53

CHAPTER

Executing SAS/AF Applications

Overview 53
AF Command 53
Syntax 54
Requirement 54
Options 54
Using the AF Command 59
AFAPPLICATION Command 59
Syntax 59
Comparison with the AF Command 60
Sharing Data Between Multiple Applications 60
Passing Options to an Application 61
Values That Are Automatically Placed in the Command List 61
Differences in Storing AF Command and Application-specific Options 62
Using Command Macros 63
Suppressing SAS Windows When a SAS/AF Application Opens 63

Overview

Although you must license SAS/AF software in order to create applications with the
BUILD procedure, only base SAS software is required to run the applications that you
create. Users can run your SAS/AF applications

O by issuing the global AF or AFAPPLICATION command

O by submitting the DISPLAY procedure in base SAS software

O by executing the CALL DISPLAY routine in SAS Component Language.

The AF and AFAPPLICATION commands are available in all SAS System windows.
The following sections describe the syntax and usage of these commands. Refer to SAS
Procedures Guide for information about the DISPLAY procedure. Refer to SAS
Component Language: Reference for information about the CALL DISPLAY routine.

AF Command

Use the AF command to execute applications that have been created with the BUILD
procedure in SAS/AF software.

Note: The AF command can execute entry types that provide a display (CBT,
FRAME, HELP, MENU, or PROGRAM), as well as SCL entries that execute without a
display. The other SAS/AF catalog entry types are not executable and cannot be
executed with the AF command. a

54

Syntax

A Chapter 4

You can issue the AF command from any SAS window. Only one application that is
invoked by the AF command can be active at a time. If you issue an AF command while
another application is already running, the previous application is closed before the new
application is executed. To run additional SAS/AF applications simultaneously, use the
AFAPPLICATION command instead. See “AFAPPLICATION Command” on page 59 for
details.

Syntax
The general form of the AF command is

AF <AUTORECALL=YES | NO>
<AUTOSAVE=YES | NO>
<AUTOTERM=YES | NO | VERBOSE | NOVERBOSE>
<AWS=YES | NO | KEEP>
<CATALOG=libref.catalog-name.entry-name.entry-type>
<CATNAME-=libref.catalog-reference(libref.catalog-1 ... libref.catalog-n)>
<CHECKLAST=YES | NO>
<DEBUG=YES | NO>
<FRAME=frame-number | frame-name>
<ICON-=icon-number>
<LABEL-=label>
<PMENU=YES | NO>
<RESIDENT=number>
<RESTART=YES | NO>
<SCLPROF=COVERAGE | TIMER>
<TITLE=title’>
<application-options>

Requirement

The first time you use the AF command, you must use the CATALOG= argument to
identify the application to execute. The name of the entry at which an application
starts executing is recorded in the special AFAFGO entry in your SASUSER.PROFILE
catalog. This entry is referred to as the AF checkpoint. Any subsequent AF command
that does not include the CATALOG= argument starts at the entry identified in the AF
checkpoint. The AF checkpoint is retained across SAS sessions.

Note: If you exit an application from a CBT entry, the name of the CBT entry from
which you exit the application is stored as the AF checkpoint rather than the name of
the initial entry in the application. This enables you to resume CBT applications at the
point where you stopped. Use the CHECKLAST=NO option to override this default
behavior and to store the name of the initial entry even when exiting from CBT
entries. 2

Options

For most of the following AF command options, there is a default action if you do not
use the option. You should use an option only when you want to change the default
behavior.

Executing SAS/AF Applications A Options 55

AUTORECALL=YES | NO
specifies whether field values that have been saved from a previous invocation of a
PROGRAM entry are recalled when the entry is invoked again. By default, field
values are not recalled (AUTORECALL=NO). Use AUTORECALL=YES if you
want the stored field values to be recalled. Stored values are available only if the
entry has previously been closed while the AUTOSAVE=YES option was in effect.

Note: The AUTORECALL= option only affects the behavior of PROGRAM
entries. 2

AUTOSAVE=YES | NO
specifies whether the values in the fields of PROGRAM entries are saved when
you exit from an entry. By default, field values are not saved (AUTOSAVE=NO).
Use AUTOSAVE=YES to store all current field values when you close a
PROGRAM entry. You can use the AUTORECALL=YES option to recall these
values the next time the entry is invoked.

Note: The AUTOSAVE= option only affects the behavior of PROGRAM entries.
A

AUTOTERM=YES | NO | VERBOSE | NOVERBOSE
specifies whether the _term method of FRAME entry objects is automatically
executed if the objects still exist when the entry ends. By default, any open objects
are automatically terminated (AUTOTERM=YES). Use AUTOTERM=NO if you
want to prevent the _term method of open FRAME objects from being executed
when the entry ends.

By default, no list of open objects is generated (AUTOTERM=NOVERBOSE).
Use AUTOTERM=VERBOSE to print to the SAS log a note containing the object
list for each object that still exists when the entry ends. This feature works even if
automatic object termination is off, and it serves as a debugging aid to identify
objects whose _term method has not run.

You cannot combine options in one string. Instead, use a separate
AUTOTERM= option with the AF or AFAPPLICATION command. For example:

af c=mylib.cat.primary.frame autoterm=verbose autoterm=yes
Note: The AUTOTERM-= option only affects the behavior of FRAME entries. 2

AWS=YES | NO | KEEP
specifies whether the application’s windows are confined to a container window
called the application workspace (AWS). When an application workspace is used,
you can minimize or maximize the entire application by minimizing or maximizing
the AWS window.

Note: The AWS= option is ignored if your host environment does not support
application workspaces. 2
Specify one of the following values for the AWS= option:

YES opens all windows displayed by the AF application (including
windows displayed by the CALL DISPLAY routine) within the
single AWS window. This is the default behavior unless it is
overridden by a host-specific resource.

NO opens each entry in an application in its own window rather
than in the AWS window.

KEEP keeps the application workspace open after the last window in
the workspace is removed. This prevents the AWS from being
deleted during situations such as unconditional branching in
CBT entries or using CALL GOTO routines in SCL programs.

56 Options A Chapter 4

In these situations, all the current windows for the application
are closed before other windows are opened.

CATALOG=libref.catalog-name.entry-name.entry-type
CAT=libref.catalog-name.entry-name.entry-type
C=libref.catalog-name.entry-name.entry-type
specifies the name and type of the SAS catalog entry at which an application
starts executing. You must specify a complete four-level name. You must include
this argument the first time you use the AF command.

If you omit the CATALOG= option, the AF command starts the entry that is
identified as your AF checkpoint in the SASUSER.PROFILE.AF.AFGO entry. If
the application starts executing at a FRAME, PROGRAM, MENU, or HELP entry,
then the name of the initial entry is identified in the AF checkpoint. If you exit
the application from a CBT entry, then the CBT entry from which you exit is
identified as the AF checkpoint.

CATNAME-=libref.catref (libref.catalog-1 ... libref.catalog-n)
logically combines two or more catalogs into one by associating them with a catref
(a shortcut name). You can use any valid SAS name for catref, but if you use the
name of an existing catalog you will not be able to access the contents of that
catalog until the catref is cleared. The libref that you specify with the catref must
already exist. Enclose the list of catalogs in parentheses, and use blanks to
separate the catalog names in the list.

When a program in the SAS/AF application contains a reference to an entry in
the libref.catref catalog, the AF task searches for the entry in the specified list of
catalogs, starting with catalog-1 and ending with catalog-n.

For example, suppose that you open an application with

af cat=mylib.mycat.main.frame
catname=mylib.all (mylib.appsl mylib.apps2 master.apps)

A reference in a program to MYLIB.ALL.TEST.SCL causes the AF task to search
for MYLIB.APPS1.TEST.SCL, then for MYLIB.APPS2.TEST.SCL, and finally for
MASTER.APPS.TEST.SCL.

Refer to the description of the CATNAME statement in SAS Language
Reference: Dictionary for more information about creating and using catrefs. You
can also create and clear catrefs by using the CATNAME command in AF
windows. See the description of the CATNAME command in “Window
Management Commands” on page 66 for details.

CHECKLAST=YES | NO

CHECK=YES | NO
specifies whether the system stores the name of the CBT entry at which you exit
an application. By default, the name of the current entry is stored as the AF
checkpoint when you exit an application from a CBT entry (CHECKLAST=YES).
The AF checkpoint identifies the application that runs when you issue an AF
command without using a CATALOG= argument. Use CHECKLAST=NO to record
the name of the initial entry for the application instead, so that the CBT
application resumes at the beginning rather than at the entry where you stopped.

Note: The CHECKLAST= option only affects the behavior of CBT entries. 2

DEBUG=YES | NO
specifies whether the SCL source-level debugger runs on an application’s
programs. By default, the debugger is not activated (DEBUG=NO). Use
DEBUG=YES to activate the debugger.

Executing SAS/AF Applications A Options 57

Note: In order to analyze programs with the SCL debugger, the programs must
be compiled with the compiler's DEBUG ON option. A

The SCL debugger can interactively monitor the execution of SAS/AF
applications. It enables you to track down logical errors while the program
executes. The debugger displays the source program, specifies which line is
executing, and dynamically watches the values of variables. It also enables you to
suspend an executing program that is part of a nested series of programs and to
execute other programs in the series. For more information about the SCL
debugger, see SAS Component Language: Reference.

FRAME=frame-number | frame-name
specifies the starting frame for a CBT application. Identify the starting frame by
using either of the following:

o the frame number. To determine the number of a frame in a CBT entry, use
the ID command when that frame is displayed.

o the frame name, which is the name specified in the NAME= option on the
frame delimiter line. This method is more efficient because the AF command
can remain the same even if the number of frames changes.

For testing CBT applications, the FRAME= option provides a convenient way to

return directly to a specific frame in the system. It is also useful for indexing a
CBT course that contains multiple topics.

Note: The FRAME= option only affects the behavior of CBT entries. A

ICON=icon-number
specifies the number of the icon that is used to represent an AWS window when
the window is minimized. By default, the SAS/AF icon is displayed.

Note: This option has an effect only if the native windowing system supports
application workspaces and you also use the AWS=YES option. A

LABEL=label
specifies the name of an SCL program label where execution begins when the AF
command is used to execute a stand-alone SCL entry. Execution begins at the
specified label and continues until a RETURN statement is reached.

Note: The LABEL= option only affects the behavior of SCL entries. A

PMENU=YES | NO
specifies whether the PMENU facility can be turned off in an application. By
default, users can issue the PMENU OFF command to turn off menus in the
application (PMENU=NO). Use PMENU=YES if you have customized the menus
in your windows and want to ensure that users cannot turn the PMENU facility
off for windows in your application.

If your SAS/AF application invokes additional applications by issuing an AF or
AFAPPLICATION command with the EXECCMD routine, include the
PMENU=YES option in the command if you want the additional applications to
have the same behavior.

RESIDENT=number
specifies the number of SCL entries that are kept resident in memory after they
are read from the catalog. Entries can be read from memory much more quickly
than from the catalog, so keeping frequently used SCL entries in memory
improves the performance of SAS/AF applications.

When an SCL entry is invoked, the AF task searches resident memory for the
entry. If the search is successful, the entry moves to the top of the search list. An
SCL entry that is called frequently remains at or near the top of the list and so is
found more quickly. If the SCL entry is not found in the search list, it is read from

58 Options A Chapter 4

the catalog and inserted at the top of the list. If the maximum number of entries
are already resident, then the last entry in the search list (the least-recently used)
is removed to make room for the new entry.

By default, 64 SCL entries are saved in memory. The number value is
interpreted as follows:

0 No SCL entries are kept in memory. All SCL entries must be
read from the catalog each time they are called.

>0 The specified number of entries are kept in memory.

RESTART=YES
specifies whether CBT entries are restarted from the beginning. By default, a CBT
entry starts at the CBT frame that was last accessed (RESTART=NO). Use
RESTART=YES if you want to ensure that the CBT entry starts at the first frame.

Note: The RESTART= option only affects the behavior of CBT entries. A

SCLPROF=COVERAGE | TIMER
starts the data collection phase for the specified diagnostic tool.

COVERAGE starts data collection for the Coverage Analyzer tool. The
Coverage Analyzer can uncover gaps in your interactive
applications testing by identifying which lines in an application
are not executed during a test session. When you end the
application that was started by the AF command, the SCL
Coverage Analyzer window opens to present the results of the
analysis. Refer to the online Help for the Coverage Analyzer
for more information on using this diagnostic tool.

TIMER starts data collection for the Performance Analyzer tool. The
Performance Analyzer provides timing and frequency statistics
for each entry, label, and function call that is executed in an
application’s SCL code. It also provides a hierarchical view of
the execution sequence for the application. When you end the
application that was started by the AF command, the SCL
Performance Analyzer window opens to present the results of
the analysis. Refer to the online Help for the Performance
Analyzer for more information on using this diagnostic tool.

TITLE="title’
specifies a title for the AWS window. If the title contains embedded blanks, enclose
it in single quotes, as in the following example:

af c=corp.fin.inv.program title='Inventory Analysis’

Note: The TITLE= option has an effect only if the native windowing system
supports application workspaces and you also use the AWS=YES option. »

application-options
are options for the application that is being invoked by the AF command. These
options are handled differently, depending on which entry type is being invoked.

o For FRAME, PROGRAM, or SCL entries, values are passed to the entry in
the SCL list _CMDLIST _, which is a sublist of the local environment list. See
“Passing Options to an Application” on page 61 for details.

o For CBT entries, values specified following the AF command options cause
the AF task to search the entry’s initial frame for a feedback indicator line

Executing SAS/AF Applications A Syntax 59

that has a matching MENU=value option. If a match is found, the CBT
frame specified in the line's FRAME-= option is displayed.

For example, the following command causes the AF task to search the first
frame of the entry USING.CBT for a feedback indicator line that contains the
option MENU=HELLO:

af c=company.sales.using.cbt hello

If a matching option is found, the AF task branches to the CBT frame that
is specified in the line’'s FRAME= option. If no matching MENU= option is
found, then the HELLO argument is ignored.

o For MENU entries, values that follow the AF command options are matched
with that menu’s selection options.

For example, the following command causes the AF task to search the
MAIN.MENU entry for a selection option named HELLO:

af c=company.sales.main.menu hello

If the specified option exists, the AF task branches to the entry that is
invoked by the selection option. If HELLO is not a valid selection, the AF
task displays the following message:

Warning: no HELLO selection for this menu

You can also specify an option number on the primary menu or on
submenus. To specify option numbers for submenus, separate the option
numbers by periods. For example, you can specify 3.2 to display the entry
called by choice 2 from the submenu that is called by choice 3 of the main
menu.

o For HELP entries, values that follow the AF command options are ignored.

Using the AF Command

For entry types that provide a display (CBT, FRAME, HELP, MENU, and
PROGRAM), the AF command opens the specified entry in an AF window. You can use
SAS windowing environment commands while executing applications in the AF window,
including commands that move, resize, and change the windows. However, window
sizes and colors cannot be saved. Window properties are determined permanently when
an application is designed. See Chapter 5, “AF Window Commands,” on page 65 for
information about other commands that are supported in the AF window.

You can also use the AF command to execute SCL entries. In this case, the SAS
Component Language code in the entry is executed without opening a display window.

AFAPPLICATION Command

The AFAPPLICATION command is similar to the AF command, but it enables you to
run multiple SAS/AF applications simultaneously. Each application that is executed
with the AFAPPLICATION command runs as a separate task.

Syntax
The AFAPPLICATION command uses the same syntax as the AF command:
AFAPPLICATION <AUTORECALL=YES | NO>

60

Comparison with the AF Command A Chapter 4

<AUTOSAVE=YES | NO>
<AUTOTERM=YES | NO | VERBOSE | NOVERBOSE>
<AWS=YES | NO | KEEP>
<CATALOG=libref.catalog-name.entry-name.entry-type>
<CATNAME-=libref.catalog-reference(libref.catalog-1 ... libref.catalog-n)>
<CHECKLAST=YES | NO>
<DEBUG=YES | NO>
<FRAME=frame-number | frame-name>
<ICON-=icon-number>
<LABEL=label>
<PMENU=YES | NO>
<RESIDENT=number>
<RESTART=YES | NO>
<SCLPROF=COVERAGE | TIMER>
<TITLE=title>
<application-options>
Note: The AFAPPLICATION command can be abbreviated as AFAPPL or AFA. o

The AFAPPLICATION command options are the same as for the AF command. See
“Options” on page 54 for details.

Comparison with the AF Command

The AFAPPLICATION command is similar to the AF command in the following ways:
o The same command options can be used.

o The checkpoint entry identified in SASUSER.PROFILE.AF.AFGO runs if the
CATALOG= option is omitted.

o Application-specific options that you supply with the command are passed to the
application for further processing via the CMDLIST_ sublist of the local
environment list.

The AFAPPLICATION command differs from the AF command in that it does not
update the AF checkpoint. That is, the name of the initial entry in the application that
is executed by the AFAPPLICATION command (or the name and frame of the CBT
entry, if the user is exiting from a CBT entry) is not recorded in the
SASUSER.PROFILE.AF.AFGO entry as it is for the AF command.

Sharing Data Between Multiple Applications

When you run a SAS/AF application with the AFAPPLICATION command, remember
that other applications may be running at the same time. Those other applications may
try to access the same SAS data sets or members of SAS catalogs as your application.
For example, suppose your application uses the FILLIST function to read an SLIST
catalog member. Before your application updates the list and writes it back to the SLIST
entry, another application that has update access to the catalog can read from and write
to the same SLIST entry. This situation can create problems with data integrity.

If your application needs to share data with another application, you should consider

O opening your data sets with member-level locking to prevent other applications
from opening the data sets at the same time

Executing SAS/AF Applications A Values That Are Automatically Placed in the Command List 61

O accessing your catalog and data files through SAS/SHARE software so that other
applications can have simultaneous update access

o locking your catalog entries and other SAS data files by using the SCL LOCK
function.

Passing Options to an Application

The AF and AFAPPLICATION commands can pass option values to your FRAME,
PROGRAM, and SCL applications. The general form for application options is

<option-name=>option-value <... <option-name-n=>option-value-n>

For example, if you design an application that requires a list of observation numbers
as input, you can invoke the application with the following AF command:

af c=master.apps.obs.scl obs=17 23 19 47

The AF task stores the specified options and their values in a special list called
_CMDLIST . This list is a sublist of the SCL local environment list that is created
when a SAS/AF application is invoked.

If the option is specified in the form name=value (for example, oBS=17), then both the
name and the value are stored in the list; otherwise just the value (for example, 23 or
19) is stored. In this case value is a number. However, it also can be one of the following:

O an ungquoted text string such as YES or NO
O a quoted text string such as 'Apply SAS Software’
o a hexadecimal string such as 534153 'x

O a date, time, or datetime literal such as '19Jun1991'D.

Note: If you want several words to be treated as one argument, you must enclose
them in quotes. A

You can use the list manipulation functions in SAS Component Language to extract
the option values and to use them in your applications. Refer to SAS Component
Language: Reference for information about SCL list functions.

Values That Are Automatically Placed in the Command List

The library, catalog name, entry name, and entry type values are automatically
added to the command list. (If you omit the CATALOG= option in the AF command, the
application name is retrieved from the SASUSER.PROFILE.AF.AFGO catalog entry.)
Therefore, the command list is always at least four items long. For example, suppose
you issue the following command:

af c=training.sas.intro.program
For this command, the _CMDLIST_ list contains the following values:

_CMDLIST =(LIBNAME='TRAINING'
CATALOG="'SAS"’
NAME='INTRO’
TYPE='PROGRAM'

)

62 Differences in Storing AF Command and Application-specific Options A Chapter 4

Differences in Storing AF Command and Application-specific Options

The rules for storing the values of application-specific options in the CMDLIST _ list
are somewhat different than for AF command options, as explained in the following

table:

Values For AF command options For application-specific
options

Options repeated in the same are ignored except for the last are all stored in the command

AF command occurrence, which is stored in list

the command list

Abbreviations specified for YES are stored in the command list are stored in the command list
and NO values as YES and NO (the exactly as specified
abbreviations are expanded
and converted to uppercase)

Values specified in lowercase are converted to uppercase are stored in the command list
unless quoted in lowercase

For example, suppose you issue the following AF command:
af c=a.b.c.program check=y check=n
For this command, the _CMDLIST _ list contains the following values:

_CMDLIST =(LIBNAME='A’
CATALOG='B'
NAME='C’
TYPE='PROGRAM’
CHECKLAST='NO"’

)

Note: Notice that the CHECKLAST= option appears only once in the command list,
reflecting the last occurrence of the CHECK= option in the AF command. (The short
form of the option name is expanded to its full form.) o

However, suppose you enter the following command:
af c=a.b.c name='David S.’ Obs=17 23 19 term=y term=n
For this command, the _CMDLIST _ list contains the following values:

CMDLIST= (LIBNAME='A"'
CATALOG='B"'
NAME='C’
TYPE='PROGRAM'
NAME='David S.’

0BS=17
23

19
TERM="y’

TERM='n"’
)

Executing SAS/AF Applications A Suppressing SAS Windows When a SAS/AF Application Opens 63

Note: The application-specific NAME= option does not conflict with the NAME=
option generated by the AF command that contains the current entry name. a

Using Command Macros

If your application accepts options, you can design a command macro to invoke the
application. For example, suppose you create an entry named
FINANCE.REPORTS.GENRPT.SCL that accepts the following options:

TITLE="title-text"
DATE=SAS-date-value

You can create the following command macro to invoke the application:

gmacro genrpt(title="Financial Report",date=0)/cmd;
afapp c=finance.reports.genrpt.scl title=&title date=&date
$mend genrpt;

Then, users can invoke the application with the GENRPT command, provided the
macro is loaded in the current SAS session and the CMDMAC system option is
specified. If a user issues the genrpt command with no arguments, then the SCL entry
is executed with the default title and date. However, a user can specify a different title
and date. For example, a user can issue the following command:

genrpt date='24Jull999'D title="Personnel Report"
The SAS macro facility changes that command into the following command:

afapp c=finance.reports.genrpt.scl
title="Personnel Report" date='24Jull999'D

Suppressing SAS Windows When a SAS/AF Application Opens

You can use the SAS system option INITCMD to execute a SAS/AF application when
a SAS session starts and to open the AF window without opening any intervening SAS
System windows such as the PROGRAM EDITOR, LOG, or OUTPUT windows. The
INITCMD system option must either be used in conjunction with the command that
starts the SAS session or be specified in the SAS configuration file.

When you invoke your application with the INITCMD system option, the SAS session
automatically ends when the application ends.

Refer to SAS Language Reference: Dictionary for more information about the
INITCMD system option.

64 Suppressing SAS Windows When a SAS/AF Application Opens A Chapter 4

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/AF® Software Procedure Guide, Version 8, Cary, NC: SAS Institute Inc., 1999.
SAS/AF Software Procedure Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-516-7

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

