
125

C H A P T E R

13
Formats

Formats in the CMS Environment 125
Considerations for Using Formats under CMS 125

EBCDIC and Character Data 125

Floating-Point Number Format and Portability 126

Writing Binary Data 126

BEST 127
E 128

HEX 129

IB 130

PD 131

RB 132

w.d 133
ZD 135

Formats in the CMS Environment

In general, formats are completely portable. Only the formats that have host-specific
behavior are documented in this section.

All of these formats are described in SAS Language Reference: Dictionary; that
information is not repeated here. Instead, each format description includes "CMS
specifics" information that tells how the format behaves under CMS. Then you are
referred to SAS Language Reference: Dictionary.

Considerations for Using Formats under CMS

EBCDIC and Character Data
The following character formats produce different results on different computing

platforms, depending on which character-encoding system the platform uses. Because
CMS uses the EBCDIC character-encoding system, all of the following formats convert
data from EBCDIC.

These formats are not discussed in detail in this section because the EBCDIC
character-encoding system is their only host-specific aspect.

$ASCIIw.
converts EBCDIC character data to ASCII character data.



126 Floating-Point Number Format and Portability 4 Chapter 13

$BINARYw.
converts EBCDIC character data to binary values.

$CHARw.
writes standard character data.

EBCDICw.
converts native format character data to EBCDIC representation.

$HEXw.
converts EBCDIC character data to hexadecimal data.

$OCTALw.
converts EBCDIC character data to octal data.

VARYINGw.
writes varying-length character values.

$w.
writes standard character data.

All the information that you need in order to use these formats under CMS is
included in SAS Language Reference: Dictionary.

Floating-Point Number Format and Portability
The manner in which CMS stores floating-point numbers can affect your data. See

“Representation of Floating-Point Numbers” on page 111 for details.

Writing Binary Data
If a SAS program that writes binary data is run on only one type of machine, you

can use the following native-mode formats. Native mode means that these formats use
the byte-ordering system and floating-point representation which are standard for the
machine.

IBw.d writes integer binary (fixed-point) values, including negative values,
which are represented in twos complement notation

PDw.d writes data that are stored in the IBM packed decimal format

PIBw.d writes positive integer binary (fixed-point) values

RBw.d writes real binary (floating-point) data.

ZD writes zoned decimal data.

If you want to write SAS programs that can be run on multiple machines that use
different byte-storage systems, then use the following IBM 370 formats:

S370FIBw.d
writes integer binary data in the IBM mainframe format

S370FIBU
writes unsigned integer binary data in the IBM mainframe format

S370FPDw.d
writes packed decimal data in the IBM mainframe format

S370FPDU
writes unsigned packed decimal data in the IBM mainframe format



Formats 4 BEST 127

S370FPIBw.d
writes positive integer binary data in the IBM mainframe format

S370FRBw.d
writes real binary data in the IBM mainframe format

S370FZD
writes zoned decimal data in the IBM mainframe format

S370FZDL
writes zoned decimal leading sign data in the IBM mainframe format

S370FZDS
writes zoned decimal separate leading sign data in the IBM mainframe format

S370FZDT
writes zoned decimal separate trailing sign data in the IBM mainframe format

S370FZDU
writes unsigned zoned decimal data in the IBM mainframe format.

These IBM 370 formats enable you to write SAS programs that can be run in any
SAS environment, regardless of the standard for storing numeric data. They also
enhance your ability to port raw data between host operating environments.

For more information about the IBM 370 formats, see SAS Language Reference:
Dictionary.

BEST

SAS System chooses best notation (default)

Numeric

Width range: 1– 32
Default width: 12
Alignment: right
CMS specifics: minimum and maximum values

Syntax
BESTw.

w
specifies the field width of the output value.

Details
When a format is not specified, the SAS System chooses the notation that gives the
most precision and information about the value that fits into the number of columns
available. Numbers are interpreted using the EBCDIC character-encoding system, with
one digit per byte.

Under CMS, acceptable values can range from 5.398E-79 to 7.237E+75. Any number
outside this range causes an overflow error. The following table illustrates the use of
the BEST format.



128 E 4 Chapter 13

Decimal
Number Format EBCDIC Data Pattern Written

Actual
NumericValue

1234 best6. ’4040F1F2F3F4’x 1234

-1234 best6. ’4060F1F2F3F4’x -1234

12.34 best6. ’40F1F24BF3F4’x 12.34

123456789 best6. ’F14BF2F3C5F8’x 1.23E8

123456789 best8. ’F14BF2F3F4F6C5F8’x 1.2346E8

Note:
� ’40’x=blank
� ’F1’x=1, ’F2’x=2, and so on
� ’4B’x=decimal point
� ’C5’x=E
� ’4E’x=plus sign
� ’60’x=minus sign.

4

See Also

� SAS Language Reference: Dictionary

E

Writes numeric values stored in scientific notation

Numeric

Width range: 7– 32
Default width: 12
Alignment: right
CMS specifics: minimum and maximum values

Syntax
Ew.

w
specifies the field width of the output value, in bytes.

Details
Numbers are interpreted using the EBCDIC character-encoding system, with one digit
per byte. Under CMS, acceptable values can range from 5.398E-79 to 7.237E+75. Any
number outside this range causes an overflow error. The following table illustrates the
use of the E format.



Formats 4 HEX 129

Decimal
Number Format EBCDIC Data Pattern Written

Scientific
Notation

123 e10. ’40F14BF2F3F0C54EF0F2’x 1.230E+02

-123 e10. ’60F14BF2F3F0C54EF0F2’x -1.230E+02

12.3 e10. ’40F14BF2F3F0C54EF0F1’x 1.230E+01

123456789 e10. ’40F14BF2F3F5C54EF0F8’x 1.235E+08

123456789 e8. ’40F14BF2C54EF0F8’x 1.2E+08

0.1230 e10. ’40F14BF2F3F0C560F0F1’x 1.230E-01

Note:
� ’40’x=blank
� ’F1’x=1, ’F2’x=2, and so on
� ’4B’x=decimal point
� ’C5’x=E
� ’4E’x=plus sign
� ’60’x=minus sign.

4

See Also

� Informat: “E” on page 166
� SAS Language Reference: Dictionary

HEX

Converts hexadecimal positive binary values to either integer (fixed-point) or real (floating-point)
values.

Width range: 1– 16
Default width: 8
Alignment: left
CMS specifics: IBM floating-point format

Syntax
HEXw.

w
specifies the field width of the output value and determines whether the output is an
integer or real binary value.

Details
The HEX format converts real binary (floating-point) numbers to hexadecimal
representation. Each hexadecimal digit that is written in the EBCDIC code uses one



130 IB 4 Chapter 13

byte per digit. For example, the floating-point number 1.0 has the hexadecimal value
’F1’x (EBCDIC 1) using the HEX1. format.

The w value of the HEX format determines the width of the value and whether the
number is written as a floating-point number or an integer. When you specify a width
value of 1 through 15, the real binary numbers are truncated to fixed-point integers
before being written to hexadecimal values. However, when you specify 16 for the
width, the floating-point value is written and the numbers are not truncated. For
example, if the value of Y is 31.5, and you use the following PUT statement to write it
to the SAS log, the following hexadecimal value is written in EBCDIC code:

put y hex16.;
421F800000000000

(’F4F2F1C6F8F0F0F0F0F0F0F0F0F0F0F0’x)

The result shows the hexadecimal value for the CMS floating-point representation of
31.5. The value of a floating-point number is as follows: the first bit of this number is
the sign bit and the next seven bits are the characteristic, or exponent. Since the sign
bit is 0, the number is positive. To calculate the exponent from the characteristic, you
must subtract hexadecimal 40 from the number. Subtracting ’40’x from ’42’x gives a
difference of ’02’x. Thus, the exponent is 216. The last part of the floating-point number,
bits 8 through 63, represents the fraction. Since the exponent is 216 , the radix point is
moved two places to the right, giving a value of ’1F.8’x, which is the hexadecimal
equivalent of decimal 31.5.

If you set the variable Y equal to -31.5, you get the following result with a width of
16 specified:

C21F800000000000 (’C3F2F1C6F8F0F0F0’x)

The only difference between this example and the first example is the changing of
the first digit from ’4’x to ’C’x. This occurs because the sign bit has been changed from 0
to 1 if you set the variable Y equal to -31.5.

However, if you change the format to HEX15. in the first example, the result writes
the following hexadecimal value in EBCDIC code:

’00000000000001F’x (’F0F0F0F0F0F0F1C6’x)

This example illustrates the result when a width value of less than 16 is specified.
Here, the SAS System first converts 31.5 to an integer by truncating the number to 31.
The result is then printed in the specified number of hexadecimal digits.

With a width of less than 16, a negative floating-point number is first truncated to
an integer and then printed in twos complement form. Therefore, when the format
HEX15. is specified for Y=-31.5, the result is as follows:

FFFFFFFFFFFFFE1 (’C6C6C6C6C6C6C5F1’x)

See Also

� “Representation of Floating-Point Numbers” on page 111

� Informat: “HEX” on page 167

� SAS Language Reference: Dictionary.

IB

Writes numbers in integer binary (fixed-point) format



Formats 4 PD 131

Numeric

Width range: 1– 8
Default width: 4
Decimal range: 0– 10
Alignment: left
CMS specifics: twos complement notation

Syntax
IBw.

w
specifies the field width of the output value.

d
specifies a multiplier for the output value. If the format includes a d value, the
output value is multiplied by 10d .

Details
Negative values are stored in twos complement notation under CMS. The following
table shows several examples of the IB format.

Decimal
Number Format

Integer Binary Data Pattern
Written Actual Numeric Value

1234 ib4. ’000004D2’x 1234

-1234 ib4. ’FFFFFB2E’x -1234

12.34 ib4. ’0000000C’x 12

12.34 ib4.2 ’000004D2’x 1234

123456789 ib4. ’075BCD15’x 123456789

1234 ib6.2 ’00000001E208’x 123400

-1234 ib6.2 ’FFFFFFFE1DF8’x -123400

See Also

� Informat: “IB” on page 168
� SAS Language Reference: Dictionary

PD

Writes values in IBM packed decimal format

Numeric

Width range: 1– 16
Default width: 1



132 RB 4 Chapter 13

Decimal range: 0– 10
Alignment: left
CMS specifics: IBM packed decimal format

Syntax
PDw.d

w
specifies the field width of the output value, in bytes.

d
specifies a multiplier for the output value. If the format includes a d value, the
output value is multiplied by 10d .

Details
An IBM packed decimal number consists of a sign and up to 31 digits, thus giving a
range from 1031 -1 to 10-31 +1. The sign is written in the rightmost nibble, with a ’C’x
indicating a plus sign and a ’D’x indicating a minus sign. The rest of the nibbles to the
left of the sign nibble represent decimal digits. The hexadecimal values of these digit
nibbles correspond to decimal values; therefore, only values between ’0’x and ’9’x are
displayed in the digit positions. The following table shows several examples of the PD
format.

Decimal Number Format Packed Decimal Data Pattern Written

1234 pd3. ’01234C’x

-1234 pd3. ’01234D’x

1234 pd2. ’999C’x

1234 pd4. ’0001234C’x

1234 pd4.1 ’0012340C’x

1234 pd4.2 ’0123400C’x

See Also

� Informat: “PD” on page 169
� SAS Language Reference: Dictionary

RB

Writes real binary (floating-point) data

Numeric

Width range: 2– 8
Default width: 4
Decimal range: 0– 10



Formats 4 w.d 133

Alignment: left
CMS specifics: IBM floating-point format

Syntax
RBw.d

w
specifies the field width of the output value, in bytes.

d
specifies a multiplier for the output value. If the format includes a d value, the
output value is multiplied by 10d.

Details
The format of floating-point numbers is specific to CMS. (See “Representation of
Floating-Point Numbers” on page 111 for a description of the format used to store
floating-point numbers.) The following table shows how several decimal numbers are
written as floating-point numbers using the RB format.

Decimal
Number Format Real Binary Data Pattern Written Actual Numeric Value

123 rb8. ’427B000000000000’x 123

123 rb8.1 ’434CE00000000000’x 1230

123 rb8.2 ’44300C0000000000’x 12300

-123 rb8. ’C27B000000000000’x -123

1234 rb8. ’434D200000000000’x 1234

1234 rb2. ’434D’x 1232

12.3 rb8. ’41C4CCCCCCCCCCCC’x 12.29999999...

See Also

� “Representation of Floating-Point Numbers” on page 111
� Informat: “RB” on page 170
� SAS Language Reference: Dictionary.

w.d

Writes standard numeric data one digit per byte using EBCDIC code

Numeric

Width range: 1– 32
Decimal range: d < w
Alignment: right



134 w.d 4 Chapter 13

CMS specifics: minimum and maximum values

Syntax
w.d

w
specifies the field width of the output value.

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
Use this format to print values without additional formatting. If d is 0 or if it is
omitted, the value is written without a decimal point. Negative numbers are written
with a leading minus sign.

Numbers written with the w.d format are rounded to the nearest number that can be
represented in the output field. If the number is too large to fit, the field is filled with
asterisks (*). Under CMS, acceptable values that can be written with the w.d format
can range from 5.398E-79 to 7.237E+75.

When choosing w and d values, allow enough space for the decimal point and minus
sign if necessary. The following table illustrates the use of the w.d format.

Decimal Number Format Data Pattern Written

1234 4. ’F1F2F3F4’x

1234 5. ’40F1F2F3F4’x

12345 4. ’F1F2C5F3’x

12345 5. ’F1F2F3F4F5’x

123.4 6.2 ’F1F2F34BF4F0’x

-1234 6. ’4060F1F2F3F4’x

Note:

� ’40’x=blank
� ’F1’x=1, ’F2’x=2, and so on
� ’4B’x=decimal point
� ’C5’x=E
� ’4E’x=plus sign
� ’60’x=minus sign.

4



Formats 4 ZD 135

See Also

� Informat: “w.d” on page 171
� SAS Language Reference: Dictionary

ZD

Writes zoned decimal data, one digit per byte

Numeric

Width range: 1– 32
Default width: 1
Decimal range: 0– 31
Alignment: left
CMS specifics: IBM zoned decimal format

Syntax
ZDw.d

w
specifies the field width of the output value.

d
specifies a multiplier for the output value. If the format includes a d value, the
output value is multiplied by 10d .

Details
The ZD format fills in zeros to the left of the data value. Like standard format, zoned
decimal digits are represented as EBCDIC characters. Each digit requires one byte of
storage space. The rightmost byte represents both the least significant digit and the
sign of the number. Digits to the left of the least significant digit are written as the
EBCDIC characters 0 through 9.

The character written for the least significant digit depends on the sign of the
number. In the least significant byte, negative numbers are coded with the high-order
nibble being an ’D’x and with the low-order nibble being the last digit of the number.
Positive values are represented with the high-order nibble being a ’C’x. For example,
compare the zoned decimal data for 123 and -123 in the following table.

Decimal
Number Format

Zoned Decimal Data Pattern
Written Actual Value Value

123 zd8. ’F0F0F0F0F0F1F2C3’x 0000012C

1234 zd8. ’F0F0F0F0F1F2F3C4’x 0000123D

123 zd8.1 ’F0F0F0F0F1F2F3C0’x 0000123{

123 zd8.2 ’F0F0F0F1F2F3F0C0’x 0001230{



136 ZD 4 Chapter 13

Decimal
Number Format

Zoned Decimal Data Pattern
Written Actual Value Value

-123 zd8. ’F0F0F0F0F0F1F2D3’x 0000012L

0.000123 zd8.6 ’F0F0F0F0F0F1F2C3’x 0000012C

0.00123 zd8.6 ’F0F0F0F0F1F2F3C0’x 0000123{

1E-6 zd8.6 ’F0F0F0F0F0F0F0C1’x 0000000A

Note:

� ’F0’x=0, ’F1’x=1, and so on
� ’C0’x=+0, ’C1’x=+1, and so on
� ’D0’x=-0, ’D1’x=-1, and so on.

4

See Also

� Informat: “ZD” on page 173
� Informat: “ZDB” on page 174

� SAS Language Reference: Dictionary



The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the CMS Environment, Version 8 , Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the CMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–481–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


