response field should be preceded and followed by a
space. You can use up to eight multiple-choice response fields in a frame. When the
frame is displayed to users, they can use the TAB key to move the cursor from field to
field, and they can either press ENTER or click the mouse to select the desired field.

Each multiple-choice response field should have a corresponding feedback indicator
that specifies the entry’s response to the selection. The feedback indicators can either
display messages or branch to other frames or entries. Use the C option in the feedback
indicator to indicate which responses are considered correct.

You can collect information about the user’s responses to the questions in the CBT
entry. The response statistics are stored in a SAS data set. Refer to the descriptions of
the QUIZ= and QUIZ options in “Frame Indicator Options” on page 25 for details.

The AF task creates the following macro variables when a CBT entry is executed:

� &_NQSEEN, which stores the number of questions presented to the user

� &_NQRIGHT, which stores the number of questions that the user answered
correctly.

You can use these macro variables in other SAS programs after the CBT entry ends.
In addition to response fields, you can define the following other methods for

enabling users to interact with the frames in a CBT entry:

� You can use the SELECT= option in feedback indicator lines to create selection
boxes, which are areas of the display in which users can either press ENTER or
click the mouse to select the corresponding feedback item.

� You can use the MENU= option in feedback indicator lines to define values that
users can enter on the application window’s command line to select the
corresponding feedback item.

The feedback items for selection boxes and menu choices can either display a message
or branch to a specified frame or entry.

SAS/AF Catalog Entry Types 4 CBT Entry Displays 25

Frame Indicator Syntax
The general form of a frame indicator is

? <* | n> <options>

where options can be one or more of the following:

AUTO | AUTO=n | NOAUTO

CORRECT=answer-value | ’answer-string’ | ?

GRAPH=<(left-col, right-col, top-row, bottom-row)> libref.catalog-name.graphic-entry
</ERASE>

LOCK

NAME=frame-name

QUIZ

QUIZ=< libref.>response-data-set

SOUND | MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1 <...
note-n duration-n>

WRONG=<libref.catalog-name.>entry-name.entry-type

Use the slash character (/) to continue a frame indicator across multiple lines of the
display. For example, the following lines comprise a single frame indicator:

?2 name=mean /
correct=42 /
wrong=review.cbt

Frame Indicator Options
You can use the following options in frame indicators:

*
indicates that the remainder of the line is a comment.

n
specifies how many attempts the user is given to provide the correct answer to the
question in the frame. The value for n must be in the range 1 to 8, and it must
appear in column 2 of the feedback indicator line.

If you omit the n option, feedback indicator lines in the frame are ignored, so the
value of n should always be at least 1 if the frame includes feedback indicator lines.

If the user fails to enter or select the correct answer to the question within the
allotted number of attempts, then by default the correct answer is displayed, and
the user is prompted to press ENTER to continue. However, if the frame indicator
includes the WRONG= option, then control passes to the specified entry.

AUTO
AUTO=n
NOAUTO

specify the beginning or end of a sequence of frames that are displayed without
waiting for user input. Use the AUTO option to display frames as fast as the
display device allows. Use AUTO=n to specify the rate at which frames are
displayed, where n is the number of frames per second to display.

By default, frames from the current sequence are displayed until a query frame
is encountered or until the last frame of the sequence is displayed. Use the
NOAUTO option to stop the automatic display before the last frame is reached.

26 CBT Entry Displays 4 Chapter 3

CORRECT=answer-value | ’answer-string’ | ?
specifies the correct answer when the frame includes a fill-in-the-blank question.
The answer can be up to 32 characters long. Enclose the answer string in single or
double quotes if it contains embedded blanks.

If you specify CORRECT=?, then any answer that a user enters in the response
field is considered correct.

GRAPH=<(left-col, right-col, top-row, bottom-row)> libref.catalog-name.graph-entry
</ERASE>

specifies a graph to be displayed in the frame. The graph must be a catalog entry
of type GRSEG created with SAS/GRAPH software. You must specify the
libref.catalog-name portion of the entry name, even if the entry resides in the
same catalog as the CBT entry.

Note: In order for users to see the graph when the CBT entry runs in the
application window, SAS/GRAPH software must be licensed at their site, and their
display devices must support SAS/GRAPH output. 4

By default, the graph is displayed starting on the second row of the display area
to leave room for a line of text above. The display must contain enough blank lines
so that the graph does not overlay any text. You can specify left and right column
values and top and bottom row values to control the position of the graph within
the display. The position values must be enclosed in parentheses. The following
rules apply:

� the left-col value must be greater than 1 and less than the number of columns
in the display. (Column 1 is reserved for frame and feedback indicators.)

� the right-col value must be greater than 2 and less than the number of
columns in the display.

� the top-row value can be 1 or greater, but it must be less than the number of
rows in the display minus 2.

� the bottom-row value must be greater than 1 and equal to or less than the
number of rows in the display minus 2.

By default, any new graph that you display overlays any previous graph. Add
the /ERASE option to erase any previous graphs before displaying the current
graph. To erase the previous graph without displaying a new graph, specify the
following:

graph=erase.erase.erase/erase

LOCK
specifies a frame that is not part of a sequence. Users cannot use the ENTER key
or the FORWARD and BACKWARD commands to scroll into or out of locked
frames. Locked frames are displayed only when they are explicitly called, such as
when they are the target of a branch in a feedback indicator. To exit from a locked
frame, a user must either answer a question that branches to a different frame or
issue an END command. The END command returns to the CBT frame that called
the locked frame.

NAME=frame-name
specifies a name for the frame that can be used instead of the frame number when
another frame branches to the frame. Using frame names for branch targets is
preferable to using frame numbers because a frame’s number can change as
frames are added or removed.

QUIZ
specifies that information about the user’s responses to the question in the current
frame is recorded in the SAS data set specified in the QUIZ= option.

SAS/AF Catalog Entry Types 4 CBT Entry Displays 27

QUIZ=<libref.>response-data-set
specifies the name of a SAS data set that is used to record information about the
user’s responses to questions in the frames of the CBT entry. If you omit the libref
portion of the data set name, the data set is created in the default WORK library.

Note: Use the QUIZ= option in the first frame for which you wish to collect
response data, and use the QUIZ option in subsequent frames. 4

The tracking data set contains the following variables:

LIBREF is the libref that contains the catalog where the CBT entry
resides.

CATNAME is the name of the catalog that contains the CBT entry.

OBJNAME is the name of the CBT entry (or XTESTAFX, if you are testing
the entry with the TESTAF command).

FRAME is the frame number for which response data was recorded.

MATRICES is the number of attempts that the user is allotted to answer
the question.

TRIES is the number of attempts that the user actually used.

Note: The number of attempts is not incremented if the
frame does not specify a correct answer for the question. 4

SCORE is a number that represents the user’s success in answering the
question in the frame, as follows:

-1 indicates that the user exhausted all
allotted attempts and failed to answer the
question correctly.

0 indicates that the user answered the
question incorrectly and did not use all the
allotted attempts before requesting the
correct response.

1 indicates that the user gave the correct
response.

2 indicates that the user skipped the frame.

SOUND=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>
MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>

specifies one or more tones or notes that are played when the frame is displayed,
provided the user’s display device supports sounds.

You can use either of the following formats to specify the sounds to play:
� frequency-duration pairs, where freq is the frequency of the tone in cycles per

second and duration is the duration of the tone in units of 1/100ths of a
second.

� note-duration pairs, where note is a note specification and duration is the
duration of the note in units of 1/100ths of a second. A note specification
consists of the note name from the musical scale (A, B, C, D, E, F, or G) and
an octave designation (0-7, corresponding to the octaves on a piano keyboard,
starting at the bass end). You can also add a # to raise the note by a half tone
or a lowercase b to lower the note by a half tone. For example, E6b specifies
an E flat in octave 6.

28 CBT Entry Displays 4 Chapter 3

For a rest (silence), specify either 0 for the frequency or Z for the note name.

Note: Users can use the SOUND command in the application window to turn
sounds on or off. 4

WRONG=<libref.catalog-name.>entry-name.entry-type
specifies an entry that is displayed when the user fails to give the correct response
in the allotted number of attempts.

Feedback Indicator Syntax
The general form of a feedback indicator is

#<n<C>> <branch> <options>

where options can be one or more of the following:

FRAME=frame-number | frame-name

HELP=<libref.catalog-name.>entry-name.entry-type

MENU=value

SELECT=(left-col, right-col, top-row, bottom-row)

SOUND | MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1 <...
note-n duration-n>

Use the slash character (/) to continue a feedback indicator across multiple lines of
the display. For example, the following lines comprise a single feedback indicator:

#1 >< fruit.cbt frame=app /
select=(10,14,3,3) /
menu=apple

If you do not use the branch option in the feedback indicator, you can follow the
feedback indicator with one or more lines of text. The lines of text that follow the
feedback indicator are displayed when users select the corresponding response field or
selection box. If the indicator designates a correct response, the first line of text after
the indicator is considered the congratulatory message, and the remaining lines are
considered the explanatory message. Both are displayed when a user enters a correct
response, but only the explanatory lines are displayed if the user fails to give the
correct response in the allotted number of attempts or when the user asks to see the
correct response without giving the correct response.

Feedback Indicator Options
You can use the following options in feedback indicators:

n
specifies the sequence number of the feedback item. This value must appear in
column 2 of the feedback indicator line.

If the frame includes a fill-in-the-blank question, then use the value 1 to provide
feedback on user responses to the question. If the frame includes a multiple-choice
question, the value of n should correspond to the order of the choice field (1 for the
first choice, 2 for the second choice, and so on). For feedback indicators that are
not associated with response fields (for example, when the SELECT= or MENU=
options are used), the value of n is not significant.

C
designates a correct response. For multiple-choice questions, you can designate
more than one correct response.

SAS/AF Catalog Entry Types 4 CBT Entry General Attributes 29

branch
specifies that the corresponding feedback response branches to another entry
rather than displaying feedback text. Use one of the following forms for the
branch specification:

> <libref.catalog-name.>entry-name.entry-type
branches to the specified entry and stores the current frame number as the
CBT checkpoint. The current frame is displayed the next time the CBT entry
is opened.

>> <libref.catalog-name.>entry-name.entry-type
branches to the specified entry but does not store a CBT checkpoint. The first
frame is displayed the next time the CBT entry is opened.

>< <libref.catalog-name.>entry-name.entry-type
branches to the specified entry and returns to the branching frame when the
target entry is closed.

FRAME=frame-number | frame-name
specifies the frame number or frame name to display when the target of the
branch option or the entry specified in the HELP= option is a CBT entry.

HELP=<libref.catalog-name.>entry-name.entry-type
specifies an entry to open when a user issues the HELP command while the cursor
is positioned on the corresponding response field or selection box.

Note: If you do not specify the HELP= option, the HELP command opens the
entry specified in the Help general attribute for the CBT entry. 4

MENU=value
specifies a value that users can enter on the application window’s command line to
select the corresponding feedback response.

SELECT=(left-col, right-col, top-row, bottom-row)
specifies the coordinates of a rectangular region that comprises the selection box
for the feedback item. The selection box is highlighted when a user moves the
cursor into that region of the display, If a user presses the ENTER key or clicks
the mouse while the cursor is within the selection box, the corresponding feedback
item is selected. Users can press the TAB key to move between the selection boxes
in the current frame.

Selection boxes should be separated by at least one space.

SOUND=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>
MUSIC=freq-1 duration-1 <... freq-n duration-n> | note-1 duration-1
<... note-n duration-n>

specifies tones or notes that play when the feedback item is selected, provided the
user’s display device supports sound. Refer to the description of the SOUND=
option for frame indicators in “Frame Indicator Options” on page 25 for details
about the argument values.

CBT Entry General Attributes
CBT entries also store attributes for the application window in which the entries are

displayed to users. See “General Attributes for Application Windows” on page 50 for
details about the general attributes you can specify for the application window.

30 CBT Entry Child Attribute 4 Chapter 3

CBT Entry Child Attribute
CBT entries can store a child attribute that specifies the name of another SAS/AF

entry that opens if users press ENTER from the last frame of the CBT entry. You
specify the child attribute in the ATTR window for the CBT entry. Use the ATTR
command in the BUILD procedure’s DISPLAY window to open the ATTR window.

Note: The child entry is opened only when a user presses the ENTER key while the
final frame of the CBT entry is displayed. Use the Parent general attribute to specify
an entry to open when users end some other CBT entry. 4

The child attribute consists of the four-level name of the entry to open. If the target
entry is in the same catalog as the CBT entry, you only need to specify the name and
type of the target entry. If the target entry is stored in a different catalog or in a
catalog in a different library, then you must also specify the libref and catalog for the
target entry.

CLASS Entries
CLASS entries (also referred to simply as classes) store the definitions of components

that can be used to build FRAME entries. You use the BUILD procedure’s Class Editor
window to edit the component definitions in CLASS entries.

Note: Changing the properties of a class changes the properties of all instances of
the class and of any subclasses that are derived from the class. 4

The class definition in a CLASS entry consists of the following elements:

Description
is a description for the CLASS entry that is also used as the name for the class
when it appears in the Components window for use in building FRAME entries.

Parent Class
specifies the four-level name of the CLASS entry from which the current class
inherits its attributes, methods, events, event handlers, and interfaces. Once you
specify the parent class for a new class, you cannot change it.

Meta Class
specifies the optional four-level name of a CLASS entry of which the current class
is an instance. The metaclass enables you to collect information about and modify
the behavior of the current class at run time. The metaclass also enables the
current class to obtain information about parent classes and child classes.

By default, all classes are instances of the Class metaclass. See the description
of the Class class in SAS/AF Software: Class Dictionary for more information
about the methods that the default metaclass provides.

Class Properties
define the appearance and behavior of the class. In the SAS Component Object
Model (SCOM), classes have the following properties:

Attributes define characteristics of the component, such as its name,
description, color, label, or size. Each attribute specification
consists of a list of metadata that includes the attribute name,
value, type, scope, description, and other items that enable
functionality.

Methods define the operations that can be executed by any component
you create from the class. Each method specification consists of

SAS/AF Catalog Entry Types 4 FRAME Entries 31

a list of metadata that includes the method name, signature,
description, and the name and label of the entry that contains
the method implementation. A method’s signature is comprised
of the method’s arguments and their types and order; it
uniquely identifies the method to the SCL compiler.

Note: The code that implements the method is not stored in
the CLASS entry itself, but rather in an entry specified in the
metadata. The implementation typically consists of a labeled
CLASS, USECLASS, or METHOD section in an SCL entry. 4

Events alert applications when there is a change of state, such as
when the user clicks the mouse button on a component that
was created from the class. Each event specification consists of
a list of metadata that includes the event name, description,
and items that determine whether the event is enabled and
how it is sent.

Event handlers specify which methods are executed after events occur. Each
event handler specification consists of an list of metadata that
includes the name of the event that is handled, the name of the
object that generates the event, the name of the method to
execute in response to the event, and a description.

Interfaces enable components that you create from the class to indirectly
call methods in another component. Each interface
specification includes the name of the INTRFACE entry that
contains the interface definition. Refer to “INTRFACE Entries”
on page 32 for more information.

Refer to SAS/AF Software: Class Dictionary for details about the attributes,
methods, events, event handlers, and interfaces of the classes that are provided
with SAS/AF software.

You can use RESOURCE entries to collect individual classes into libraries. Doing
this simplifies the maintenance and deployment of the classes. See “RESOURCE
Entries” on page 47 for more information.

For an introduction to using classes and creating your own CLASS entries, refer to
SAS Guide to Applications Development.

FRAME Entries
FRAME entries store Frame objects plus all the visual objects (or controls) and

nonvisual objects (or models) that comprise a FRAME application. You use the BUILD
procedure’s DISPLAY window to create and edit FRAME entries.

Frame objects are instances of the Frame class. The Frame class is the foundation of
SAS/AF applications that have graphical user interfaces. The Frame class provides
windowing capabilities and serves as a container to which you add visual controls and
nonvisual components to create a user interface.

The Frame class (and any subclass of it that you create) provides the properties of
the window in which your applications run. You specify the frame properties in the
Properties window for the FRAME entry. Use the PW command in the DISPLAY
window to open the Properties window. For more information about the properties of
the Frame class, refer to SAS/AF Software: Class Dictionary.

You use the associated Components window to select objects to place in the frame.
The FRAME entry can include multiple instances of the same class, and each instance

32 HELP Entries 4 Chapter 3

has its own properties. You use the Properties window to edit the properties of the
objects that you add to the frame. For more information about the properties of the
classes of objects that you can add to FRAME entries, refer to SAS/AF Software: Class
Dictionary.

Note the distinction between editing the properties of a class in the Class Editor
window and editing the properties of an object in the Properties window for a FRAME
entry: Editing the properties of a class changes all instances of the class, whereas
editing the properties of an object in the FRAME entry changes only the particular
instance of the object.

Whenever you create a new FRAME entry, a RESOURCE entry is associated with
the FRAME entry. By default, the standard RESOURCE entry that is provided with
SAS/AF software (SASHELP.FSP.AFCOMPONENTS.RESOURCE) is used. You can use
the RESOURCE= option with the PROC BUILD statement or BUILD command to
specify a different initial resource. Once the FRAME entry is created, the associated
resource cannot be changed. The specified RESOURCE entry must be available any
time you open the FRAME entry in the BUILD environment or execute the entry in the
application window.

If the associated resource has an active Frame class, then the new Frame object in
the FRAME entry is an instance of that class. If the associated resource has no active
Frame class, the default Frame class (SASHELP.FSP.FRAME.CLASS) is used.

For an introduction to building applications with FRAME entries, refer to SAS Guide
to Applications Development.

HELP Entries

HELP entries store a single frame of text that can be displayed to provide instructions
or other assistance to users of your application. You use the BUILD procedure’s
DISPLAY window to design the displays for HELP entries. The display can use any of
the text color features and highlighting features that the SAS text editor supports.

HELP entries can also be used as selection lists for PROGRAM entries. See the
discussion of the List attribute for PROGRAM entries in “PROGRAM Entry Field
Attributes” on page 37 for details.

HELP entries also store attributes for the application window in which the entries
are displayed to users. See “General Attributes for Application Windows” on page 50 for
details about the attributes you can specify for the application window.

INTRFACE Entries

INTRFACE entries (also referred to simply as interfaces) store abstract method
definitions, which define shared methods that FRAME components can use to
communicate with each other. You use the BUILD procedure’s Interface Editor window
to create, edit, or remove method definitions in INTRFACE entries.

Method definitions in INTRFACE entries consist of the method name and, optionally,
the method signature. The method signature specifies the name, order, type, and
description of the method’s arguments. The code that implements the methods is not
stored in the INTRFACE entry. Rather, a class that uses the methods defined in the
interface to communicate with another class indirectly calls the corresponding methods
in the other class.

For an introduction to using interfaces to implement model/view communications,
refer to SAS Guide to Applications Development.

SAS/AF Catalog Entry Types 4 LIST Entries 33

LIST Entries
LIST entries store lists of values that are used in conjunction with PROGRAM

entries to validate field values and to provide selection lists.
You can specify the following attributes for the list. You use the BUILD procedure’s

LISTATTR window to set list attributes.

Type
specifies one of the following types for the values in the list:

CHAR indicates that the list contains character values. (This is the
default.)

NUM indicates that the list contains numeric values.

The list type should match the type of the PROGRAM entry field that the list is
used to validate.

Note: You cannot change the list type once the list is saved. 4

Length
specifies the length of items in the list. Valid values are 1 to 80.

Note: You cannot change the item length once the list is saved. 4

Fileref
specifies a fileref that is associated with a file that is used to populate the list. The
fileref must have previously been defined in the SAS session. Each value that is
read from the file is appended to the list. The file can contain more than one value
per record or line as long as the values are separated by one or more spaces.
Values that are longer than the specified item length are truncated.

Note: The fileref is not stored in the LIST entry. The Fileref attribute is blank
each time the LISTATTR window opens. 4

Pad
specifies which pad character to use for fields in the LISTVALUES window. The
default is the underscore (_) character.

Format
specifies which format to use for values in the LISTVALUES window and when
values from the list are displayed in selection lists.

Just
specifies how values are aligned in the fields in the LISTVALUES window. The
choices are LEFT (default), RIGHT, CENTER, and NONE.

Informat
specifies the informat that must be used when values are entered in the
LISTVALUES window.

Options
specify one or more of the following characteristics of the list:

SORT
specifies that the values in the list are sorted in ascending order when the
entry is saved. This option is selected by default. Deselect the SORT option if
you want to store list values in the order in which they are entered.

CAPS
specifies that character values in the list are converted to uppercase. This
option is selected by default. Deselect the CAPS option if you want to store
mixed-case values in the list.

34 MENU Entries 4 Chapter 3

CASE-INSENSITIVE
specifies that the case of character values is ignored when values from the list
are used to validate field values. For example, if this option is selected, then
the value RED in the list matches the value red in the PROGRAM entry field
that is being validated. If this option is not selected, the values do not match.

Error msg
specifies the message that is displayed when no value in the list matches the value
in the PROGRAM entry field that is being validated.

You can use the special indicator %s to include the field value in the message, as
in the following example:

The value %s is not valid for this field.

You use the BUILD procedure’s LISTVALUES window to enter or edit values in the
list. The LISTVALUES window opens automatically when you close the LISTATTR
window.

MENU Entries
Menu entries store menu definitions that consist of
� a display that provides instructions to users and accepts user options

� general attributes that control the appearance and behavior of the window in
which the MENU entry executes

� selection attributes that define which other SAS/AF entries are opened in response
to the options that users specify.

The following sections describe each of these components of a MENU entry.

MENU Entry Displays
Each MENU entry stores a single frame of text that can provide instructions to users

about the options that are available in the menu. You use the BUILD procedure’s
DISPLAY window to design the displays for MENU entries. The text can use any of the
color and highlighting features that the SAS text editor supports.

Users select menu options by entering designated option values on the application
window’s command line. Menus can be linked so that users can access choices on
submenus from the command line of the main menu. Refer to the description of the
Menu-Link attribute in “MENU Entry Selection Attributes” on page 34 for details.

MENU Entry General Attributes
MENU entries also store general attributes for the application window in which the

entries are displayed to users. See “General Attributes for Application Windows” on
page 50 for details about the attributes you can specify for the application window.

MENU Entry Selection Attributes
MENU entries support the following attributes for each menu option. You specify

these attributes in the ATTR window for the MENU entry. Use the ATTR command in
the BUILD procedure’s DISPLAY window to open the ATTR window.

SAS/AF Catalog Entry Types 4 PROGRAM Entries 35

Option specifies the selection value that users issue in the application
window’s command line to invoke the option. The selection value

� can be from one to eight characters long
� can consist of a combination of letters, numbers, and

underscores
� must not be a command that is valid in the application window.

See Chapter 5, “AF Window Commands,” on page 65 for a list
of commands that the AF window provides. Remember that
SAS windowing environment global commands are also valid in
the AF window in which MENU entries are displayed. Refer to
base SAS documentation for more information on windows
environment global commands.

Name specifies the name of the catalog entry that the option invokes.

Type specifies the type of the catalog entry that the option invokes (CBT,
FRAME, HELP, MENU, PROGRAM or SCL).

Note: For CBT entries, you can append a frame number to open
the entry at a specified frame. For example, use CBT5 to open frame
5 of the specified CBT entry. 4

Libref
Catalog

specify the library and catalog that contain the target entry. Enter
values for these two attributes only if the target entry is stored in a
catalog other than the one that contains the MENU entry.

Menu-Link specifies that menu choices in the selected submenu are linked to
menus at a higher level in the application’s hierarchy of menus. If
the submenu is linked, you can specify options from the submenu in
the higher-level menu without having to display the lower-level
menu.

Note: The Menu-Link attribute is valid only when the target of
the option is another MENU entry. 4

If you assign this option to any menu choices, you must issue the
MLINK command (or use the MLINK statement with the BUILD
procedure) to generate the linkages for the selected options. Any
time you change or add the Menu-Link option for menu choices, you
must repeat the linking procedure to reestablish the internal menu
linkages.

By default, only one level of menus is linked. To link all levels of
menus, use the MLOPTS LEVEL=_MAX_ option with the MLINK
command, or use the LEVELS=_MAX_ option with the MLINK
statement.

PROGRAM Entries
PROGRAM entries store SAS/AF applications that consist of
� a display that provides instructions and data-entry fields and which accepts user

input
� general attributes that control the appearance and behavior of the window in

which the PROGRAM entry executes
� field attributes that define the appearance and behavior of fields

36 PROGRAM Entry Displays 4 Chapter 3

� a SAS Component Language (SCL) program that controls the application.

The following sections describe each of these components of a PROGRAM entry.

PROGRAM Entry Displays
You use the BUILD procedure’s DISPLAY window to design the displays for

PROGRAM entries. The displays can use any of the text color features and highlighting
features that the SAS text editor supports. In addition to static text, the display can
include fields in which users can enter values. The PROGRAM entry’s SCL program
can also manipulate field values. Refer to “Fields” on page 36 for more information
about defining fields in the display.

If your display includes a large amount of text or many fields, you can divide it into
units called frames. Users can issue FORWARD and BACKWARD commands in the
application window to scroll between the frames of the display. To divide the display
into frames, enter divider lines consisting of dash (-) characters across the full width of
the DISPLAY window. You can also use the FILL command to create divider lines.

You can designate a portion of the display that remains visible and does not scroll.
Enter three caret (^) or NOT () characters in the first three columns of a line in the
first frame of the display to delineate the nonscrolling region. Any text and fields above
the line that contains the ^^^ or appear in every frame of the display; FORWARD
and BACKWARD commands scroll only the region below the nonscrolling area.

You can also create extended tables in the display. In an extended table, you define
one row of fields and use SAS Component Language to dynamically display multiple
rows based on the one you define. Refer to “Extended Tables” on page 37 for details.

Fields
Fields in PROGRAM entries accept user input and display information or program

output. You designate fields in the display with an initial ampersand (&), followed by
an optional name up to eight characters in length. Use underscore characters (_) to pad
the field to the length required to hold the largest field value. The field length is
determined by the number of columns from the ampersand through the last underscore.
A field can be as short as a single & or as long as the width of a display line.

If you omit the field name (or if you create one-character fields that consist of only an
ampersand), the field is given the default name FIELDn, where n is the order of the
field on the DISPLAY window, counting from the upper-left corner and descending from
left to right.

Each field has a set of attributes that determine its appearance and behavior. Refer
to “PROGRAM Entry Field Attributes” on page 37 for information about the field
attributes. When you refer to a field in the entry’s SCL program, you use the name
specified in the field’s Alias attribute rather than the field name. By default, the field
alias is the same as the field name, but you can change the alias in the entry’s ATTR
window to give the field a more meaningful name.

Choice Groups
You can join one or more fields into a choice group. Fields that are assigned to choice

groups are referred to as stations. Only one station of a choice group can be active at a
time. Pressing the ENTER key or clicking the mouse button while the cursor is on one
of the fields in the choice group selects the active station. The choice group name can be
used as a variable in the entry’s SCL program. It returns the value of the selected
station.

SAS Component Language provides functions for manipulating choice groups. Refer
to SAS Component Language: Reference for more information.

SAS/AF Catalog Entry Types 4 PROGRAM Entry Field Attributes 37

Selection Lists
If you specify the List attribute for a field, users can select values for the field from a

selection list. The selection list of valid field values is displayed when a user enters a
designated prompt character in the first column of the field. The default prompt
character is the question mark (?), but you can use the PROGRAM entry’s Prompt
character general attribute to specify a different prompt character for your application.

Note: If the List attribute specifies a range of values rather than a list of valid
values (or if it specifies an entry that contains a list of valid values), then entering the
prompt character does not display a selection list. Rather, it displays a dialog window
that explains the range of valid values. 4

SAS Component Language provides a variety of functions for displaying selection
lists. Refer to SAS Component Language: Reference for more information.

Extended Tables
You can use PROGRAM entries to display tables of values called extended tables. The

extended table can be static, with a fixed number of rows, or dynamic, in which rows
can be added or deleted. The values in the rows of the extended table can come from a
SAS data set, from an array in the SCL program, or from an external file. In addition
to displaying information, extended tables can be used as custom selection lists in your
applications.

To create an extended table, you must
� select the EXTENDED TABLE general attribute in the PROGRAM entry’s GATTR

window.
� create the fields that define a row of the extended table in the PROGRAM entry’s

DISPLAY window.

Note: If you define a nonscrolling region to serve as a table heading, the fields
for the extended table must appear below the ^^^ or characters that delineate
the nonscrolling region. 4

� add the SCL code to support the extended table in the PROGRAM entry’s
SOURCE window. Refer to SAS Component Language: Reference for more
information on the SCL elements that support extended tables.

PROGRAM Entry General Attributes
PROGRAM entries also store attributes for the application window in which the

entries are displayed to users. See “General Attributes for Application Windows” on
page 50 for details about the attributes you can specify for the application window.

PROGRAM Entry Field Attributes
Each field that you define in the PROGRAM entry’s display has the following

attributes. You specify these field attributes in the ATTR window for the PROGRAM
entry. Use the ATTR command in the BUILD procedure’s DISPLAY window to open the
ATTR window.

Alias specifies the name by which you refer to the field in the entry’s SCL
program. Each field in a PROGRAM entry must have a unique
alias. By default, the alias is the same as the field name.

Choice Group specifies a choice group to which the field belongs. The choice group
name cannot be the same as an existing alias. The fields in a choice

38 PROGRAM Entry Field Attributes 4 Chapter 3

group are called stations, and the choice group variable takes the
value of the active station. Only one station in a choice group can be
active at a time. Refer to “Choice Groups” on page 36 for more
information on creating choice groups.

Pad specifies the character that is used to fill blank fields in the
application window. By default, fields are padded with underscore
(_) characters. You can use the Pad attribute to change the pad
character for an individual field. To change the default pad character
for all fields, use the PADCHAR= option with the PROC BUILD
statement, or issue the PDCHAR command in the DISPLAY window.

Type specifies the type of validation that is performed to verify the values
that users enter in the field. By default, fields are assigned one of
the following types:

� ACTION, if the field is one character in length
� CHAR, if the field length is greater than one character.

Refer to “Field Types” on page 42 for details about these and other
field types that you can specify.

When a user enters a value in a field, the AF task evaluates
whether the value meets the conditions of the specified type. If the
value is determined to be invalid,

� an error message is displayed on the application window’s
message line

� the cursor is positioned on the field
� the field is highlighted, using the color and highlighting

attribute specified in the Error color and Error attr attributes.

Users cannot use the END command to exit from the application
window until the field contains a valid value. They must use the
CANCEL command to exit without correcting the invalid value.

Protect controls whether field values can be changed and whether the TAB
key moves the cursor to the field.

YES specifies that users cannot change values in the
field and that the TAB key does not move the
cursor to the field. However, the entry’s SCL
program can still change the field value.

NO specifies that users can change values in the field
and that the TAB key moves the cursor to the
field. This is the default behavior.

INITIAL specifies that users cannot change values in the
field, but that the TAB key moves the cursor to
the field. If a user attempts to change the field
value, the field reverts to the value specified in
the Initial attribute when the user presses
ENTER. This attribute is typically used for fields
that participate in choice groups or that are
assigned a push button Type attribute.

CAUTION:
If you set the Protect attribute to YES, do not select the REQUIRED
option. Making a protected field required means that users cannot
use the END command to exit from the application because

SAS/AF Catalog Entry Types 4 PROGRAM Entry Field Attributes 39

attempting to end the application while a required field is blank
results in an error. 4

Format specifies a format that controls how values that are entered in the
field are displayed. You can specify any standard SAS format or a
user-defined format.

Note: If you assign a format to a field, you should also assign a
compatible informat. 4

Just specifies how values that are entered in the field are aligned after
the user presses ENTER.

LEFT aligns values with the left margin of the field.
This is the default behavior.

RIGHT aligns values with the right margin of the field.

CENTER centers values in the field width.

NONE displays character values as they are entered.
Numeric values are aligned with the right
margin of the field.

Informat specifies an informat that controls how values that are entered into
the field are interpreted. You can specify any standard SAS informat
or a user-defined informat.

Note: If you assign an informat to a field, you should also assign
a compatible format. 4

Error color specifies a color that is applied to the field when a user enters an
invalid value. The following standard SAS color values are
supported:

BLACK CYAN MAGENTA RED

BLUE GRAY ORANGE WHITE

BROWN GREEN PINK YELLOW

Error attr specifies a highlighting attribute that is applied to the field when a
user enters an invalid value. The following attribute values are
allowed, although some attributes may not be supported on some
display devices: REVERSE, HIGHLIGHT, UNDERLINE,
BLINKING, or NONE (the default).

Help specifies the name and type of an entry that provides help
information about the field. The specified entry is displayed when a
user issues the HELP command while the cursor is positioned on the
field.

Valid help entry types are CBT, HELP, MENU, and PROGRAM.
Because only two-level names can be entered, the specified entry
must reside in the same catalog as the current PROGRAM entry.
For CBT entries, you can specify a frame number by appending the
number to the entry type. For example, specify INFO and CBT5 to
open the entry INFO.CBT with frame 5 displayed.

If the Help attribute is not specified for the field, the entry
specified in the Help general attribute for the PROGRAM entry is
displayed when a user requests help for the field.

40 PROGRAM Entry Field Attributes 4 Chapter 3

List determines the values that are valid for a field, provided the Type
attribute permits a List attribute. Depending on the Type attribute,
the List attribute can contain one or more of the following:

� a list of values separated by spaces.

� a range of values.

Use the less than (<) character to indicate that the List
attribute value is a range. If you specify one value after the <,
the range consists of all values greater than or equal to the
specified value. For example, < 100 indicates all values greater
than or equal to 100. If you specify a pair of values following
the <, the range includes all values between and including the
specified values. For example, the following range specification
matches all values between 10 and 100:

< 10 100

The following range specification matches all uppercase
values between A and Z:

< A Z

� the name of a LIST entry that contains a list of valid values.

Use the form =libref.catalog-name.entry-name to specify the
name of the LIST entry. Note that an equal sign (=) is added as
a prefix. You can omit the libref.catalog-name portion if the
LIST entry is in the same catalog as the current PROGRAM
entry. Refer to “LIST Entries” on page 33 for more information
about LIST entries.

� the name of a data set or the name of one or more fields that
contain the names of SAS data sets.

For types such as ONEVAR, VARLIST, and VARSTMT that
verify the names of variables in a data set, the value of the List
attribute determines which data set is searched for the
variables that are specified in the field.

Use the form *libref.data-set-name to specify the data set
name. Note that an asterisk (*) is added as a prefix.

If you specify one or more field names that contain data set
names, the corresponding fields should be defined as INPUT
type to ensure that the data sets named in the fields exist. By
default, the field values are valid only if specified variables
exist in all the data sets named in the variable. To specify that
the field values are valid if the specified variables exist in one
or more of the data sets, add an at (@) character as the first
character in the List attribute value.

You can also use the List attribute to specify a selection list for
the field. In this case, the List attribute has the following form:

\<prompt> <num-sel> =entry-name<C | F | L> | @link-name\

where

prompt specifies the prompt character that displays the
selection list when a user enters it as the first
character in the field. If you omit the prompt
argument, the default is the question mark (?).

SAS/AF Catalog Entry Types 4 PROGRAM Entry Field Attributes 41

num-sel specifies how many items users can select from
the list. If you omit the num-sel argument, the
default is 1.

=entry-name <C
| F | L>

specifies a LIST, HELP, or CBT entry that
provides the items for the selection list.

If you specify a HELP entry, each line of text
in the entry’s display becomes an item in the
selection list. You can add one of the following
options to specify which portion of the selected
line is returned:

C indicates that the word at the
cursor position in the selected
line is returned. This option
is valid only when one
selection is allowed.

F indicates that the first word
on the selected line is
returned. This is the default
behavior.

L indicates that the entire
selected line is returned.

@link-name specifies the name of a linked field that
determines which type of format or informat
information is displayed. This form of the List
attribute is valid only for fields of type FMT or
INFMT. If the first character in the linked field is
C or $, then help on character formats or
informats is displayed. Otherwise, help on
numeric formats or informats is displayed. Only
the names of formats or informats of the
corresponding type can be entered in the field.

Initial specifies a character string (up to 56 characters) or a numeric value
that is displayed in the field when the PROGRAM entry is initially
displayed to a user in the application window. If the Initial attribute
is blank, the field is represented with the specified pad character or
with a default pad character.

Replace specifies a character string (up to 56 characters) that is used as a
replacement string when values are substituted in SUBMIT blocks
in the PROGRAM entry’s SCL program. Refer to the description of
the REPLACE statement in SAS Component Language: Reference
for more information about replacement strings.

Options control the following characteristics of the field:

CAPS specifies that characters entered into the field are
converted to uppercase when the user presses
ENTER. This attribute is selected by default.
Deselect this attribute if you want users to be
able to enter mixed-case values in the field.

CURSOR specifies that the cursor is positioned on the field
when the application window opens. By default,

42 PROGRAM Entry Field Attributes 4 Chapter 3

the CURSOR attribute is selected for the first
field created in the DISPLAY window and is
deselected for the remaining fields. Only one
field should have the CURSOR attribute selected.
If more than one field has the CURSOR attribute
selected, the cursor is initially positioned on the
first field that has the attribute selected.

REQUIRED specifies that a user must enter a valid value in
the field before the application window can be
closed with the END command.

CAUTION:
If you select the REQUIRED option, do not set the
Protect attribute to YES. Protecting a required
field means that users cannot use the END
command to exit from the application because
attempting to end the application while a
required field is blank results in an error. 4

AUTOSKIP specifies that the cursor moves automatically to
the next unprotected field when user input fills
the current field’s last position. By default, the
AUTOSKIP attribute is selected for all fields.
Deselect the AUTOSKIP attribute if you want
the cursor to remain on the current field when a
user enters values that fill the field.

NOPROMPT specifies that the prompt character is ignored for
the field. By default, when a user enters a
designated prompt character in the first position
of the field, the AF task displays either a
selection list of valid values or information about
the range of valid values for the field. (The
behavior depends on the value of the List
attribute.) Select the NOPROMPT option to
disable this behavior and treat the prompt
character like a regular text character.

The prompt character for the entry is specified
in the entry’s Prompt character general
attribute. The default prompt character is the
question mark (?).

NON-DISPLAY specifies that values that users enter in the field
are not displayed in the application window.
Users can still tab to a nondisplayed field
(provided the field is not protected), and field
values are still validated. This attribute is useful
when the field is used for entering passwords or
other values that should be kept hidden.

Field Types
The Type field in PROGRAM entries can take one of the following attribute values:

ACTION
specifies that the value that a user enters in the field is converted to a predefined
character or character string. For ACTION fields for which no List attribute is

SAS/AF Catalog Entry Types 4 PROGRAM Entry Field Attributes 43

specified, a value entered in the field is automatically converted to uppercase X. If
a List attribute is specified, then any value entered in the field is automatically
converted to the value that is specified as the field’s List attribute. This enables
you to define the value for the field as a single character (for example, *) or as a
word (for example, YES).

ATTR
verifies that the field value is the name of a text highlighting attribute. Valid
values are REVERSE, HIGHLIGHT, UNDERLINE, BLINKING, or NONE, or the
corresponding one-character abbreviations (R, H, U, B, or N).

CHAR
verifies that the field value is standard SAS character data.

CHARLST
verifies that the field contains a list of standard SAS character data values. Values
in the list are separated by spaces.

COLOR
verifies that the field value is one of the standard SAS color names:

BLACK CYAN MAGENTA RED

BLUE GRAY ORANGE WHITE

BROWN GREEN PINK YELLOW

DSNAME
verifies that the field value is a valid one- or two-level SAS data set name.

Note: The DSNAME type tests only whether the specified name is valid, not
whether the specified data set exists. Use the INPUT type to verify that the
specified data set exists, or use the OUTPUT type to verify that the specified data
set does not exist. 4

FILENAME
verifies that the field value is a fileref that has been previously defined in the
current SAS session.

FIXED
verifies that the field value is an integer numeric value.

FIXEDLST
verifies that the field contains a list of integer numeric values. Values in the list
are separated by spaces.

FMT
FMTC
FMTN

verify that the field value is a valid format name. Use FMTC to verify that the
field value is the name of a character format, or use FMTN to verify that it is the
name of a numeric format. Use FMT to verify that the field value is the name of
either a character format or a numeric format.

Note: Do not specify a value for the List attribute when you specify FMT,
FMTC, or FMTN for the Type attribute. The field value is validated against the
list of all standard SAS formats and user-defined formats. 4

INFMT
INFMTC
INFMTN

verify that the field value is a valid informat name. Use INFMTC to verify that
the field value is the name of a character informat, or use INFMTN to verify that

44 PROGRAM Entry Field Attributes 4 Chapter 3

it is the name of a numeric informat. Use INFMT to verify that the field value is
the name of either a character informat or a numeric informat.

Note: Do not specify a value for the List attribute when you specify INFMT,
INFMTC, or INFMTN for the Type attribute. The field value is validated against
the list of all standard SAS informats and user-defined informats. 4

INPUT
verifies that the field value is the name of an existing SAS data set.

INPUTALL
verifies that the field value is either a list of names of existing SAS data sets or
the special SAS designation _ALL_.

Note: The default pad character for this type of field should be a character
other than the default underscore. It should also be a character that is not likely
to be used in a data set name. 4

LIBNAME
verifies that the field value is a libref that has previously been defined in the
current SAS session.

NAME
verifies that the field value is a valid SAS name.

NUM
verifies that the field value is a standard SAS numeric value.

Note: Use the FIXED type if you want to restrict the field to integer values. 4

NUMLST
verifies that the field contains a list of standard SAS numeric values. Values in
the list are separated by spaces.

Note: Use the FIXEDLST type if you want to restrict the field to a list of
integer values. 4

ONEVAR
ONEVARC
ONEVARN

verify that the field value is the name of one variable from a SAS data set. Use
ONEVARC to verify that the field value is the name of a character variable, or use
ONEVARN to verify that it is the name of a numeric variable. Use ONEVAR to
verify that the field name is the name of either a character variable or a numeric
variable.

The List attribute specifies which data set to search for the variable. The List
attribute can specify either the name of the data set or the names of fields that
contain the name of the data set. If the List attribute is not specified, the
PROGRAM entry’s Lookup data set general attribute is used. The Lookup data set
general attribute contains the name of a field that contains the name of the data
set to search.

OUTPUT
verifies that the field value is a valid data set name and that the specified data set
does not currently exist.

Note: The OUTPUT field type is typically used for names of data sets that are
created for application output. This type of validation ensures that the output
data set does not overwrite an existing data set. 4

PUSHBTNC
PUSHBTNN

display the field as a push button that users can click (or move the cursor to and
press ENTER) to cause an action to occur. Use the Initial attribute to specify the

SAS/AF Catalog Entry Types 4 PROGRAM Entry SCL Programs 45

value that appears as the button label. Use PUSHBTNC for fields that return
character values, or use PUSHBTNN for fields that return numeric values.

SHORT
verifies that the field value is an integer number in the range of -32767 to 32767.

VARLIST
VARLISTC
VARLISTN

verify that the field contains a list of variable names that appear in a data set.
Use VARLISTC to verify that the field contains the names of character variables,
or use VARLISTN to verify that it contains the names of numeric variables. Use
VARLIST to verify that the field contains the names of either character variables
or numeric variables. These types ignore any other characters in the field, such as
arithmetic operators, and verify only the field’s variable names.

The List attribute specifies which data set to search for the variable. The List
attribute can specify either the name of the data set or the names of fields that
contain the name of the data set. If the List attribute is not specified, the
PROGRAM entry’s Lookup data set general attribute is used. The Lookup data set
general attribute contains the name of a field that contains the name of the data
set to search.

VARSTMT
VARSTMTC
VARSTMTN

verify that the field contains a list of variable names that appear in a data set.
Use VARSTMTC to verify that the field contains the names of character variables,
or use VARSTMTN to verify that it contains the names of numeric variables. Use
VARSTMT to verify that the field contains the names of either character or
numeric variables. These types allows only variable names to be entered into the
field. Use VARLIST (or VARLISTC or VARLISTN) to allow the field to contain
other characters in addition to the variable names.

The List attribute specifies the data set to search for the variable. The List
attribute can specify either the name of the data set or the names of fields that
contain the name of the data set. If the List attribute is not specified, the
PROGRAM entry’s Lookup data set general attribute is used. The Lookup data set
general attribute contains the name of a field that contains the name of the data
set to search.

PROGRAM Entry SCL Programs
PROGRAM entries can store a SAS Component Language (SCL) program that can

manipulate field values and control the behavior of the entry. You use the BUILD
procedure’s SOURCE window to edit the PROGRAM entry’s SCL program. You can
issue the SOURCE command in the DISPLAY window to open the SOURCE window for
the entry. Refer to SAS Component Language: Reference for details about the
statements and functions that you can use in SCL programs.

Before the SCL code in an PROGRAM entry can be executed, it must be compiled. To
compile the program, issue the COMPILE command in either the SOURCE window or
the DISPLAY window for the entry. You can also use the COMPILE statement with the
PROC BUILD statement to compile the contents of existing PROGRAM entries.

When the source code in the SCL entry is compiled, the SCL compiler writes any
error or warning messages to the SAS log. If the SCL program is compiled successfully,
the compiled code is added to the PROGRAM entry along with the source code.

When you invoke a PROGRAM entry, the AF task executes the statements in the
program’s INIT section. When you modify a field value, statements in the program’s

46 RANGE Entries 4 Chapter 3

MAIN section are executed. If the program contains labeled sections whose labels
match the names of the modified fields, then those sections are also executed before the
MAIN section. Statements in the TERM section of the program are executed when you
end the PROGRAM entry. Refer to SAS Component Language: Reference for more
information on SAS Component Language processing.

RANGE Entries

RANGE entries are utility entries that store range definitions. Range definitions are
used in conjunction with FRAME entries to control traffic lighting for Text Entry
objects and Critical Success Factor objects. You use the BUILD procedure’s RANGE
window to edit the range definition in a RANGE entry.

A range definition can consist of up to 24 segments. Each segment defines the range
of values that match that segment, as well as the color and highlighting attributes that
are applied to values that match the segment. For each segment, you can define the
following attributes:

Lower value
specifies a numeric minimum value for the range segment. This value can be
omitted for the first segment, implying that all values lower than or equal to the
Upper value match the first segment.

Note: If a statistic has been defined for the segment, you cannot modify the
Lower value attribute. 4

If the Lower value of the current segment is the same as the Upper value of the
preceding segment, then the segments are contiguous, and the specified Lower
value is not inclusive in the current segment. That is, a value must be greater
than the Lower value in order to match the current segment. Values that are
equal to the Lower value match the preceding segment. If the Lower value of the
current segment is not the same as the Upper value of the preceding segment,
then the segments are noncontiguous. In this case, values that are equal to the
Lower value do match the current segment.

Upper value
specifies a numeric maximum value for the range segment. This value can be
omitted for the last segment in the range definition, implying that all values
greater than the Lower value (and equal to the Lower value, if the segment is
noncontiguous) match the last segment.

Note: If a statistic has been defined for the segment, you cannot modify the
Upper value attribute. 4

Color
specifies the color for the segment. In the RANGE window, you can select the
down arrow control in the Color field to obtain a list of valid colors, or select the
right arrow control to define a custom color. You must specify a color for each
segment that has range values. The RANGE window includes a Color scale bar
that shows which colors have been selected for the defined segments.

Attribute
specifies a highlighting attribute for the segment. In the RANGE window, you can
select the down arrow control in the Attribute field to obtain a list of valid
display attributes. The default is NONE.

SAS/AF Catalog Entry Types 4 RESOURCE Entries 47

Statistics data set
specifies a data set and variable to be used in computing the statistics for the
lower and upper values of the range segment, as an alternative to specifying range
values for the Lower value and Upper value attributes.

By default, the statistics are computed and stored when the RANGE entry is
built. However, you can choose to refresh the statistics when the RANGE entry is
used.

Formats
specifies an informat and a format for the range segment. The informat is used to
convert character values to numeric values for comparison purposes. The format is
used to display values in Critical Success Factor (CSF) objects.

RESOURCE Entries

RESOURCE entries (also referred to simply as resources) store a collection of classes
that are used for building FRAME entries. You use the BUILD procedure’s Resource
Editor window to add classes to or remove classes from RESOURCE entries.

When you add a class to a RESOURCE entry, the class definition is copied from the
corresponding CLASS entry into the RESOURCE entry. The RESOURCE entry stores a
complete, static copy of its classes. If you change the name, location, description, or any
of the properties of a class that is added to a resource, you must synchronize the
resource to update the copy of the class in the RESOURCE entry. You use the SYNC
command in the Resource Editor window (or the SYNC statement with a PROC BUILD
statement) to synchronize a RESOURCE entry.

Note: If you open a class for editing from within the Resource Editor window, the
resource is automatically synchronized when you save your changes to the class. 4

The BUILD procedure’s Components window displays the classes that are available
when you are building a FRAME entry. Classes can appear in the Components window
even if they are not part of a resource, but you can collect a set of classes into a
resource and then add the single resource to the Components window to make all the
classes in the resource available for use in the FRAME entry. The Components window
displays the RESOURCE entry’s description as the name of the resource.

The RESOURCE entry stores the display status of each class. The display status
determines whether the class appears in the Components window when the resource is
added to that window. Visual classes that can be dropped onto a frame should have
their status option set to Display. If you do not want the class to appear in the
Components window, you can use the Toggle Display Status control in the Resource
Editor window to turn off the display status. Although a resource should contain all the
classes that an application uses, only those components that can be dropped onto a
frame should be set to display in the Components window.

You can use resources to organize and maintain class libraries for developing SAS/AF
applications. For example, you could use a personal RESOURCE entry to store classes
that you develop, and a separate RESOURCE entry to store classes that are developed
at your site, in addition to the standard RESOURCE entry that is provided with
SAS/AF software (SASHELP.FSP.AFCOMPONENTS.RESOURCE).

Note: Although resources are helpful organizational aids, there are performance
drawbacks to using multiple resources. If a FRAME entry has only one resource to
load, the initialization stage is generally faster than when multiple resources must be
loaded. 4

48 SCL Entries 4 Chapter 3

Whenever you create a new FRAME entry, a RESOURCE entry is associated with
the FRAME entry. By default, the standard RESOURCE entry provided with SAS/AF
software (SASHELP.FSP.AFCOMPONENTS.RESOURCE) is used. You can use the
RESOURCE= statement with the PROC BUILD statement or the RESOURCE= option
with the BUILD command to specify a different initial resource. Once the FRAME
entry is created, the associated resource cannot be changed. The associated
RESOURCE entry must be available any time you open the FRAME entry in the
BUILD environment or execute the entry in the application window.

If the associated resource has an active Frame class, then the new FRAME entry is
an instance of that class. When you add a subclass of the Frame class to the resource,
you have the option of making it the active Frame class for the resource. A resource can
contain multiple Frame classes, but only one can be active at a time. You can use the
Active control in the Resource Editor window to select the active Frame class. If the
associated resource has no active Frame class, the default Frame class
(SASHELP.FSP.FRAME.CLASS) is used.

Refer to SAS Guide to Applications Development for an introduction to working with
RESOURCE entries.

SCL Entries
SCL entries store SAS Component Language (SCL) code, but they do not provide a

display. The SCL programs for FRAME entries are stored in associated SCL entries.
You can also use SCL entries to store method definitions and SCL programs that
perform tasks that do not require any user interaction. You use the BUILD procedure’s
SOURCE window to edit the SCL code in SCL entries. Refer to SAS Component
Language: Reference for more information on the SAS Component Language elements
that you can use in SCL programs.

Before the SCL code in an SCL entry can be executed, it must be compiled. To
compile the program, issue the COMPILE command in the SOURCE window (or in the
DISPLAY window if the code is associated with a FRAME entry). You can also use the
COMPILE statement with the PROC BUILD statement to compile the contents of
existing SCL entries.

When the source code in an SCL entry is compiled, the SCL compiler writes any
error or warning messages to the SAS log. If no errors are encountered, a message
similar to the following is displayed:

Code generated for MYPROG. Code size=1276

However, if there are warning messages, you see a message similar to the following:

Code generated (with messages) for MYPROG. Code size=1276

If there are errors in your program, you see the following message:

ERROR: Compile error(s) detected. No code generated.

When you save an SCL entry after its program is compiled successfully, the compiled
code is saved to the entry along with the source code. At this point, you can execute the
SCL entry as described in “Calling SCL Entries from Other SAS/AF Programs” on page
49.

Note: You should always compile an entry before you save it. If you save an SCL
entry without compiling it, you cannot execute it. SAS/AF software provides a warning
message indicating that the entry has been saved without intermediate code. 4

SAS/AF Catalog Entry Types 4 Calling SCL Entries from Other SAS/AF Programs 49

Calling SCL Entries from Other SAS/AF Programs
You can execute SCL code that has been compiled and stored in an SCL entry in the

following ways:

� by using the AF or AFAPPLICATION commands to execute the SCL entry

� by using the CALL DISPLAY routine in an SCL program to execute the SCL entry

� by using the CALL METHOD routine in an SCL program to execute individual
sections of code in the SCL entry.

The following sections describe the use of the CALL DISPLAY and CALL METHOD
routines in SAS Component Language. Refer to Chapter 4, “Executing SAS/AF
Applications,” on page 53 for information on using the AF and AFAPPLICATION
commands.

Using CALL DISPLAY to Execute SCL Entries
When you use the CALL DISPLAY routine to invoke an SCL entry, the AF task

executes statements in the following order before returning to the calling program:

1 ENTRY statement

2 INIT section

3 MAIN section

4 TERM section

The program in the SCL entry must have at least one of the special labels INIT, MAIN,
or TERM.

You can pass parameters in the CALL DISPLAY statement and receive them via an
ENTRY statement in the SCL code.

Refer to SAS Component Language: Reference for more information on the CALL
DISPLAY routine.

Using CALL METHOD to Execute SCL Routines
You can create modular SCL routines that you can invoke from any SAS/AF

application. Each module can have its own parameter list. The parameter list is
analogous to an ENTRY statement. You can store several different modules in a single
SCL entry.

You identify each module in the SCL source code with the METHOD statement plus
an associated label. You invoke each module with the CALL METHOD routine,
specifying the entry name and the label, plus any parameters to pass. For example, the
following code invokes the module labeled FUNC1 in the entry MYFUNC.SCL in the
current search path:

call method("MYFUNC", "FUNC1", 10, 30, x);

CAUTION:
A program halts if you attempt to invoke a routine that does not exist in the SCL program.
For example, if your application executes the METHOD call in the previous example
and the label FUNC1 does not exist in MYFUNC.SCL, your program halts. 4

Refer to SAS Component Language: Reference for more information on the CALL
METHOD routine.

50 General Attributes for Application Windows 4 Chapter 3

General Attributes for Application Windows
In addition to other information, CBT, HELP, MENU, and PROGRAM entries also

store attributes that control the appearance and behavior of the application window in
which the entries are displayed to users.

You can specify the following general attributes for CBT, HELP, MENU, and
PROGRAM entries. You define these general attributes in the GATTR window for the
entry. Use the GATTR command in the BUILD procedure’s DISPLAY window to open
the GATTR window.

� Window Attributes

Name
specifies a window name that is displayed in the window’s title bar when
users execute the entry.

Start row, col
specify the default position of the upper-left corner of the application window
on the user’s display (or within the AWS window, if application workspaces
are used). The default for all entry types is row 1 and column 1. However, the
numbers for the default are not displayed in these fields, and the specification
for the starting position is ignored in some windowing environments.

Number of rows, cols
specify the default window height (in rows) and width (in columns). No
default window size values are displayed in these fields in the GATTR
window. The default size depends on your host windowing environment.

Note: You can issue the SETWSZ command in the DISPLAY window to
change the window size while you are building the entry. 4

Banner
specifies the appearance of the entry’s command line.

COMMAND provides a command line with the prompt Command===>.

SELECT provides a command line with the prompt
Select Option===> (typically used for MENU entries).

NONE disables the command line and the message line as well.

Note: Messages are not displayed in windows for
which you select the NONE option. In PROGRAM entries,
you can use SCL to display messages in a field. 4

Note: If you specify a PMENU entry in the Command menu attribute and
the PMENU facility is active, then the specified menu is displayed instead of
a command line. 4

� General Attributes

Help
specifies the name and type of an entry to display when users issue the
HELP command while the current entry is executing. If you omit the entry
type, the default type is CBT.

Note: Because you can specify only a one- or two-level name, the entry
that you specify must reside in the same catalog as the current entry. 4

Keys
specifies the name of a KEYS entry that defines function key settings for the
application window. The default is to use the DMKEYS.KEYS function key

SAS/AF Catalog Entry Types 4 General Attributes for Application Windows 51

entry. You can use the BUILD procedure to create custom function key
definitions for your applications.

Note: Because you can specify only a one-level name, the KEYS entry
that you specify must reside in the same catalog as the current entry. 4

Lookup data set
specifies the alias of a field that identifies the data set that is used to validate
fields in a PROGRAM entry when no data set is specified in the field’s List
attributes. The Type attribute of the field that you specify should be set to
Input and should contain the name of the desired SAS data set, but the AF
task does not verify that these conditions are met.

Note: The Lookup data set attribute is applicable only to PROGRAM
entries. 4

Command menu
specifies the name of a PMENU entry that contains menu definitions for the
application window.

Note: Because you can specify only a one-level name, the PMENU entry
that you specify must reside in the same catalog as the current entry. 4

Prompt character
specifies a character that a user can type in a field to get assistance or
information about valid values for the field. A user must type the specified
character in the first position of the field in order for it to be considered a
prompt. The default prompt character is ? (question mark).

The response to the prompt character depends on whether the List
attribute is defined for the field.

� For fields to which a LIST attribute is assigned, a selection window
opens, from which users can choose from the field values defined by the
List attribute.

� For fields to which no LIST attribute is assigned, a dialog box opens
that provides information about the type of values (character or
numeric) that can be entered in the field.

You can prevent the prompting behavior for specific fields by specifying the
NOPROMPT field attribute for the corresponding fields.

The Prompt character attribute applies only to PROGRAM entries.

System options
control the following window behaviors:

NO EXIT
prevents users from switching to other windows. If a user moves the
cursor out of the application window and presses ENTER, the cursor
returns to the application window.

EXTENDED TABLE
specifies that the scrollable portion of a PROGRAM entry’s display is
used as an extended table. See “Extended Tables” on page 37 for more
information about extended tables.

RESIDENT
retains the entry’s program in memory after it is first loaded. Keeping
frequently used entries resident in memory can improve the
performance of your applications by eliminating the wait for the entries
to be loaded. However, making a large number of entries resident can
cause your session to run out of memory.

52 General Attributes for Application Windows 4 Chapter 3

Note: You can use the AFSYS command in the application window to
determine which entries are currently resident in memory. 4

� Parent Attributes

Name, Type, Libref, Catalog
specify the name of an entry to which control is passed when a user issues an
END or CANCEL command. By default, control returns to the calling entry,
except for CBT entries, which return control to the SAS System.

To pass control to another entry in the same catalog as the current entry,
you only need to specify values for the Name and Type attributes. If the
target entry is in another catalog or another library, specify values for the
Libref and Catalog attributes as well.

� Window Type Attributes

STANDARD
specifies that the window can be resized and moved and can open other
windows without passing permanent control to them.

DIALOG
specifies that the window cannot be resized or moved. Select this attribute if
you want to prevent users from issuing ZOOM, GROW, MOVE, or SHRINK
commands in the application window. Dialog windows can open other
windows and can pass temporary control to them.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

DIALOG BOX
specifies that the window cannot be resized or moved and cannot open any
other windows. Use the DIALOG BOX attribute for the last window that can
be opened in a hierarchy.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

LIST
specifies that the window can be resized and moved and can open other
windows without passing permanent control to them. Assign this attribute to
windows that are used as selection lists.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

HELP
specifies that the window can be resized or moved but cannot open any other
windows.

If you assign a PMENU entry to the window, the menu selections are
displayed as a row of buttons at the bottom of the window.

� Scroll Bar Attributes

HORIZONTAL
controls whether a horizontal scroll bar is displayed along the bottom window
border when scroll bars are turned on. Horizontal scroll bars are useful when
the entry’s display area is wider than the current window size.

VERTICAL
controls whether a vertical scroll bar is displayed along the right window
border when scroll bars are turned on. Vertical scroll bars are useful when
the entry’s display area is taller than the current window size.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/AF ® Software Procedure Guide, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/AF® Software Procedure Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–516–7
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

