
27

C H A P T E R

4
Using SAS Files

SAS Files and SAS Data Libraries 28
Choosing between Disk and Tape Storage 28

Advantages of Tape Format 28

Disadvantages of Tape-Format Files on Tape 28

Disadvantages of Tape-Format Files on Disk 29

Identifying SAS Data Libraries 29
Using the LIBNAME Statement or Function 30

Advantages of Using the LIBNAME Statement or Function 30

LIBNAME Statement Syntax 31

Restrictions on Librefs 32

Using the CMS FILEDEF Command 32

Using a DDname as a Libref 33
Concatenating SAS Data Libraries 33

Examples 33

Working with SAS Files on Disk 34

Writing to SAS Files on Disk 34

Reading SAS Files on Disk 34
When to Assign a Libref for a SAS File on Disk 35

Working with SAS Files on Tape 36

Tape Processing 36

Using the LIBNAME and FILENAME Options for Tape Processing 36

Using CMS Command Options for Tape Processing 37
Mounting Tapes 37

Positioning Tapes 38

Miscellaneous Tape Notes 38

Tape Processing Example 1: Creating a SAS Data Library without Label Processing 38

Tape Processing Example 2: Adding a New Member to an Existing SAS Data Library 39

Tape Processing Example 3: Creating a Multivolume External File 39
Tape Processing Example 4: Retrieving a Multivolume Tape File Managed by an External

Tape Management System 39

Tape Processing Example 5: Retrieving a SAS Data Library from One Tape File and an
External File from a Second Tape File 40

Assigning a Libref to a Sequential Library 41
Specifying an Old or New Library with the FILEDISP= Option 41

Examples 42

Working with SAS Files in Tape Format on Disk 43

Examples 43

Accessing SAS Libraries in Segments 44
Examples 45

Transporting SAS Files between Operating Environments 45

How SAS Assigns an Engine When No Engine Is Specified 45

28 SAS Files and SAS Data Libraries 4 Chapter 4

Assigning Multiple Librefs to a Single SAS Data Library 46
Clearing Librefs and DDnames 46

Listing Your Current Librefs 47

Managing Your CMS SAS Files and Libraries 47

Listing SAS Files 47

Copying SAS Files 49
Deleting SAS Files 49

Renaming SAS Files 50

Estimating the Size of a SAS Data Set 50

Using the CONTENTS Procedure to Determine Observation Length 50

SAS Files and SAS Data Libraries
Under CMS, a SAS file is a specially structured CMS file. SAS files are logically

grouped into SAS data libraries. A SAS data library can reside either on a CMS
minidisk, in an accessed Shared File System (SFS) directory, or in an unaccessed SFS
directory. An accessed SFS directory is one that you have identified to the operating
environment with the CMS ACCESS command.

The logical grouping of a SAS data library is done according to filetype and filemode
or directory. That is, files that have the same CMS filetype in a minidisk or in an SFS
directory are members of the same SAS data library.

Note: The term disk is used to refer to both a minidisk and an SFS directory. 4

Choosing between Disk and Tape Storage
Under CMS, permanent SAS files can be stored in the following formats:
� disk format on disk.
� sequential format on tape. Sequential format is commonly referred to as tape

format.
� sequential (tape) format on disk.

Advantages of Tape Format
Tapes are able to accommodate large files for which disk storage is impractical. In

addition, CMS Version 6 and Version 7 SAS files that are in tape format can be read by
SAS under OS/390 and VSE (Version 8 tape format libraries cannot be read by SAS
under VSE).

Disadvantages of Tape-Format Files on Tape
Tape-format files on tape have the following disadvantages:
� Accessing tapes is usually slower and more cumbersome than accessing files on

disk because the tapes must be mounted by the operator.
� For unlabeled tapes, you must position the tape to the correct file unless you are

accessing the first file on the tape.
� Only one tape file can be accessed at a time. This means that you cannot merge or

concatenate two or more tape-format SAS data sets from the same tape. For
example, this DATA step will not be executed:

Using SAS Files 4 Identifying SAS Data Libraries 29

data new;
set tape.one

tape.two;
run;

� If a SAS file on tape is modified, replaced, or deleted, any file that follows (whether
it is another SAS file or some other type of file) cannot be accessed.

� You cannot use the EDITOR procedure for SAS data sets that are stored in tape
format because PROC EDITOR uses direct-access methods as opposed to
sequentially processing one observation after another. Likewise, you cannot use
the SAS/FSP FSVIEW or FSEDIT procedures to process a tape-format data set.

� SAS data sets in tape format cannot be accessed randomly with the POINT= and
NOBS= variables in the SET statement.

� There are no facilities to rename SAS files in tape format.
� Whether you are using tape or disk, each SAS file in tape format is stored as a

single, physical file as long as each file has a unique libref.

Note: If you write more than one SAS file in tape format using the same libref,
they are written as one physical, sequential file. 4

Disadvantages of Tape-Format Files on Disk
Tape-format files on disk have many of the same disadvantages as tape-format files

on tape:
� You cannot use the EDITOR procedure for SAS data sets that are stored in tape

format because PROC EDITOR uses direct-access methods as opposed to
sequentially processing one observation after another. Likewise, you cannot use
SAS/FSP FSVIEW or FSEDIT procedures to process a tape-format data set.

� SAS data sets in tape format cannot be accessed randomly with the POINT= and
NOBS= variables in the SET statement.

� There are no facilities to rename SAS files in tape format.
� Whether you are using tape or disk, each SAS file in tape format is stored as a

single, physical file as long as each file has a unique libref.

Note: If you write more than one SAS file in tape format using the same libref,
they are written as one physical, sequential file. 4

� If you replace or delete an existing tape-format disk SAS file that is in a
sequential file with other SAS files, any SAS file that follows in the sequential file
can no longer be accessed.

CAUTION:
If you are using Version 5 sequential format, never use a libref or DDname that begins
with TAPE for external files of any kind. 4

See “Working with SAS Files on Tape” on page 36 for more information about tape
handling under CMS.

Identifying SAS Data Libraries
Under other operating environments, a typical method of identifying a SAS data

library (or an individual file in a SAS data library) is to first use the SAS LIBNAME

30 Using the LIBNAME Statement or Function 4 Chapter 4

statement or function within a SAS session or program to assign a libref to the data
library. (See “LIBNAME” on page 243 for complete information about using the
LIBNAME statement under CMS.) The libref identifies the library and some of its
characteristics to the SAS System. Thereafter, you can use the libref as a convenient
way of referring to the library in your SAS programs.

However, keep in mind the following points when you identify SAS data libraries
under CMS:

� Under CMS, you often do not need to assign a libref to disk-format data libraries.
(For sequential files on tape or on disk, a libref is always required. A libref is also
required for disk-format files that are stored in an unaccessed SFS directory.) See
“Working with SAS Files on Disk” on page 34 for an explanation of how SAS
locates disk-format data libraries.

� Under CMS, you can also use the CMS FILEDEF command to assign a DDname
to the data library. Thereafter, you can use the DDname just as you would use a
libref. However, see “Advantages of Using the LIBNAME Statement or Function”
on page 30 for some important considerations. For information about the CMS
FILEDEF command, see “Using the CMS FILEDEF Command” on page 32 .

� In DMS mode, which is accessible through the SAS Explorer or the LIBASSIGN
command, is the “New Library” dialog for assigning librefs.

Using the LIBNAME Statement or Function

Advantages of Using the LIBNAME Statement or Function
Although you can use the CMS FILEDEF statement to assign DDnames to your

SAS data libraries, there are several reasons for using the LIBNAME statement or
function (and librefs) instead:

� The CMS FILEDEF command is not portable to other operating environments.
The LIBNAME statement or function is portable with minor changes to the
physical name and options parameters.

� If you use the LIBNAME statement or function, you can allocate your data library
for only as long as you need it, and then "free" (deallocate) it. By contrast,
DDnames that are allocated externally remain allocated for the duration of the
SAS session or job. (The LIBNAME CLEAR statement clears an externally
allocated libref, but it does not deallocate the file. See “Clearing Librefs and
DDnames” on page 46 .)

� DDnames that are allocated externally cannot be reassigned later by a LIBNAME
statement or function. You receive an error message in the SAS log that states
that the DDname is currently assigned.

� By using macro statements and the LIBNAME statement or function, you can
conditionally allocate files.

� You cannot assign an engine when you allocate a file externally. SAS uses the
procedure described in “How SAS Assigns an Engine When No Engine Is
Specified” on page 45 to determine which engine to use. It is more efficient to
specify an engine explicitly in a LIBNAME statement or function. Also, the
following SAS engines must be specified in a LIBNAME statement or function
because they are not assigned by default: XPORT, BMDP, SPSS, SPSSX, OSIRIS,
V5TAPE, V6TAPE, V7TAPE, V8TAPE, and REMOTE.

� DDnames that are allocated externally are not included in the list that is produced
by the LIBNAME LIST statement or in the LIBNAME window until after they

Using SAS Files 4 Using the LIBNAME Statement or Function 31

have been used as librefs in your SAS session. (See “Listing Your Current Librefs”
on page 47 .)

LIBNAME Statement Syntax
This section provides an overview of the LIBNAME statement. For complete

information about the LIBNAME statement see “LIBNAME” on page 243.
The general form of the LIBNAME statement is

LIBNAME libref <engine> ’physical-name’ <engine/host-options>;

libref
is the logical name by which the library is referenced during your SAS session.
The libref must begin with a letter and must contain one to eight characters
consisting of letters or numbers.

When choosing a libref, follow the rules for SAS names, but do not use
underscores. Also observe the restrictions listed in “Restrictions on Librefs” on
page 32 .

To read, update, or create files that belong to a permanent SAS data library, you
must include the libref as the first part of a two-level SAS member name in your
program statements, as follows:*

libref.member

engine
tells SAS which engine to use for accessing the library. See Table 5.1 on page 54
for information about valid engine names. If you do not specify an engine, SAS
uses the procedures described in “How SAS Assigns an Engine When No Engine Is
Specified” on page 45 to assign an engine for you. If the engine name that you
supply does not match the actual format or attributes of the data library, then any
attempt to access the library will fail.

’physical-name’
enclosed in quotation marks, describes the physical location of the library. The
physical-name can be specified in the following ways:

’filemode’
specifies the disk-mode letter or the disk-mode letter and optional filemode
access number. Use this form for physical-name when you want to use a
filemode other than the default. If you specify the filemode as a pair of single
quotation marks (‘’) or as an asterisk surrounded by single quotation
marks (‘*’), SAS uses the standard CMS search order to locate an existing
SAS library. If the library exists on more than one minidisk, then SAS stops
searching as soon as it finds a member. Consequently, only the member on
that minidisk is used. Otherwise, if the library does not exist, the assignment
defaults to the first R/W accessed disk.

’filetype filemode’
specifies the filetype to be used for the library and the disk-mode letter.
filemode can also include a filemode access number. Use this form for
physical-name when you want to use the libref as an alias for the filetype.

* An exception is a SAS file in the WORK or USER library. In this case, you can use a one-level name. See “Directing
Temporary SAS Data Sets to the USER Library” on page 23 for more information about the USER library.

32 Using the CMS FILEDEF Command 4 Chapter 4

’filetype sfs-dir’
specifies an SFS directory to be used as a SAS library. Use this form for
physical-name when you want to use the libref as an alias for the filetype.

’sfs-dir’
specifies an SFS directory to be used as a SAS library.

’filename filetype filemode’
specifies the complete CMS fileid. Use this form for physical-name with the
BMDP, OSIRIS, SPSS, and XPORT engines.

(’filetype-1 <filemode-1 | SFS-directory-1>’ . . .’filetype-n <filemode-n |
SFS-directory-n’>)

specifies a concatenation of more than one library that will be accessed by
SAS in order of specification using a single fileref. See “Concatenating SAS
Data Libraries” on page 33 for more information on concatenation of SAS
data libraries.

’TAPn’
specifies the tape device for a sequential library. n is a hex character from 0
through F.

engine/host-options
are options that apply to the SAS data library.

Note: The libref remains valid for the duration of the SAS job or session unless you
clear it. See “Clearing Librefs and DDnames” on page 46 for information about clearing
a libref. 4

Restrictions on Librefs
Under CMS, you should observe the following restrictions on librefs:
� Do not use a libref that is reserved for use by the SAS System, as described in

“CMS Filetypes Used by SAS” on page 9.
� Do not use SAS as a libref; it is reserved as the filetype for files that contain SAS

programming statements in noninteractive SAS programs and in the %INCLUDE
statement.

� Do not use as a libref a filetype that is reserved by CMS. (See the VM/ESA CMS
User’s Guide for a list of filetypes that are reserved by CMS.)

� Do not use the filetype of an external file as the libref of a SAS file.
� Librefs that begin with TAPE are reserved for SAS files that are written in the

Version 5 tape format. Use a libref that begins with TAPE only for Version 5 tape
format files.

� Specify the SAS system option NOREPLACE to prevent existing SAS data sets
from being replaced.

Using the CMS FILEDEF Command
There are several advantages to using the LIBNAME statement or function to make

your SAS data libraries available to your SAS programs. (See “Advantages of Using the
LIBNAME Statement or Function” on page 30 .) However, in most cases you can also
use the CMS FILEDEF command for this purpose.

Note: You cannot use the CMS FILEDEF command to assign a DDname to a SAS
data library that resides on an unaccessed SFS directory. 4

Using SAS Files 4 Examples 33

If you choose to issue a CMS FILEDEF command for a SAS data library, then use
the following form of the command:

FILEDEF DDname DISK dummy filemode

DDname
is the libref that you want to use for the data library.

dummy
specifies any valid character string for the filename and filetype positions in the
command. You can use the same value in both positions, and SAS will substitute
the correct filename and filetype. Thus, you need to issue only one FILEDEF
command per libref, regardless of the number of SAS data libraries that have or
will have that libref.

filemode
references the correct minidisk for the data library.

Remember, though, that if you choose to issue your own CMS FILEDEF command,
you cannot subsequently issue a LIBNAME statement or function that uses the
DDname that is assigned by the FILEDEF command as a libref.

Using a DDname as a Libref
After a DDname has been assigned, you can use it in a SAS job in the same way you

would use a libref. For example:

proc contents data=books._all_;
run;

The first time that the DDname BOOKS is used in this manner, SAS assigns it as a
libref for the SAS data library.

When a DDname is allocated externally, it is not listed by the LIBNAME LIST
statement or in the LIBNAME window until after you have used it as a libref in your
SAS session. (See “Listing Your Current Librefs” on page 47 .)

Concatenating SAS Data Libraries
The LIBNAME statement and the SASHELP=, USER=, and MAPS= system options

can be specified with a concatenated series of multiple SAS data libraries. SAS accesses
a concatenated library as an ordered series of individual libraries. The libraries in a
concatenation can use different engines and can physically exist in any storage system
(CMS, SFS directory, minidisk, MACLIB, etc.).

The syntax for specifying a concatenated SAS data library is as follows:

(’filetype-1 <filemode-1 | SFS-directory-1>’, . . .’filetype-n <filemode-n |
SFS-directory-n>’)

Examples
libname mylib (’mylib a’ ’mylib pool:.mysaslib’);

libname twolibs (’first a’ ’second a’);

In the second example, the SAS data libraries FIRST and SECOND appear to SAS as
a single library when the libref TWOLIBS is referenced. SAS searches for input
members using the A disk, with the filetype FIRST searched first. If the member is not

34 Working with SAS Files on Disk 4 Chapter 4

found in FIRST, SAS searches the filetype SECOND. New members receive the filetype
FIRST on the A disk.

Working with SAS Files on Disk

Writing to SAS Files on Disk
To write a disk-format SAS file, you usually need only to specify the two-level

filename in the appropriate SAS statement. That is, in most cases you do not need to
assign a libref to the file because SAS automatically assigns librefs for permanent SAS
files on disk. (However, see “When to Assign a Libref for a SAS File on Disk” on page
35 for exceptions and for performance considerations.) For example, suppose you specify
the SAS filename MYLIB.TASTEST in a SAS statement. In CMS terms, this is
equivalent to filename TASTEST and filetype MYLIB:

SAS name CMS name

MYLIB.TASTEST TASTEST MYLIB

libref.filename filename filetype

Because the SAS filename includes no filemode or directory identifier, SAS uses the
following procedure to determine where to write the file:

1 First SAS checks to see whether the libref MYLIB was previously assigned by a
SAS LIBNAME statement or function and is still in effect. If so, SAS writes the
new file to the minidisk or SFS directory that was indicated by the LIBNAME
statement or function.

2 If MYLIB is not a current libref, then SAS checks to see whether MYLIB was
previously assigned as a DDname by a CMS FILEDEF command and is still in
effect. If so, SAS writes the new file to the minidisk or SFS directory that was
indicated by the FILEDEF command.

3 If MYLIB is neither a current libref nor a current DDname, then SAS searches all
accessed minidisks or SFS directories (in the standard search order) to see if there
are any SAS files that have the filetype MYLIB. To do this, SAS must read each
file to determine whether it is a SAS file. In some cases this can cause significant
overhead, which can be avoided by using the LIBNAME statement or function. If
SAS finds a SAS file with the filetype MYLIB, then it writes the new file to the
same minidisk or SFS directory (unless the minidisk is accessed as READ-only,
and then an error message is issued).

4 If no matching filetype is found, then SAS writes the file to the first R/W disk,
using the libref MYLIB as the filetype.

Reading SAS Files on Disk
To read an existing SAS file that is in disk format, you usually need only to specify

the two-level filename in the appropriate SAS statement. That is, in most cases, you do
not need to assign a libref to the file. (However, see “When to Assign a Libref for a SAS
File on Disk” on page 35 for exceptions and performance considerations.) For example,
suppose you specify the SAS file MYLIB.TASTEST in a SAS statement. In CMS terms,
this is equivalent to filename TASTEST and filetype MYLIB:

Using SAS Files 4 When to Assign a Libref for a SAS File on Disk 35

SAS name CMS name

MYLIB.TASTEST TASTEST MYLIB

libref.filename filename filetype

Because the SAS filename includes no filemode or directory identifier, SAS uses the
following procedure to locate the file:

1 First SAS checks to see whether the libref MYLIB was previously assigned by a
SAS LIBNAME statement or function and is still in effect. If so, SAS refers to the
minidisk or SFS directory that was indicated by the LIBNAME statement or
function.

2 If MYLIB is not a current libref, then SAS checks to see whether MYLIB was
previously assigned as a DDname by a CMS FILEDEF command and is still in
effect. If so, SAS refers to the minidisk or SFS directory that was indicated by the
FILEDEF command.

3 If MYLIB is neither a current libref nor a current DDname, then SAS searches all
accessed minidisks or SFS directories (in the standard search order) to locate the
file TASTEST MYLIB.

Note: If the file exists on more than one minidisk or directory, SAS stops
searching as soon as it finds the first TASTEST MYLIB file. If you have multiple
files with the same name and filetype on different minidisks or directories, and
you want to read a file that would not be located first according to the standard
search order, then you must assign and use a libref. 4

When to Assign a Libref for a SAS File on Disk
Under CMS, when you are reading from and writing to disk, you do not always have

to assign a libref. (See “Reading SAS Files on Disk” on page 34and “Writing to SAS
Files on Disk” on page 34 for explanations of why librefs generally are not required for
disk-format files.) You may want to do so, though, for portability and clarity.

In the following examples, filemode can be specified in either of two ways:
� a filemode letter that represents an accessed minidisk or an SFS directory.
� an SFS directory name, which can be fully qualified (for example,

FILEPOOL:USERID.DIR) or relative to the current user (for example, .DIR).

You should assign a libref under the following circumstances:
� You want to read from or write to a SAS file that is not on your default disk. A

libref is not strictly necessary in this case, but using one speeds processing,
because SAS does not have to search multiple disks in order to locate the file. Use
the following syntax:

LIBNAME libref ’physical-name’;

A physical name can be specified as either a filemode or an SFS directory.
For example:

LIBNAME MYLIB ’.MYLIB’;

� You want to use a libref as an alias for the CMS filetype (valid only with the BASE
engine). Use the following syntax:

LIBNAME libref ’filetype filemode’;

For example:

LIBNAME MYLIB ’REPORTS A’;

36 Working with SAS Files on Tape 4 Chapter 4

� You want to speed processing by telling SAS which library engine to use. Use the
following syntax:

LIBNAME libref engine ’physical-filename’;

For example:

LIBNAME MYLIB V6 ’REPORTS A’;

Note: If you omit the engine argument, BASE is assumed by default. 4

Working with SAS Files on Tape
When you write more than one SAS data library on a tape, remember that each

library is a single tape file as long as the same libref is used for each SAS library
member. A SAS data library that contains more than one member on tape is just one
tape file.

Under CMS, SAS uses CMS tape-handling facilities to process tape libraries. Before
you use tape libraries, see “Tape Processing” on page 36. Also, read about tape
processing under CMS in the CMS User’s Guide and in the CMS Command Reference.

Tape Processing
The SAS System under CMS enables you to exploit the tape-handling facilities that

are provided by CMS. Both SAS data libraries and external files are accessed through
the Basic Sequential Access Method (BSAM). This standard interface supports labeled
or unlabeled tapes as well as multifile and multivolume facilities. Any supported
external tape management system can be used. Read about tape processing in VM/
ESA CMS User’s Guide and in VM/ESA CMS Command Reference.

For Version 8, four tape engines are supported: V5TAPE (READ-only), V6TAPE,
V7TAPE, and V8TAPE. Specifying only TAPE defaults to the current release.

Using the LIBNAME and FILENAME Options for Tape Processing
SAS uses a LIBNAME statement or function to access SAS data libraries and a

FILENAME statement to access external files. See “Statements in the CMS
Environment” on page 219 for details about these statements. The LIBNAME and
FILENAME statements provide the following special options particular to tape
processing:

DISP=MOD
specifies that the COPY procedure is to append new members to the end of a
sequential library that is allocated with this option. By default, the COPY
procedure replaces all existing members in the sequential library with the new
members copied from the source library. The DISP=MOD option is valid only for
libraries that use the V6TAPE or later engine, and is valid only with the COPY
procedure. When this option is in effect, SAS does not check the destination
sequential library for duplicate members. Any duplicate members that are not
renamed will not be accessed by SAS, since SAS will always access the existing
member with the same name first.

Using SAS Files 4 Tape Processing 37

LABEL=BLP n
label processing is bypassed. An integer n (the default value is 1) causes
positioning to a specific file on a multifile tape when it is opened.

LABEL=LABOFF
indicates that no tape label processing is desired. A tape is not repositioned before
open processing or after close processing; a CMS TAPE command is used to
reposition the tape if needed.

LABEL=NL n
unlabeled tapes are desired. An NL tape is always rewound at open to perform
label checks. A standard labeled tape is not opened when NL is specified. After
label checking, the tape is positioned to logical file n.

LABEL=SL n
indicates that IBM standard labels are needed. Standard labeled tapes enable
SAS data libraries or external files to span multiple tape volumes. If a tape
management system is installed, the mounting of SL tapes can be deferred until
the files are opened.

LEAVE=YES
indicates that a multifile tape is not repositioned at open for LABOFF or BLP
processing. For SL tapes, LEAVE=YES does not reposition before label processing.
Omitting LEAVE or specifying LEAVE=NO causes a tape to be rewound and
repositioned each time a file is opened.

SYSPARM=value
is used to pass tape mounting parameters to an external tape management
system. When value contains blanks or parentheses, use the form SYSPARM=? to
cause an ENTER SYSPARM prompt. At the prompt, 130 characters of SYSPARM
values can be entered. See the documentation for your external tape management
system for valid values.

VOLID=vvvvvv
defines a one- to six-character volume serial identifier for standard labeled tapes.
When you use the VOLID= option, the VOL1 label on the tape is verified when a
tape file is opened. When you omit VOLID=, no VOL1 check is made.

Using CMS Command Options for Tape Processing
When SL tapes are used, use a CMS LABELDEF command to supplement a SAS

LIBNAME or FILENAME statement. The LABELDEF command enables you to define
fields in the standard HDR1 or EOF1 tape labels. The defined fields or their default
values are checked for input files or are written for output files. The LABELDEF
command is required when multivolume tape files are used, when input checking is
needed, or when specific values are to be written into standard labels. See the VM/ESA
CMS Command Reference for more details. The filename field in a LABELDEF
command should be the same name that is used as a libref in a LIBNAME statement or
function or as the fileref in a FILENAME statement.

Mounting Tapes
The method that is used to have a tape mounted and a drive attached to your userid

is specific to your computing installation. Some installations have special commands for
tape mounts; others require that you send messages to your computer operator. Ask
your SAS Installation Representative or other installation personnel about your local
procedures.

38 Tape Processing 4 Chapter 4

If an external tape management system is available at your installation, it may be
possible to defer mounting of tapes until the tape file is opened. In most cases, however,
the tape drive must be attached to your userid with a tape mounted and ready before
the tape file can be opened.

Positioning Tapes
When LABEL=SL, NL, or BLP, SAS automatically positions a tape to the proper file

when the file is opened. No manual repositioning is needed in most cases.
When either LABEL=LABOFF or LEAVE=YES is used, tape positioning becomes a

user responsibility. The CMS commands TAPE REW (rewind), TAPE FSF (forward
space file), and TAPE BSF (backspace file) are needed to position a tape to the proper
file before processing.

Miscellaneous Tape Notes

� Using DISP=MOD in a FILEDEF command or in a FILE, FILENAME, or INFILE
statement to append output to the end of the file works only for SL tapes. SAS
facilities that append data to existing tape data sets are also restricted to standard
labeled tapes.

� Using DISP=MOD in a LIBNAME statement to specify that copied members are
to be appended to the end of the library works only on sequential libraries that use
the V6TAPE or later engines, and only in conjunction with the COPY procedure.
Note that when DISP=MOD is asserted in a LIBNAME statement of a V6TAPE or
later sequential library, SAS does not check the library for duplicate members.

� The SAS LIBNAME and FILENAME statements do not support the ALT= option
that the FILEDEF command supports. If the ALT= option is needed for
multivolume processing, use a CMS FILEDEF command instead of a LIBNAME or
FILENAME statement.

� The SAS system option TAPECLOSE specifies tape positioning when a SAS data
library on tape is closed. The REWIND and REREAD arguments are treated as
REWIND. No processing occurs under CMS for the FREE and DISP arguments.

� If a tape is initialized with a TAPE WVOL1 command, it contains a dummy HDR1
record. To use this tape with a LIBNAME statement or function, issue a
LABELDEF command with a file identifier that is specified to cause the dummy
HDR1 record to be rewritten.

Tape Processing Example 1: Creating a SAS Data Library without Label
Processing

/* Assume that the tape has been premounted */
/* at virtual address 182 */

libname favorite tape ’tap2’;
cms tape rew;
data favorite.fruits(filedisp=new);

set mylib.oranges;
run;

The TAPE REW command ensures that the tape is rewound to file 1.
FILEDISP=NEW is needed to create the first member in any tape library.

Using SAS Files 4 Tape Processing 39

Tape Processing Example 2: Adding a New Member to an Existing SAS Data
Library

/* Assume a premounted tape at address 183 */

libname fall89 tape ’tap3’ label=NL 2;
data fall89.scores;

input student $11. test 3.0;
cards;
...more data lines...

run;

For NL tapes, positioning is handled by the SAS System under CMS. No TAPE
commands are used. FILEDISP=NEW is not specified because the SAS data library
already exists in file 2.

Tape Processing Example 3: Creating a Multivolume External File

/* Assume the first tape volume VM0202 is */
/* mounted at address 181 */

cms labeldef test1 fid ? volid ?;
DMSLBD220R Enter dataset name:
external.test.file
DMSLBD441R Enter VOLID information:
vm0202 vm0203
DMSLBD441R Enter VOLID information:

...null line entered...

filename test1 tape ’tap1’ label=sl;
data; file test1;

do i = 1 to 100000;
put i;

end;
run;
DMSTLM428I TAP1(181) EOV1 label written on VM0202
DMSTVS265I Attempting to change tape volume for DDNAME TEST1
DMSTVS266I To cancel the tape volume switch, type CANCEL
DMSTVS268I Message sent to userid OPERATOR:
DMSTVS269I Mount tape volume VM0203 on virtual 181 with a write ring;
request number 1

The CMS interface module uses the arguments for the LABELDEF command to
switch to the second volume when the first volume is filled and its EOV1 label has been
written.

Tape Processing Example 4: Retrieving a Multivolume Tape File Managed
by an External Tape Management System

/* Assume the tape management system */
/* supports deferred tape mounts */

40 Tape Processing 4 Chapter 4

cms labeldef test2 fid ?;
DMSLBD220R Enter dataset name:
wx.test.file
filename test2 tape ’tap1’ label=sl sysparm=queue;
Beginning DMSTVI SYSPARM processing.

data;
infile test2;
input x y z;

run;

Beginning DMSTVI OPEN processing
TAPE nnnn ATTACHED TO userid 0181

...more system output...

DMSTLM427I TAP1(181) EOV1 label read
Beginning DMSTVI EOV processing.
TAPE 0181 DETACHED
TAPE nnnn ATTACHED TO userid 0181

...more system output...

Beginning DMSTVI CLOSE processing.

The external tape system handles the tape mounts when the tape file is opened and
when the volume switch occurs. The LABELDEF command identifies the file by its data
set name.

Tape Processing Example 5: Retrieving a SAS Data Library from One Tape
File and an External File from a Second Tape File

/* Assume the tape has been mounted as 184*/

libname first tape ’tap4’ label=blp;
cms tape rew;
data a;

set first.member;
run;

filename second tape ’tap4’ label=blp 2 leave=yes;

data;
infile second;
input a b;

run;

The CMS TAPE REW command positions the tape initially to the load point.
Because LEAVE=YES is specified, the tape is not repositioned when the file SECOND is
read. Without LEAVE=YES, the program still runs, but when SECOND is opened, the
tape is rewound and is spaced forward unnecessarily.

Using SAS Files 4 Specifying an Old or New Library with the FILEDISP= Option 41

Assigning a Libref to a Sequential Library
When a LIBNAME statement or function defines a libref for a library that is in

sequential format, SAS automatically issues a FILEDEF command for the library. If
you issue a FILEDEF command prior to the LIBNAME statement or function, then that
FILEDEF is used.

Most of the options that you can specify in a CMS FILEDEF command can also be
specified as LIBNAME statement or function options. Options that are needed for
sequential processing are also available with the LIBNAME statement or function. (See
“LIBNAME” on page 243 for a complete list of LIBNAME statement or function
options.) Therefore, it is feasible for you to replace all FILEDEF commands in an
existing SAS application with corresponding LIBNAME statement or functions.

To process a sequential data library, use the following form of the LIBNAME
statement or function:

LIBNAME libref TAPE TAPn;

The libref is any valid SAS libref. TAPE designates the TAPE (sequential) engine,
and TAPn specifies the tape device. Here are some examples of LIBNAME statements
and explanations of where the library is assumed to be located:

� This example is a sequential library on the first R/W disk. It is assumed to be on
disk because no tape device is specified.

libname mytaplib tape;

� This example is a sequential library on tape device 181:

libname mytaplib tape ’tap1’;

Specifying an Old or New Library with the FILEDISP= Option
When writing a SAS file to a sequential library, you must be aware of the effects of

the SAS data set option FILEDISP= . The FILEDISP= data set option tells SAS
whether the file being written is a member of an existing SAS data library on the tape
or is the first member of a new library.

When FILEDISP=OLD (the default) is in effect, SAS assumes that you are writing a
member to an existing sequential library. During such a write, SAS searches the
sequential library, which consists of a single SAS file, for a member that has the same
name. If a matching member is found, SAS writes the new member over the existing
member. Any members that appeared after the updated member are lost. If SAS does
not find a matching member, it assumes that it has come to the end of the library. SAS
then writes the new member at the end of the library.

If you specify FILEDISP=NEW, SAS assumes that you are creating a new library,
and writes the new member at the beginning of the SAS file that represents the
sequential library. After the initial write, SAS assumes FILEDISP=OLD for that libref.
Subsequent writes can be submitted with FILEDISP=NEW, but the NEW value will be
ignored. This prevents unintentional data loss after the initial write. To reiterate,
FILEDISP=NEW affects only the first write to a given libref. For all subsequent writes
to that libref, FILEDISP=NEW is ignored, and FILEDISP=OLD is assumed.

CAUTION:
Do not specify FILEDISP=NEW for the first write to a newly allocated libref that represents
an existing sequential library. Doing so writes the new member at the beginning of the
library and any other members in the library are lost. 4

Remember, if you assigned the libref with a LIBNAME statement or function, you
can reassign it with another LIBNAME statement or function. However, if you assigned

42 Specifying an Old or New Library with the FILEDISP= Option 4 Chapter 4

the libref with a CMS FILEDEF command, you must use another FILEDEF command
to change it.

Note: The COPY procedure ignores FILEDISP= and CMS FILEDEF commands
when a sequential library is specified as the destination of the copy. By default, the
COPY procedure removes all members in the destination sequential library and writes
new members into the beginning of the SAS file. To preserve existing members in a
V6TAPE or later library, that library must be allocated using the host option
DISP=MOD in the LIBNAME statement. For details, see “Using the LIBNAME and
FILENAME Options for Tape Processing” on page 36. 4

Examples
� In the following SAS program, a SAS data file is written on an unlabeled tape that

already contains one member of the same SAS data library. Assume that the tape
has already been mounted, but not rewound and positioned. FILEDISP=OLD, the
default, is in effect, so a TAPE REW command is issued to position the tape before
the first member in the library. The DATA step writes the SAS data file on the
tape after the existing SAS file.

cms tape rew;
libname favorite tape ’tap1’;
data favorite.fruits;

set mylib.oranges;
run;

� In the next example, an unlabeled tape already contains two external files.
FILEDISP=NEW is specified for the SAS data set, so the tape must be spaced
forward. Otherwise, SAS writes over the existing files.

cms tape rew;
cms tape fsf 2;
libname fall89 tape ’tap1’;
data fall89.scores (filedisp=new);

input student $11. test1 3.0 test2 3.0
test3 3.0 test4 3.0;

cards;
...more data lines...
;

� In the third example, a SAS data library is created on a new tape that will have
standard labels. The TAPE WVOL1 command writes the volume label at the
beginning of the tape, and the LIBNAME statement includes LABEL=SL.
FILEDISP=NEW is specified because a new library is created.

cms tape rew;
cms tape modeset (den 6250;
cms tape wvol1 vm6111;
libname bank tape ’tap1’ label=sl 1;
data bank.ncyield (filedisp=new);

set agri.ncyield;
run;

� In the next example, a SAS data file is read from a tape with standard labels. The
SAS data file is in the second file of the tape.

libname tapefile tape ’tap2’ label=sl 2;
proc print data=tapefile.monitor;

var weight age initbac baccnt chckdate;

Using SAS Files 4 Examples 43

id subject;
by dose;

run;

� This next example illustrates the effects of specifying FILEDISP=NEW in an
output step other than the first output step that follows the allocation of the libref.
The library MYLIB is a tape format on disk library that has five members named
ONE, TWO, THREE, FOUR, and FIVE. The first data step adds a new member,
SIX, after member FIVE. The second data step writes over member FOUR, and
members FIVE and SIX are lost. The value of FILEDISP=NEW is ignored and the
default FILEDISP=OLD is assumed.

libname mylib tape ’a’;
data mylib.six;
f=1;
output;
run;
data mylib.four (filedisp=new);
d=1;
output;
run;

Working with SAS Files in Tape Format on Disk

In the CMS environment, SAS libraries can be stored on disk in tape format. Keep
the limitations of sequential files in mind when choosing between tape format and disk
format. Tape format on disk is not recommended because of the loss of functionality.
For example, because the files in the SAS library cannot be randomly accessed, SAS
data sets cannot be indexed nor can catalogs be used. Despite the limitation,
tape-format SAS libraries can be processed by SAS under OS/390 and VSE.

As with SAS files on tape, each tape-format SAS file on disk is stored as a single file,
as long as each SAS file has a unique libref. If you write multiple SAS files on disk in
tape format using the same libref, they are all written to one sequential file, making
access to a particular SAS file difficult.

To force tape format for a SAS library on disk, specify the sequential engine in the
LIBNAME statement. The form of the LIBNAME statement to use is

LIBNAME libref TAPE <’physical-name’>;

Examples

� The following example causes the library to be written to the first R/W disk, using
the default filename SASTAPE:

libname raisins tape;

� Be sure to include physical-name if you want the file to be on a minidisk other
than the default. For example, if you want the file to be written on your M-disk,
use this LIBNAME statement:

libname raisins tape ’m’;

� The following example writes two tape-format SAS data files in separate libraries
on the A-disk:

44 Accessing SAS Libraries in Segments 4 Chapter 4

libname day1 tape ’a’;
data day1.earn;

input branch $ 1-20
dept 22-24 @26 revenue 10.;

cards;
...more data lines...
;

libname day2 tape ’a’;

data day2.earn;
input branch $ 1-20

dept 22-24 @26 revenue 10.;
cards;

...more data lines...
;

� The next example reads the tape-format SAS data sets that were created in the
previous example.

proc print data=day1.earn;
id branch;
var revenue dept;

run;
proc print data=day2.earn;

id branch;
var revenue dept;

run;

Accessing SAS Libraries in Segments

For improved performance you can create and read SAS data libraries that are
stored in CMS segments. To implement SAS libraries in segments, install SAS
accordingly, as specified in the installation instructions for the SAS System under CMS.

Access to a SAS library in a segment (READ-only) requires a slight modification of
the usual LIBNAME statement, using the following syntax:

LIBNAME libref <engine<’segment-name’> SEGMENT=YES>;

libref
is a name that identifies the library. If ’segment-name’ is not specified, then SAS
uses the libref as the segment name, which means that it cannot contain
characters such as an underscore (-), which is valid in a filetype but invalid in a
segment name.

engine
identifies the engine to be loaded to process the library. Only a base engine may be
specified. Valid base engine names are V8, V7, or V6.

’segment-name’
is a quoted string that provides the name of the segment if it is different from the
libref. The string must consist of a single alphanumeric name of up to 8 characters
from the set: a through z, A through Z, 0 through 9, @, #, $. Specify a segment
name when you want to use the libref as an alias for the segment name.

Using SAS Files 4 How SAS Assigns an Engine When No Engine Is Specified 45

SAS issues a SEGMENT RESERVE command for the segment and then loads the
segment with a DIAGNOSE instruction. If either command fails for any reason, the
LIBNAME statement fails.

A libref that is assigned to a library in a segment receives a path name of
segment-name SG. The filetype is segment-name and the file mode is SG.

Examples
A segment named LABDATA contains a SAS library. The following example loads

the library and assigns the libref LABDATA:

libname labdata segment=yes;

This next example loads a SAS library in the segment named SALEDATA and
assigns the libref BOOKDATA:

libname bookdatab ’saledata’ segment=yes;

Transporting SAS Files between Operating Environments
SAS supports three ways of transporting files between CMS and other operating

environments: the XPORT engine, the CPORT and CIMPORT procedures, and the
separately licensed SAS/CONNECT software.

The process of moving a SAS file to or from CMS with the XPORT engine or with the
CPORT and CIMPORT procedures involves three general steps:

1 Convert the SAS file to the intermediate form known as transport format.
2 Physically move the transport format file to the other operating environment.
3 Convert the transport format file into a normal, fully functional SAS file, in the

format that is required by the other operating environment.

For further information on the XPORT engine and about the CPORT and CIMPORT
procedures, including limited restrictions, refer to Moving and Accessing SAS Files
across Operating Environments.

SAS/CONNECT software enables you to move files between operating environments
without using the intermediate transport format. For further information about SAS/
CONNECT, including limited restrictions, refer to SAS/CONNECT User’s Guide.

How SAS Assigns an Engine When No Engine Is Specified
In some cases, you may choose not to specify an engine name in the LIBNAME

statement or function for a data library. For these situations, you need to know how
SAS assigns an engine to the library.

� If you specify TAPn as the physical name, SAS assigns the engine that is specified
by the SEQENGINE= system option. This is true for both new and existing
libraries.

� For existing libraries on disk, SAS examines the library header record and assigns
an engine that is based on its content. The engines follow:

� V8 for a Version 8 standard library.
� V8TAPE for a Version 8 sequential library.

46 Assigning Multiple Librefs to a Single SAS Data Library 4 Chapter 4

� V7 for a Version 7 standard library.

� V7TAPE for a Version 7 sequential library.

� V6 for a Version 6 standard library.

� V6TAPE for a Version 6 sequential library.

� V5 for any Version 5 library.

Assigning Multiple Librefs to a Single SAS Data Library

You can assign more than one libref to the same SAS data library. Any assigned
libref may be used to access the data library. In fact, you can use the librefs
interchangeably.

For example, suppose that in two different programs you used different librefs for the
same SAS data library. Later you develop a new program from parts of the two old
programs, or you include two different programs with the %INCLUDE statement. In the
new program, you could simply assign the two original librefs to the library and proceed.

Clearing Librefs and DDnames

To clear a libref that was assigned in a LIBNAME statement, issue a LIBNAME
statement in the following form:

LIBNAME libref <CLEAR>;

Or issue a LIBNAME function:

LIBNAME (libref, CLEAR);

Alternatively, in the windowing environment, use the EXPLORER window to clear a
libref. In the EXPLORER window (available as an option of the VIEW pmenu), select
the libref, press the left mouse button (or the 3270 equivalent if you do not have a
mouse), and select DELETE from the pull-down menu.

The LIBNAME statement, LIBNAME function, and the EXPLORER window deassign
the libref and deallocate the library only if no other librefs are assigned to that library.

Note: Librefs are cleared automatically at the end of your SAS session. 4

To clear a DDname that you have used as a libref in a SAS program, first clear the
libref as shown. This step is necessary because the first time you use a DDname in a
SAS program, SAS assigns it as a libref for the SAS data library. Then issue the CMS
FILEDEF command with the CLEAR option to clear the DDname.

For example, suppose that you had used the CMS FILEDEF command to assign the
DDname MYLIB to a SAS data library and that you subsequently used the DDname as
a libref in a SAS program. The following two statements would clear both the libref and
the DDname:

libname mylib clear;
x filedef mylib clear;

If the data library is currently being used by a DATA step or PROC, the LIBNAME
statement or function fails.

Using SAS Files 4 Listing SAS Files 47

Listing Your Current Librefs

You can use either the LIBNAME command or a form of the LIBNAME statement to
list your current librefs. In both cases, DDnames for externally allocated data libraries
are also listed, but only after you have used them as librefs in your SAS session. (See
“Using a DDname as a Libref” on page 33 .)

� When you issue the LIBNAME command from a SAS window, the ACTIVE
LIBRARIES window is displayed.

The LIBNAME window lists all the librefs that are currently assigned for your
session. The LIBNAME window lists the full physical path name of the SAS data
library, as well as the engine that is used to access the data library.

It lists all SAS files that are associated with the selected libref.

� The following form of the LIBNAME statement writes to the SAS log the
attributes of all the librefs that are currently assigned for your session:

LIBNAME _ALL_ LIST;

Managing Your CMS SAS Files and Libraries

SAS provides the CONTENTS, COPY, and DATASETS procedures to facilitate the
management of SAS data libraries and files. Host-specific aspects of these procedures
are described in “Procedures in the CMS Environment” on page 183. For complete
discussions of these and other SAS utility procedures, see SAS Procedures Guide. The
SAS procedures are described briefly in this section and are compared to the CMS
commands that perform similar functions.

Listing SAS Files
Both the CONTENTS procedure and the CONTENTS statement in the DATASETS

procedure can list all SAS files in a SAS library. The CONTENTS procedure can also
retrieve the descriptor information at the beginning of a SAS data set.

To compare the file information that is generated by the CMS FILELIST command
with the information that is generated by PROC CONTENTS, see Output 4.1 on page
47 and Output 4.2 on page 48. Output 4.1 on page 34 illustrates the file information
that is displayed by issuing the following CMS FILELIST command

filelist * mylib a

This command, issued in CMS subset mode, requests a listing of all files on the A
disk that have the filetype MYLIB.

Output 4.1 Sample Output from the CMS FILELIST Command

48 Listing SAS Files 4 Chapter 4

USER1 FILELIST A0 V 108 Trunc=108 Size=3 Line=1 Col=1 Alt=0
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time

3RANCH MYLIB A1 F 1024 3 1 06/01/99 8:39:55
0HSCREEN MYLIB A1 F 1024 13 3 06/01/99 16:47:25
HOUSES MYLIB A1 F 1024 3 1 06/01/99 16:47:20

1=Help 2=Refresh 3=Quit 4=Sort(type) 5=Sort(date) 6=Sort(size)
7= Backward 8=Forward 9=FL /n 10= 11=XEDIT/LIST 12=Cursor

====> X E D I T 1 File

Output 4.2 on page 48 shows the directory information that is retrieved by PROC
CONTENTS for the same group of files. The following SAS statement lists all data sets
in the SAS data library MYLIB. NODS specifies that no data set descriptor information
be printed. The DIRECTORY option is assumed by default.

proc contents data=mylib._all_ nods;

Output 4.2 Sample Output from the CONTENTS Procedure

The SAS System 3
08:31 Monday, June 1, 1999

CONTENTS PROCEDURE

-----Directory-----

Libref: MYLIB
Engine: V8
Physical Name: MYLIB A1

Name Memtype File Last Modified
Size

--

1 HOUSES DATA 9 01Jun1999:16:47:20
2 HSCREEN CATALOG 9 01Jun1999:16:47:25
3 RANCH VIEW 9 01Jun1999:08:39:55

Compare the CMS filenames that are listed by the CMS FILELIST command with
the SAS filenames that are listed by the CONTENTS procedure. For example, look at
the information for SAS file RANCH in Output 4.2 on page 48 . You see that its
memtype is VIEW. Now look at the information in Output 4.1 on page 47 . You see an
entry for a CMS file with a filename of 3RANCH. CMS recognizes the SAS file RANCH

Using SAS Files 4 Deleting SAS Files 49

as 3RANCH because SAS added the prefix 3 to the filename so that it could recognize
the file’s SAS filetype. (See “SAS Filename Restrictions” on page 8 for more information
about prefix characters.)

When you use SAS utilities to manage your SAS files, you do not need to be
concerned about the prefix. But when you use CMS commands, you must use the prefix.

Copying SAS Files
The best ways to copy SAS files are with the SAS COPY procedure or with the

COPY statement of the DATASETS procedure. However, sometimes it is possible to use
CMS commands. CMS commands cannot convert SAS files to and from tape format;
they cannot read DDnames that begin with TAPE. But you can use CMS commands to
copy SAS files in the following ways:

� The COPYFILE command can copy SAS files from minidisk to minidisk.
� The MOVEFILE command can copy SAS files from minidisk to minidisk, from

tape to tape, from minidisk to tape, or from tape to minidisk. If you move a
disk-format SAS file to tape with the MOVEFILE command, the SAS file cannot
be accessed until it is moved back to a minidisk with the MOVEFILE command.

� The DISK DUMP command punches a SAS file to the virtual card punch. The
DISK LOAD command restores a file that was punched with the DISK DUMP
command to its original form.

� The TAPE or VMFPLC2 DUMP command dumps disk files to tape. The TAPE or
VMFPLC2 LOAD command restores disk files that were written to tape by the
TAPE or VMFPLC2 DUMP commands. If you dump any SAS file to tape with the
TAPE or VMFPLC2 DUMP commands, the SAS file cannot be accessed until it is
restored to a minidisk with the TAPE or VMFPLC2 LOAD commands.

If you use a CMS command, remember to include any prefix characters in the CMS
filename. (See “SAS Filename Restrictions” on page 8 for information about prefix
characters.) For example, to copy the SAS data view PROJCTS MONTHLY into
another SAS data view using the CMS COPYFILE command, you can issue the
following command:

copy 3projcts monthly a 3rhouse monthly b

When you use the CMS COPYFILE command to copy a SAS data set that has an
index file associated with it, be sure to copy the index file as well.

Deleting SAS Files
The SAS DATASETS procedure deletes and renames disk-format SAS files. You can

also use the CMS ERASE command to delete some or all members of a SAS data
library. For example, suppose you create a catalog called MYLIB.DATASCR (CMS file
0DATASCR MYLIB) that contains FSEDIT screens as entries. In a PROC FSEDIT
statement you specify the SAS name for the file, which is the CMS filename without the
prefix 0. For example, you can issue the following statement:

proc fsedit data=mylib.houses screen=mylib.hscreen;

But if you want to use the CMS ERASE command, specify the CMS filename
0HSCREEN, as in the following example:

ERASE 0HSCREEN MYLIB A

(See “SAS Filename Restrictions” on page 8 for more information about prefix
characters.)

50 Renaming SAS Files 4 Chapter 4

Renaming SAS Files
You can rename a disk-format SAS file with the CHANGE, EXCHANGE, and AGE

statements in the DATASETS procedure or with the CMS RENAME command. If you
use the RENAME command, remember to include any prefix characters in the filename.

Estimating the Size of a SAS Data Set
To obtain a rough estimate of how much space you need for a disk-format SAS data

set that was created by a V6, V7, or V8 engine, follow these steps:

1 Use PROC CONTENTS to determine the size of each observation. (See “Using the
CONTENTS Procedure to Determine Observation Length” on page 50.)

2 Multiply the size of each observation by the number of observations.
3 For V6 engines, add 10% for overhead. For V7 and V8 engines, add 1K (or 1,024

bytes) for overhead.
4 The result of this calculation will be in bytes. You can convert this value to blocks

based on the capacity of your data storage device.

Note: This procedure is valid only for uncompressed native SAS data files that were
created with a V6, V7, or V8 engine. 4

Here is an example of a calculation for a V6 system that assumes a 2048-byte page size.
1 PROC CONTENTS reveals an observation size of 484 blocks.
2 484 blocks-per-observation * 16 observations = 7744 bytes. Round up 7744 to the

next multiple of 2048, which is 10240 bytes.
3 (10240 * 1.10)+ 10240 = 11264 bytes.
4 11264/4096 = 2.75, which rounds up to 3 blocks

Here is an example of a calculation for a V8 system.
This example assumes an 8192-byte page size.
1 PROC CONTENTS reveals an observation size of 484 blocks.
2 484 blocks-per-observation * 16 observations = 7744 bytes. Round up 7744 to the

next multiple of 8192, which is 16384 bytes.
3 16384 + 1024 = 17408 bytes.
4 17408/4096 = 4.25 , which rounds up to 5 blocks.

Using the CONTENTS Procedure to Determine Observation Length
To determine the length of each observation in a Version 8 SAS data set, create a

SAS data set that contains one observation. Then run the CONTENTS procedure to
determine the observation length. The CONTENTS procedure displays engine and
host-dependent information, including page size, as well as the number of observations
per page for uncompressed SAS data sets. For example, the following input produces a
SAS data set plus PROC CONTENTS output:

data oranges;
input variety $ flavor texture looks;
cards;

navel 9 8 6

Using SAS Files 4 Using the CONTENTS Procedure to Determine Observation Length 51

;
proc contents data=oranges;
run;

The output is shown in Output 4.3 on page 51 .

Output 4.3 CONTENTS Procedure Output

The SAS System 1
CONTENTS PROCEDURE

Data Set Name: WORK.ORANGES Observations: 1
Member Type: DATA Variables: 4
Engine: V8 Indexes: 0
Created: 14:27 Monday, June 1, 1999 Observation Length: 32
Last Modified: 14:27 Monday, June 1, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Engine/Host Dependent Information-----

Data Set Page Size: 8192
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 254
Obs in First Data Page: 1
Number of Data Set Repairs: 0
File Name: ORANGES WORK A1
Release Created 7.00.00
Host Created VM/ESA
Owner Name USERID

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos

2 FLAVOR Num 8 8
4 LOOKS Num 8 24
3 TEXTURE Num 8 16
1 VARIETY Char 8 0

The only values that you need to pay attention to are Observation Length and
Compressed:

Observation Length
is the record size in bytes.

Compressed
has the value NO if records are not compressed; it has the value YES if records
are compressed. (If the records are compressed, do not use the procedure given in
“Estimating the Size of a SAS Data Set” on page 50 .)

52 Using the CONTENTS Procedure to Determine Observation Length 4 Chapter 4

Th e correc t bibliographi c citatio n fo r thi s manua l is as follows : SAS Institut e Inc.,
SAS ® Companion for the CMS Environment, Version 8 , Car y, NC: SAS Institut e Inc.,
1999.

SAS® Companion for the CMS Environment, Version 8
Copyrigh t © 1999 by SAS Institut e Inc. , Car y, NC, USA.
ISB N 1–58025–481–0
All right s reserved . Printe d in the Unite d State s of America . No par t of thi s publication
ma y be reproduced , store d in a retrieva l system , or transmitted , by an y for m or by any
means , electronic , mechanical , photocopying , or otherwise , withou t the prio r written
permissio n of the publishe r, SAS Institute , Inc.
U.S. Government Restricted Rights Notice. Use , duplication , or disclosur e of the
softwar e by the governmen t is subjec t to restriction s as set fort h in FAR 52.227–19
Commercia l Compute r Software-Restricte d Right s (Jun e 1987).
SAS Institut e Inc. , SAS Campu s Drive , Car y, Nort h Carolin a 27513.
1st printing , Octobe r 1999
SAS® an d all othe r SAS Institut e Inc . produc t or servic e name s ar e registere d trademarks
or trademark s of SAS Institut e Inc . in the USA an d othe r countries.® indicate s USA
registration.
IBM® an d DB2® ar e registere d trademark s or trademark s of Internationa l Business
Machine s Corporation.® indicate s USA registration.
Othe r bran d an d produc t name s ar e registere d trademark s or trademark s of their
respectiv e companies.
Th e Institut e is a privat e compan y devote d to the suppor t an d furthe r developmen t of its
softwar e an d relate d services.

