
95

C H A P T E R

9
The SAS Interface to REXX

Overview 95
The Subcommand Environment 96

Retrieving and Assigning the Values of REXX Variables in a SAS Program 97

Using the GETEXEC DATA Step Function 97

Using the PUTEXEC CALL Routine 98

Routing Messages to the SAS Log 98
Return Codes from SAS Statements Submitted by a SASMACRO 99

RC Variable 99

RC Values 99

Return Codes from SASMACROs 101

Mode Switching 101

Productivity Aids for Interactive SAS Sessions under CMS 102
Invoking a SASMACRO from the Windowing Environment Command Line 103

Overview
REXX is a general purpose, high-level procedural language that is well known for

combining powerful programming features with ease of use. REXX is also well known
for its strengths as a macro language, most commonly with XEDIT. The SAS REXX
macro facility enables you to use REXX as a macro language with SAS. This expands
the programming possibilities available to you with SAS under CMS.

The REXX macro facility can be used to do the following things that the SAS macro
facility can do:

� dynamically create and submit SAS statements
� communicate information between SAS steps
� route messages to the SAS log
� issue commands to CMS
� pass information between SAS and CMS using GLOBALV variables.

You can also use the REXX macro facility to
� pass information between SAS and CMS using REXX variables
� temporarily transfer control from an executing macro back to an interactive SAS

session
� create pseudo SAS windowing environment commands
� transfer control to a CMS application (for example, XEDIT or FILELIST), and

invoke SAS commands from within them.

To use the SAS REXX macro facility, write a REXX macro program and submit it
from within a SAS session. A SAS REXX macro (SASMACRO) is a REXX program with



96 The Subcommand Environment 4 Chapter 9

a filetype of SASMACRO and a filename that you choose. A SASMACRO can contain
SAS statements in addition to REXX code. When a SASMACRO is running, any
instruction that REXX interprets as an external command is submitted to SAS for
execution. For example, the following program, TRYIT SASMACRO (a version of which
is shipped with SAS), submits a DATA step and a PROC step to SAS:

/* TRYIT SASMACRO - a SAS REXX macro */
/* process arguments, establish defaults */

parse arg dname argname .
if dname = ’’ then dname = ’a’
if argname = ’’ then argname = ’x’

/* Pass a DATA step and PROC step into SAS */
’data’ dname’;’ argname’=1; run;’
’proc contents; run;’

exit /* Return to SAS */

To run a SASMACRO, submit its CMS filename and any arguments as if it were a
SAS statement. This effectively makes the SASMACRO an extension of the SAS
language. A statement that invokes a SASMACRO may be placed anywhere in a SAS
program. When SAS encounters a statement that it does not recognize, it passes the
statement to the SAS REXX macro facility for execution. If there is no SASMACRO by
the specified name, SAS flags the statement as invalid and prints an error message in
the log.

Note: A SASMACRO cannot have a name that is the same as a valid SAS statement
or its abbreviation. 4

To invoke the TRYIT SASMACRO example with two arguments, submit the following
statement to SAS:

TRYIT A B;

This creates SAS data set A that contains one observation with one variable B, which
has a value of 1.

A SASMACRO is invoked when SAS encounters it, just as any other global SAS
statement in that location would be. A SASMACRO that is invoked within a DATA step
is executed only one time, when the DATA step is compiled. It is not executed for each
observation in the DATA step. Any SAS statements that are submitted from the
SASMACRO are processed before subsequent statements are processed in the SAS
program that invokes the SASMACRO.

The Subcommand Environment
When a SASMACRO receives control, the default subcommand environment is ’SAS’.

This causes REXX to pass external commands to SAS. You can use the REXX
ADDRESS instruction, followed by the name of an environment, to change to a different
default subcommand environment. For example:

address command
address xedit
address sas

A SASMACRO is analogous to an XEDIT macro in its structure and invocation:
� A SASMACRO is a REXX program. It is submitted as part of a SAS program in

the same way as any other global SAS statement. A SASMACRO submits SAS



The SAS Interface to REXX 4 Using the GETEXEC DATA Step Function 97

statements through the SAS subcommand environment by specifying or defaulting
to ’SAS’ as its "address."

� An XEDIT macro is a REXX program. It is executed from the XEDIT command
line in the same way as any other XEDIT subcommand. An XEDIT macro submits
XEDIT subcommands through the XEDIT subcommand environment by specifying
or defaulting to ’XEDIT’ as its "address."

From the time a SASMACRO is invoked until it is terminated, the SAS subcommand
environment is available. For example, a SASMACRO can invoke a REXX exec that
issues the following instruction and submits SAS statements:

address sas

You can use a REXX exec in this way to layer and reuse the code in a SASMACRO.
Although SASMACROs and EXECs can be nested, the SAS subcommand

environment itself is not re-entrant; that is, it cannot accept a new SAS statement while
a previous statement that is submitted via ADDRESS SAS is still running. The
limitation that this imposes is that a SASMACRO cannot use the X statement or the
CMS statement to execute a command that, in turn, issues SAS statements via
ADDRESS SAS. Instead, use the ADDRESS command or ADDRESS CMS to execute
such a command.

Each command string that is submitted to the SAS subcommand environment is
limited to a maximum length of 132 characters. This limit is on the final length of the
string that results from the completion of all interpretation by REXX.

Retrieving and Assigning the Values of REXX Variables in a SAS
Program

Using the GETEXEC DATA Step Function
During the execution of a SASMACRO you can retrieve the value of any exposed

REXX variable from the current REXX program into a DATA step by using the
GETEXEC function. The GETEXEC function is analogous to the SYMGET function in
the SAS macro facility.

The following SASMACRO submits a DATA step that uses the GETEXEC function to
retrieve the value of the REXX variable DATALINE. It then prints the value of
DATALINE in the SAS log. Note that the REXX variable name must be specified in
uppercase letters.

/* GETLINE SASMACRO - a SAS REXX macro */
dataline=’This data will be placed into the SAS’,

’data set A’
/* Pass a DATA step to SAS */

"data a;"
"x=getexec(’DATALINE’);"
"put x;"

"run;"
exit

For more information about the syntax and usage of GETEXEC, see “GETEXEC” on
page 155.



98 Using the PUTEXEC CALL Routine 4 Chapter 9

Using the PUTEXEC CALL Routine
During the execution of a SASMACRO, you can assign a value to a REXX variable in

the current REXX program from a DATA step by using the PUTEXEC call routine. The
PUTEXEC call routine is analogous to the SYMPUT routine in the SAS macro facility.

The following SASMACRO submits a DATA step that assigns the value of a SAS
variable to the REXX variable SASTIME. The SASMACRO then displays the value of
the REXX variable on the console. Note that the REXX variable name must be specified
in uppercase letters.

/* PUTTIME SASMACRO - a SAS REXX macro */
"data _null_;"

"time=symget(’SYSTIME’);"
"call PUTEXEC(’SASTIME’,time);"

"run;"
say ’SAStime is’ sastime
exit

For more information about the syntax and usage of PUTEXEC, see “CALL
PUTEXEC” on page 138.

Routing Messages to the SAS Log

A set of directives is available to SASMACRO programs to control printing to the
SAS log. SASMACRO directives use a leading ++ sequence to differentiate them from
normal SAS language statements. The directives must be specified in uppercase letters
and cannot end in a semicolon. They must also be submitted on a separate line from
other SAS statements.

Three directives are available for controlling printing to the SAS log:

’++SASLOG’
causes subsequent SAS statements submitted from the SASMACRO to be printed
in the SAS log.

’++NOLOG’
causes subsequent SAS statements submitted from the SASMACRO not to be
printed in the SAS log. This is the default setting.

’ ++SASLOG message-text’
prints message-text in the SAS log and causes subsequent SAS statements that are
submitted from the SASMACRO to be printed in the SAS log.

The following example uses the ++SASLOG directive to place text and subsequent
SAS statements in the SAS log:

/* An extended version of TRYIT SASMACRO */
/* process arguments, establish defaults */

parse arg dname argname .
if dname = ’’ then dname = ’a’
if argname = ’’ then argname = ’x’

/* Place text into SAS log */
/* and subsequent SAS statements */

’++SASLOG Running the TRYIT macro.’



The SAS Interface to REXX 4 RC Values 99

/* Pass a DATA step and PROC step into SAS */
’data’ dname’;’ argname’=1; run;’
’proc contents; run;’

exit /* Return to SAS */

Output 9.1 on page 99 shows the resulting SAS log:

Output 9.1 SAS Log for TRYIT SASMACRO

1 tryit;
++++ Running the TRYIT macro.
++++ data a; x=1; run;
NOTE: The data set WORK.A has 1 observations and 1 variables.
++++ proc contents; run;

Return Codes from SAS Statements Submitted by a SASMACRO

RC Variable
In a REXX program, the special variable RC is always set when any command

string is submitted to an external environment. Ordinary execs submit CMS
commands. When the CMS command completes and control is returned to REXX, the
RC variable is set to the return code from the CMS command.

The RC variable is set in a slightly different way for a SASMACRO. The strings that
are submitted to SAS are not necessarily complete execution units. SAS collects SAS
language elements until it encounters a RUN statement, at which point it runs the SAS
step. The RC variable is set to 0 when partial program fragments are submitted. The
SAS return code is assigned to the REXX variable RC only for the string that contains
the RUN statement.

RC Values
The value of the REXX RC variable is set to the value of the &SYSERR automatic

SAS macro variable in all but four cases:
� when an attempt is made to enter the SAS subcommand environment recursively.

In this case, the statement is ignored and the RC value is set to −2.
� when a SASMACRO is active and the SAS session is terminated with a BYE

command, or with an ENDSAS command or statement. In this case, the SAS



100 RC Values 4 Chapter 9

session returns control to the SASMACRO. SAS statements that are subsequently
submitted by the SASMACRO cannot be executed, and the RC value is set to −3
for each.

� when a SASMACRO is active and SAS is interrupted with an attention and the
SAS task is cancelled. In this case SAS statements that are subsequently
submitted by the SASMACRO are not executed, and the RC value is set to −4 for
each.

� when an attempt is made to submit a command string that is longer than 132
characters. In this case, the statement is ignored and the RC value is set to −5. An
error message and the first 132 characters of the string are written to the SAS log.

The following RCTEST SASMACRO demonstrates when the REXX variable RC gets
set:

/* RCTEST SASMACRO - a SAS REXX macro */
/* Show SAS statements in the log */
’++SASLOG’
’data x;’
’do i = 1 to 10;’
’output;’
/* show rc in the SAS log */
’++SASLOG The RC value is:’ rc
’run;’
/* show rc in the SAS log */
’++SASLOG The RC value is:’ rc
exit

Output 9.2 on page 100 shows the resulting SAS log.

Output 9.2 SAS Log for RCTEST

1 rctest;
++++ data x;
++++ do i = 1 to 10;
++++ output;
++++ The RC value is: 0
++++ run;

5 run;
--
117

ERROR 117-185: There were 1 unclosed DO blocks.

NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.X may be incomplete. When this step was stopped,

there were 0 observations and 1 variables.
++++ The RC value is: 1012



The SAS Interface to REXX 4 Mode Switching 101

Return Codes from SASMACROs

The return code from a SASMACRO is not automatically available to SAS. To pass
information like a return code from a SASMACRO back to SAS, you can use the
GETEXEC DATA step function that is described in “Using the GETEXEC DATA Step
Function” on page 97.

Mode Switching

In addition to submitting SAS language statements from a SASMACRO, you can use
a SASMACRO to temporarily pass interactive control to the SAS session. This
environment, called SAS SUBSET, is similar in concept to CMS SUBSET. A
SASMACRO (or any REXX program that is executed while a SASMACRO is running
that has ADDRESS SAS in effect), can pass control to SAS SUBSET by issuing the
following directive:

’++SAS’

To exit SAS SUBSET and return to the suspended exec, submit the following SAS
statement:

cmsreturn;

CMSRETURN is accepted as a valid SAS statement only when SAS SUBSET is in
effect, and it cannot be submitted from a SASMACRO.

The following example demonstrates switching from a SAS session to an XEDIT
session to SAS SUBSET and back again by using a SASMACRO and an XEDIT macro.

The program named SASXEDIT SASMACRO shows how to temporarily pass control
to XEDIT:

/* SASXEDIT SASMACRO - a SAS REXX macro */
/* that invokes XEDIT */
parse upper arg argstring
address command ’XEDIT’ argstring
exit

The following program named SASSUB XEDIT shows how to temporarily pass
control to SAS SUBSET:

/* SASSUB XEDIT - an XEDIT macro */
/* that enters SAS SUBSET */
address sas ’++SAS’
/* use CMSRETURN; to get back to XEDIT */
exit rc

From the Program Editor window, submit the following statement:

sasxedit FILENAME FILETYPE FILEMODE;

This invokes SASXEDIT SASMACRO, which invokes an XEDIT session. At the
XEDIT command line type:

sassub

This invokes SASSUB XEDIT, which in turn invokes SAS SUBSET in the Program
Editor window as a continuation of your SAS session. Next submit this SAS statement:

cmsreturn;



102 Productivity Aids for Interactive SAS Sessions under CMS 4 Chapter 9

This ends SAS SUBSET and resumes XEDIT, which runs the remaining portion of
SASSUB XEDIT and then resumes your XEDIT session. Ending the XEDIT session
(using FILE or QUIT) passes control back to the original SAS session, which runs the
remaining portion of SASXEDIT SASMACRO and then returns to the Program Editor
window.

Figure 9.1 on page 102 illustrates the flow of control among the original SAS session,
the XEDIT session, and the SAS SUBSET session.

Figure 9.1 Flow of Control

original SAS
session

SASMACRO
program XEDIT

session

++SAS
directive SAS SUBSET

session

EXIT RC statement CMSRETURN statement

Productivity Aids for Interactive SAS Sessions under CMS

A set of sample execs is provided with SAS to show how the SAS interface to REXX
can be used to improve productivity by integrating CMS commands such as FILELIST.
Each of the following sample SASMACROs issues the corresponding CMS command:

DIRLIST SASMACRO

FILELIST SASMACRO

MACLIST SASMACRO

RDRLIST SASMACRO

XEDIT SASMACRO

Like other SASMACROs, these commands can be issued as SAS statements without
the prefix of X or CMS. To issue autocall macros as SAS statements, specify the SAS
system option MAUTOSOURCE. To invoke SASMACROs from the windowing
environment command line, see “Invoking a SASMACRO from the Windowing
Environment Command Line” on page 103.

In addition, you can issue commands from within CMS applications to interact
directly with the SAS session.

While any of the preceding SASMACROs are active, the following special commands
are supported from within CMS applications:

DM <command>
is used on an XEDIT command line or an xxxLIST command line to switch the
mode to the SAS windowing environment in a SAS subset and to execute a
command. For example, DM KEYS switches to the KEYS window.

When you submit the CMSRETURN statement, control returns to the XEDIT
session or to the xxxLIST menu. This command is implemented by the SAS$DM
exec.

INCLUDE
is used on a FILELIST file line to include the specified FILELIST file into the
Program Editor window. Control returns to the FILELIST menu. This command is
implemented by the SAS$INCL exec.



The SAS Interface to REXX 4 Invoking a SASMACRO from the Windowing Environment Command Line 103

PGM
is used on an XEDIT command line or an xxx LIST command line to switch the
mode to the Program Editor window as a SAS subset. When you submit the
CMSRETURN statement, control returns to the XEDIT session or to the xxxLIST
menu. This command is implemented by the SAS$PGM exec.

SUBMIT
is used on an XEDIT command line or a FILELIST file line to submit to SAS the
current XEDIT file or specified FILELIST file. Control returns to the XEDIT
session or to the FILELIST menu. This command is implemented by the
SAS$SUB exec.

Invoking a SASMACRO from the Windowing Environment Command Line
Any SASMACRO can be invoked as a SAS statement, but not directly as a windowing

environment command. A SASMACRO can be indirectly invoked from the windowing
environment command line by using a command-style SAS macro as an interface.

A command-style SAS macro that invokes a SASMACRO should have the following
form:

%macro TRYIT/cmd parmbuff;
pgm;
submit "TRYIT &syspbuff;"

%mend;

In the example, the first line begins the definition of a command-style SAS macro
named TRYIT whose arguments are assigned as the value of the automatic macro
variable SYSPBUFF. The second and third lines specify the execution of TRYIT
SASMACRO from within the TRYIT SAS macro, by using the original arguments.

You can store this macro as you would any other SAS macro, in SAS code or in an
autocall library for example, as described in the SAS Macro Language: Reference. Once
the macro is defined in your SAS session, you can issue the command TRYIT on the
windowing environment command line to execute the TRYIT SASMACRO.

Note: The SAS system option CMDMAC must be in effect for SAS to recognize
command-stye macros. 4

Autocall macros that invoke the Productivity Aid SASMACROs (see “Productivity
Aids for Interactive SAS Sessions under CMS” on page 102) are already provided for
you so only the CMDMAC system option is required to use them as windowing
environment commands.

Note: The SAS system option MAUTOSOURCE must be in effect in order for you to
use the autocall facility. 4



104 Invoking a SASMACRO from the Windowing Environment Command Line 4 Chapter 9



The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the CMS Environment, Version 8 , Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the CMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–481–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


