
137

C H A P T E R

14
Functions and CALL Routines

Functions and CALL Routines in the CMS Environment 137
BYTE 137

CMS 140

DINFO 142

DOPEN 144

DOPTNAME 145
DOPTNUM 145

FCLOSE 146

FDELETE 147

FEXIST 147

FILEEXIST 148

FILENAME 148
FILEREF 150

FINFO 150

FOPEN 153

FOPTNAME 154

FOPTNUM 155
GETEXEC 155

KTRANSLATE 156

LIBNAME 157

MOPEN 158

PATHNAME 158
RANK 159

SYSGET 159

SYSTEM 160

TRANSLATE 160

Functions and CALL Routines in the CMS Environment
Portable SAS functions and CALL routines are documented in SAS Language

Reference: Dictionary. This section includes detailed information about only those SAS
functions and CALL routines that are CMS-specific or that have syntax or behavior
that is specific to the CMS operating environment.

BYTE
Returns one character in the EBCDIC collating sequence

138 CALL PUTEXEC 4 Chapter 14

CMS specifics: EBCDIC collating sequence

Syntax
BYTE (n)

n
is an integer that represents a particular EBCDIC character. Its value must be
between 0 and 255.

Details
Under CMS, the BYTE function returns the nth character in the EBCDIC collating
sequence. Some operating environments return the corresponding character in the
ASCII collating sequence for this function.

Example
The following DATA step uses the BYTE function:

data;
x=byte(193);

run;

The example results in x being set to the character A (hexadecimal ’C1’x).

See Also

� SAS Language Reference: Dictionary

CALL PUTEXEC

Assigns a value to an EXEC variable

CMS specifics: all

Syntax
CALL PUTEXEC (’argument1’, argument2);

’argument1’
is the name of an EXEC variable. This argument must be uppercased and enclosed
in single quotes.

argument2
is the value to be assigned. This argument can be specified as a literal or a variable
name. If you specify a literal, it must be enclosed in single quotes.

Functions and CALL Routines 4 CALL SLEEP 139

CMS Specifics
The PUTEXEC CALL routine assigns a value to an EXEC variable. The EXEC must be
written in EXEC2 or REXX. To use the PUTEXEC CALL routine effectively, you must
be familiar with one of these languages.

If the variable that you specify as argument1 does not currently exist as an EXEC
variable, it is created.

Here are some points to consider when using the PUTEXEC CALL routine:
� All EXEC variable names specified as arguments for PUTEXEC must be

uppercased. This is true for REXX as well as EXEC2, even though REXX makes
no distinction between upper- and lowercase in its variable names. If you specify a
REXX compound symbol, such as NAME.1, as an argument, only the stem (the
part of the name preceding the period) must be in uppercase.

� Although EXEC2 variables always begin with an ampersand (&), you must omit
the ampersand when you use the name as an argument.

� The CMS EXEC processor hides all variables except those in the current EXEC.
Hidden variables are not accessible by PUTEXEC.

� Arguments to PUTEXEC must be character values, and the values of EXEC
variables, even numeric values, are always retained in character format. By
default, SAS converts values automatically from numeric to character or character
to numeric. However, it is better to use the DATA step functions INPUT and PUT
to convert character values from EXEC variables to a specific numeric format, and
vice versa.

� If the interface to EXEC variables fails, PUTEXEC assumes that its arguments
are invalid (because no EXEC variables can be accessed), and a message is written
to the SAS log.

See “Using the PUTEXEC CALL Routine” on page 98 for information and examples.
Also, refer to the IBM VM/ESA REXX/VM Reference and VM/ESA REXX/VM User’s
Guide. If you are not familiar with EXEC2, refer to the IBM VM/SP EXEC 2 Reference.

Example
The following statement specifies the literal USR191 as the value to assign to the
EXEC variable LABEL:

call putexec(’LABEL’,’USR191’);

CALL SLEEP

Suspends execution of a SAS DATA step for a specified amount of time

CMS specifics: host call

Syntax
CALL SLEEP(time);

time
specifies the number of milliseconds (1/1,000 of a second) you want to suspend
execution of a DATA step and the SAS process that is running that DATA step.

140 CMS 4 Chapter 14

Details

CALL SLEEP puts the DATA step in which it is invoked into a non-active wait state,
using no CPU time and performing no input or output. If you are running multiple SAS
processes, each process can execute CALL SLEEP independently without affecting the
other processes.

In this example, the DATA step invokes CALL REPORT every hour:

data _null_;
while (1);

call report(a,b,c,d);
call sleep(3600000);

end;
run;

Note: Extended sleep periods can trigger automatic host session termination based
on timeout values set at your site. Contact your host system administrator as necessary
to determine the timeout values used at your site. 4

CMS

Invokes a CMS or CP command and returns the return code

Alias: SYSTEM

CMS specifics: all

Syntax

CMS (’command’)

’command’
is a character string that corresponds to a CMS or CP command.

Details

The CMS function invokes one CMS or CP command and returns the return code that
was set by execution of the command. Because the CMS or SYSTEM function is part of
an executable SAS statement, you can conditionally execute certain CMS and CP
commands within a SAS session (unlike the CMS statement) and to use the CMS
SUBCOM facility for support.

For example, you can use the CMS function in the following assignment statement:

rc=CMS(’command’);

rc is a variable that contains the return code that was set by execution of the
command.

Commands invoked with the CMS function are executed when the DATA step
executes, not when the statement containing the function is scanned.

The limitations on CMS and CP commands in CMS subset mode also apply to the
CMS function; that is, commands that use the user area are not allowed.

Functions and CALL Routines 4 COLLATE 141

Example
The following SAS program determines whether today’s data file exists on an accessed
minidisk. It does this using the SAS functions WEEKDAY and TODAY and by issuing a
CMS STATE command. The program references five CMS files; each file contains data
for one weekday.

DAY1 DATA A
DAY2 DATA A
DAY3 DATA A
DAY4 DATA A
DAY5 DATA A

The first DATA step uses information from functions TODAY and WEEKDAY in the
CMS STATE command, which determines whether a data file such as DAY2 DATA *
exists. If the file exists (rc=0), the program creates a macro variable called &DAILY.
&DAILY contains the name of the file that exists and is used in the INFILE statement
in the second DATA step. If the file does not exist, the SAS program aborts and the
second DATA step is never executed.

data day;
wd=weekday(today())-2;
if wd=0 then wd=5;
number=put(wd,1.);
rc=cms(’state day’||number||’ data *’);

if rc=0 then do;
name=’ "day’||number||’ data" ’;
call symput(’daily’,name);
end;

else do;
put ’ The data file does not exist.’;
abort return;
end;

run;
data daily;

infile &daily;
input branch $ 1-20 dept 22-24 @26 revenue 10.;

run;

The sample program illustrates the difference between a command invoked with the
CMS function and a command invoked with the CMS statement or in CMS subset
mode. Commands that are invoked with the CMS function are not invoked until
execution time, after all statements in a step have been scanned. Commands that are
invoked with a CMS statement or in CMS subset mode are executed when SAS
encounters them while scanning the step.

See Also

� “Issuing CMS and CP Commands during a SAS Session” on page 9

COLLATE

Generates an EBCDIC collating sequence character string

142 DINFO 4 Chapter 14

CMS specifics: EBCDIC collating sequence

Syntax
COLLATE (start-character <,end-character> <,length>)

start-character
is an integer that corresponds to the beginning character in a sequence.

end-character
is an integer that corresponds to the last character in a sequence. If you omit
end-character, you must mark its place with a comma.

length
is the number of characters specified in a string.

Details
Under CMS, the COLLATE function returns a string of characters from the EBCDIC
collating sequence. Some operating environments return the corresponding character in
the ASCII collating sequence for this function.

If neither the end character nor the length is specified, COLLATE returns a
character string up to 200 characters long. If both the end character and the length are
specified, the length is ignored.

See Also

� SAS Language Reference: Dictionary

DINFO

Returns information from the directory of an aggregate external file

CMS specifics: info-item

Syntax
DINFO (directory-id,info-item)

directory-id
specifies the identifier that was assigned when the aggregate external files was
opened (generally by the DOPEN function).

info-item
specifies the information item to be retrieved. Under CMS, the single valid value for
info-item is DIRECTORY, which returns the directory path associated with
directory-id. If directory-id represents a single aggregate, the information returned
by DINFO will be of the form ’pathname’. If directory-id represents a concatenated
series of aggregates, the information returned by DINFO will be of the form
(’pathname_1’, ... ’pathname_n’).

Functions and CALL Routines 4 DINFO 143

DINFO Output for SFS Directories
The following example and output illustrate the use of DINFO and the other directory
access functions for SFS directories:

data _null_;
length opt $100 optval $100;
rc=FILENAME(’mydir’, ’user1.’); /* allocate directory */
dirid = DOPEN(’mydir’); /* open directory */
infocnt=DOPTNUM(dirid); /* get number of information items */

/* retrieve information items and print to log*/
put @1 ’Information for an SFS Directory:’;
do j=1 to infocnt;

opt = DOPTNAME(dirid,j);
optval = DINFO(dirid,upcase(opt));
put @1 opt @20 optval;
end ;

rc = DCLOSE(dirid); /* close the directory */
rc = FILENAME(’mydir’); /* deallocate the directory */

run;

Output 14.1 DINFO Output for an SFS Directory

Information for an SFS Directory:
Directory SFSFP:USER1 .
NOTE: DATA statement used:

real time 0.85 seconds
cpu time 0.28 seconds

DINFO Output for Minidisks
The following example and output illustrate the use of DINFO and the other directory
access functions for minidisks:

data _null_;
length opt $100 optval $100;
rc=FILENAME(’mydir’, ’A’); /* allocate directory */
dirid = DOPEN(’mydir’); /* open directory */
infocnt=DOPTNUM(dirid); /* Get number of information items */

/* Retrieve information items and print to log*/
put @1 ’Information for a Minidisk Directory:’;
do j=1 to infocnt;

144 DOPEN 4 Chapter 14

opt = DOPTNAME(dirid,j);
optval = DINFO(dirid,upcase(opt));
put @1 opt @20 optval;

end;

rc = DCLOSE(dirid); /* close the directory */
rc = FILENAME(’mydir’); /* deallocate the directory */

run;

Output 14.2 DINFO Output for a Minidisk

Information for a Minidisk Directory:

Directory A

NOTE: DATA statement used:

real time 0.18 seconds

cpu time 0.18 seconds

See Also

� “DOPEN” on page 144
� “DOPTNAME” on page 145
� “DOPTNUM” on page 145
� SAS Language Reference: Dictionary

DOPEN

Opens an aggregate external file and returns a directory identifier value

CMS specifics: directory specification

Syntax
DOPEN (’fileref’)

fileref
specifies the aggregate external file to be opened. Single quotation marks around the
fileref are required unless the literal fileref name is represented by a macro variable
or a data step variable.

Functions and CALL Routines 4 DOPTNUM 145

Details
You must associate a fileref with the aggregate before calling DOPEN. See “DINFO” on
page 142 for an example that shows the use of DOPEN and other directory access
functions.

CMS MACLIBs are currently not supported by the DOPEN function.

See Also

� “DOPTNAME” on page 145
� “DOPTNUM” on page 145
� SAS Language Reference: Dictionary

DOPTNAME

Returns the name of a directory information item

CMS specifics: info-item

Syntax
DOPTNAME (directory-id,info-item)

directory-id
specifies the fileref that was assigned when the directory was opened (generally by
the DOPEN function).

info-item
specifies the number of the information item, the name of which will be returned by
the function. For DOPTNAME, the single valid value for info-item is 1, which will
return the information item name DIRECTORY for a valid directory-id.

Details
See “DINFO” on page 142 for an example that shows the use of DOPTNAME and other
functions.

See Also

� “DOPEN” on page 144
� “DOPTNUM” on page 145
� SAS Language Reference: Dictionary

DOPTNUM

Returns the number of information items available for a directory

146 FCLOSE 4 Chapter 14

CMS specifics: number of information items

Syntax
DOPTNUM (directory-id)

directory-id
specifies the identifier that was assigned when the directory was opened by the
DOPEN function.

Details
DOPTNUM returns a number that represents the total number of information items
available for a given directory-id. Currently, the information item named DIRECTORY
is the sole information item available for directories, hence DOPTNUM currently
returns a value of 1 for a valid directory-id.

See “DINFO” on page 142 for an example that shows the use of DOPTNUM and
other functions.

See Also

� “DOPEN” on page 144

� “DOPTNAME” on page 145

� SAS Language Reference: Dictionary

FCLOSE

Closes an external file, a directory, or a directory member and returns a value

CMS specifics: FCLOSE is required

Syntax
FCLOSE (file-id)

file-id
is the file-identifier that was assigned when the file was opened (generally by the
FOPEN function).

Details
Under CMS, you must close files with the FCLOSE function at the end of a DATA step;
files are not closed automatically after processing.

See “FINFO” on page 150 for an example that demonstrates the use of the FOPEN,
FCLOSE, FINFO, FILENAME, FOPTNAME and FOPTNUM functions.

Functions and CALL Routines 4 FEXIST 147

See Also

� “FINFO” on page 150
� “FOPEN” on page 153

� “FOPTNAME” on page 154
� “FOPTNUM” on page 155

� SAS Language Reference: Dictionary

FDELETE

Deletes an external file or an empty directory

CMS specifics: fileref

Syntax
FDELETE(’fileref’)

fileref
specifies the fileref that you assign to the external file or SFS directory. Single
quotation marks around the fileref are required unless the literal fileref name is
represented by a macro variable or a data step variable. You can assign filerefs by
using the FILENAME statement or the FILENAME function.

Details
To delete a directory, you must have authorization to do so.

In the CMS environment, the fileref cannot be assigned by using a CMS FILEDEF
command.

See Also

� “FILENAME” on page 148
� SAS Language Reference: Dictionary

FEXIST

Verifies the existence of an external file associated with a fileref and returns a value

CMS specifics: fileref

Syntax
FEXIST(fileref)

148 FILEEXIST 4 Chapter 14

fileref
specifies the fileref assigned to an external file.

Details
The fileref must have been previously assigned.

See Also

� “FILEEXIST” on page 148
� “FILENAME” on page 148
� “FILEREF” on page 150
� SAS Language Reference: Dictionary

FILEEXIST
Verifies the existence of an external file by its physical name and returns a value

CMS specifics: filename

Syntax
FILEEXIST(’filename’)

filename
is a fully qualified physical filename of the external file. Single quotation marks
around the filename are required unless the literal filename is represented by a
macro variable or a data step variable.

Details
In the CMS environment, the filename cannot be a physical name that was assigned by
using an environment variable. See “SYSGET” on page 159 for information on
retrieving environment variables.

See Also

� “FEXIST” on page 147
� “FILENAME” on page 148
� “FILEREF” on page 150
� SAS Language Reference: Dictionary

FILENAME
Assigns or deassigns a fileref for an external file, a directory, or an output device and returns a
value

Functions and CALL Routines 4 FILENAME 149

CMS specifics: host options, devices, dir-ref

Syntax
FILENAME (fileref, filename<,device <,host-options <,dir-ref>>>)

fileref
specifies the fileref to assign to an external file.

filename
specifies the external file. Specifying a blank filename deassigns one that was
previously assigned.

device
specifies the type of device if the fileref points to an output device rather than to a
physical file:

DISK
specifies that the file is to be read from or written to disk. This is the default,
which does not have to be specified. This device type uses the native CMS
interface.

DUMMY
specifies that output to the external file is to be discarded.

PIPE
a CMS pipeline

PRINTER
a printer or printer spool file

PUNCH
associates the fileref with the virtual PUNCH. This device is for output only.
Specifying this device type causes the CMS SAS interface to issue a FILEDEF for
the device. Use the CP SPOOL and TAG commands to control the destination.

READER
specifies that the file is to be a reader file. The BLKSIZE= option is ignored for
this device because CMS does not support blocking. This device is for input only.
Specifying this device type causes the CMS SAS interface to issue a FILEDEF for
the device. If you have more than one file in your reader, the one that is ordered
first is read. Use the CP ORDER READER and CP QUERY READER commands
to determine the order of your reader files.

TERMINAL
the user’s terminal

TAPE
a tape drive.

host-options
are host-specific options that may be specified in the FILENAME statement. See
“FILENAME” on page 227.

You can specify host options in any order following the file specification and the
optional device specification. When specifying more than one option, use a blank
space to separate each option. Values for options may be specified with or without
quotes. However, if a value contains one of the supported national characters ($, #, or
@), the quotes are required.

150 FILEREF 4 Chapter 14

dir-ref
specifies the fileref that is assigned to the directory in which the external file resides.

See Also

� SAS Language Reference: Dictionary

FILEREF
Verifies that a fileref has been assigned for the current SAS session and returns a value

CMS specifics: fileref

Syntax
FILEREF (fileref)

fileref
specifies the fileref to be validated. Under CMS, fileref can be a DDname that was
assigned using the CMS FILEDEF command.

See Also

� SAS Language Reference: Dictionary

FINFO

Returns the value of a file information item

CMS specifics: info-item

Syntax
FINFO (file-id,info-item)

file-id
specifies the identifier that was assigned when the file was opened (generally by the
FOPEN function).

info-item
specifies a number that represents an information item, the value of which will be
returned by the function.

Details
The following table defines the information that is returned for a given info-item value.

Functions and CALL Routines 4 FINFO 151

Information Items Available For...info-
itemValue Single Files Concatenated Files

1 file name file name

2 owner name file list

3 group name owner name

4 access permission group name

5 file size (bytes) access permission

6 file size (bytes)

FINFO Output for Disk Files
The following example and output illustrate the use of FINFO and the other file access
functions for disk files:

data _null_;
length opt $100 optval $100;
rc=FILENAME(’myfile’, ’finfo list *’); /* allocate file */
fid = FOPEN(’myfile’); /* open file */
infocnt=FOPTNUM(fid); /* get number of information items */

/* Retrieve information items and print to log*/
put @1 ’Information for a File:’;
do j=1 to infocnt ;

opt = FOPTNAME(fid,j);
optval = FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

rc = FCLOSE(fid); /* close file */
rc = FILENAME(’myfile’); /* deallocate file */

run;

Output 14.3 FINFO Output for a Disk File

152 FINFO 4 Chapter 14

Information for a File:
File Name FINFO LIST A
Lrecl 80
Recfm F
Blksize 960
NOTE: DATA statement used:

real time 0.86 seconds
cpu time 0.27 seconds

FINFO Output for Sequential Files
The following example and output illustrate the use of FINFO and the other file access
functions for sequential files:

data _null_;
length opt $100 optval $100;
rc=FILENAME(’myfile’, ’sltape sas .saspgms’); /* allocate file */
fid = FOPEN(’myfile’); /* open file */
infocnt=FOPTNUM(fid); /* get number of information items */

/* retrieve information items and print to log*/
put @1 ’Information for a File:’;
do j=1 to infocnt;

opt = FOPTNAME(fid,j);
optval = FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

rc = FCLOSE(fid); /* close file */
rc = FILENAME(’myfile’); /* deallocate the file */

run;

Output 14.4 FINFO Output for a Sequential File

Information for a File:
File Name SLTAPE SAS SFSFP:USER1.SASPGMS
Lrecl 80
Recfm F
Blksize 960
NOTE: DATA statement used:

real time 0.15 seconds
cpu time 0.13 seconds

Functions and CALL Routines 4 FOPEN 153

See Also

� “FCLOSE” on page 146
� “FOPEN” on page 153
� “FOPTNAME” on page 154
� “FOPTNUM” on page 155
� SAS Language Reference: Dictionary

FOPEN

Opens an external file and returns a file identifier value

CMS specifics: You must close FOPEN files with the FCLOSE function

Syntax
FOPEN (fileref <,open-mode <,record-length <,record-format>>>)

fileref
specifies the fileref that you assign to the external file. You can assign filerefs by
using the FILENAME statement or the FILENAME function.

open-mode
specifies the type of access to the file:

A APPEND mode allows writing new records after the current end
of the file.

I INPUT mode allows reading only. (default)

O OUTPUT mode defaults to the OPEN mode specified in the host
option in the FILENAME statement or function. If no host option
is specified, it allows writing new records at the beginning of the
file.

S Sequential mode can be used for pipes and other sequential
devices such as READER.

U UPDATE mode allows both reading and writing.

record-length
specifies the logical record length of the file. To use the existing record length for the
file, specify a length of 0, or do not provide a value here.

record-format
specifies the record format of the file. To use the existing record format, do not
specify a value here. Valid values are:

B data are to be interpreted as binary data.

D use default record format.

E use editable record format.

F file contains fixed length records.

154 FOPTNAME 4 Chapter 14

P file contains printer carriage control in host-dependent record
format.

V file contains variable length records.

Details

Under CMS, you must close files that you open with FOPEN using the FCLOSE
function at the end of a DATA step; files are not closed automatically after processing.

See “FINFO” on page 150 for an example that demonstrates the use of the FOPEN,
FCLOSE, FINFO, FILENAME, FOPTNAME and FOPTNUM functions.

See Also

� “FCLOSE” on page 146

� “FINFO” on page 150

� “FOPTNAME” on page 154

� “FOPTNUM” on page 155

� SAS Language Reference: Dictionary

FOPTNAME

Returns the name of an item of information about a file

CMS specifics: info-item

Syntax

FOPTNAME (file-id,info-item)

file-id
specifies the identifier that was assigned when the file was opened (generally by the
FOPEN function).

info-item
specifies the name of the information item that will be returned by the function.

Details

See “FINFO” on page 150 for:

� valid values for info-item

� definitions of names returned by FOPTNAME

� an example showing the use of FOPTNAME and other file access functions.

Functions and CALL Routines 4 GETEXEC 155

See Also

� “FCLOSE” on page 146
� “FOPEN” on page 153
� “FOPTNUM” on page 155
� SAS Language Reference: Dictionary

FOPTNUM

Returns the number of information items that are available for a file

CMS specifics: info-item

Syntax
FOPTNUM (file-id)

file-id
specifies the identifier that was assigned when the file was opened (generally by the
FOPEN function).

Details
The FOPTNUM function returns the number of information items that were associated
with the file-id when the file was opened with the FOPEN function.

See “FINFO” on page 150 for definitions of info-item values and for an example
showing the use of FOPTNUM and the other file access functions.

See Also

� “FCLOSE” on page 146
� “FOPEN” on page 153
� “FOPTNAME” on page 154
� SAS Language Reference: Dictionary

GETEXEC

Returns the value of an EXEC variable

CMS specifics: all

Syntax
GETEXEC (’argument’)

156 KTRANSLATE 4 Chapter 14

’argument’
is the name of the EXEC variable. It must be uppercased and enclosed in quotes.

Details
The GETEXEC function is a SAS DATA step function that returns the value of an
EXEC variable. The EXEC must be written in EXEC2 or REXX.

Here are some points to consider when you are using the GETEXEC function:

� All EXEC variable names that are specified as arguments for GETEXEC must be
in uppercase. This is true for REXX as well as EXEC2, even though REXX makes
no distinction between upper- and lowercase in its variable names. If you specify a
REXX compound symbol, such as NAME.1, as an argument, only the stem (the
part of the name preceding the period) must be in uppercase.

� Although EXEC2 variables always begin with an ampersand (&), you must omit
the ampersand when you use the name as an argument.

� The CMS EXEC processor hides all variables except those in the current EXEC.
Hidden variables are not accessible by GETEXEC.

� Arguments to GETEXEC must be character values, and the values of EXEC
variables, even numeric values, are always retained in character format. By
default, SAS converts values automatically from numeric to character or character
to numeric. However, it is better to use the DATA step functions INPUT and PUT
to convert character values from EXEC variables to a specific numeric format, and
vice versa.

� If the interface to EXEC variables fails, GETEXEC assumes that its arguments
are invalid (because no EXEC variables can be accessed), and a message is written
to the SAS log.

If an EXEC2 variable name used as an argument to GETEXEC does not exist, the
GETEXEC function returns a missing value. If a REXX variable name that was used as
an argument to the GETEXEC function does not exist, the GETEXEC function returns
the name of the variable. For either EXEC2 or REXX, if the variable has a null value
or a value of all blanks, GETEXEC returns a missing value.

Example
The following statement assigns the value of the EXEC variable LABEL to the SAS
variable DISKID:

diskid=getexec(’LABEL’);

See Also

� “Using the GETEXEC DATA Step Function” on page 97

KTRANSLATE

Replaces specific characters in a character expression

CMS specifics: to/from pairs

Functions and CALL Routines 4 LIBNAME 157

Syntax
KTRANSLATE(source,to-1,from-1<,…to-n,from-n>)

Details
Under CMS, every to argument must have a corresponding from argument; you cannot
specify a null from argument. There is no practical limit to the number of to-from pairs.

KTRANSLATE differs from TRANSLATE in that it supports single-byte character set
replacement by double-byte characters, or vice versa.

See Also

� “TRANSLATE” on page 160
� SAS Language Reference: Dictionary

LIBNAME

Assigns or deassigns a libref for a SAS data library and returns a value

CMS specifics: libref can also be a DDname name

Syntax
LIBNAME (libref, <,SAS-data-library <,engine <,options>>>)

Details
Under CMS, DDnames assigned by using the CMS FILEDEF command can be used to
refer to SAS data libraries. See “Using the CMS FILEDEF Command” on page 32 for
more information.

The LIBNAME function accepts as arguments the same host-specific options that are
available for the LIBNAME statement. The following example shows how the
SEGMENT= option can be specified in a LIBNAME function:

data _null;
a=(libname(’v8rdata’,,,’segment=yes’));

For further information, see “LIBNAME” on page 243.

158 MOPEN 4 Chapter 14

See Also

� SAS Language Reference: Dictionary

MOPEN

Opens a file by directory ID and member name and returns either the file identifier or a 0

CMS specifics: directory specification

Syntax
MOPEN (directory-id,member-name<open-mode <,record-length<,record-format>>>)

Details
You must open the directory referenced by the directory ID before you open a file using
MOPEN. Under CMS, MOPEN can open files for output and for append, except for
MACLIB members, which MOPEN can open for input only.

See Also

� “DOPEN” on page 144
� SAS Language Reference: Dictionary

PATHNAME

Returns the physical name of a SAS data library or of an external file or returns a blank

CMS specifics: fileref

Syntax
PATHNAME (fileref)

fileref
specifies the fileref that was assigned to an external file or to a SAS data library.
Under CMS, fileref can also be a DDname that was assigned with a CMS FILEDEF
command.

Details
When PATHNAME is applied to a concatenation, it returns a list of data set names
encoded in parentheses.

Functions and CALL Routines 4 SYSGET 159

See Also

� SAS Language Reference: Dictionary

RANK

Returns the position of a character in the EBCDIC collating sequence

CMS specifics: EBCDIC collating sequence

Syntax
RANK (n)

n
is a character in the EBCDIC collating sequence represented by a specific integer.

Details
Under CMS, the RANK function returns an integer that represents the position of a
character in the EBCDIC collating sequence. Some operating environments return the
ASCII equivalent.

Example
The following example returns a value of 193 and assigns it to the variable n:

n = rank(’A’);

See Also

� SAS Language Reference: Dictionary

SYSGET

Returns the value of the specified operating environment variable or symbol

CMS specifics: operating-environment-variable, group

Syntax
SYSGET (’<group>operating-environment-variable’)

group
is an optional GLOBALV group containing the variable. If group is omitted, the
default group is SAS.

160 SYSTEM 4 Chapter 14

operating-environment-variable
is the name of an operating environment variable or symbol that has been created
with the GLOBALV command or with the SET= system option.

Details
Under CMS, operating-environment-variable is the name of an operating environment
variable or symbol that has been created with the GLOBALV command.

See Also

� “Accessing System Variables” on page 10

� SAS Language Reference: Dictionary

SYSTEM

Invokes a CMS or CP command and returns the return code

Alias: CMS

Details
See “CMS” on page 140

TRANSLATE

Replaces specific characters in a character expression

CMS specifics: pairs of to and from arguments

Syntax
TRANSLATE (source, to-1, from-1, < . . . to-n, from-n>)

Details
Under CMS, every to argument must have a corresponding from argument; you cannot
specify a null from argument. There is no practical limit to the number of to and from
argument pairs.

TRANSLATE handles character replacement for single-byte character sets only. See
KTRANLSATE to replace single-byte characters with double-byte characters, or vice
versa.

Functions and CALL Routines 4 TRANSLATE 161

See Also

� “KTRANSLATE” on page 156

� “SET=” on page 291

� SAS Language Reference: Dictionary

162 TRANSLATE 4 Chapter 14

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the CMS Environment, Version 8 , Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the CMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–481–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

