
163

C H A P T E R

15
Informats

Informats in the CMS Environment 163
Considerations for Using Informats under CMS 163

EBCDIC and Character Data 163

Floating-Point Number Format and Portability 164

Reading Binary Data 164

Date and Time Informats 165
Column-Binary Informats 166

E 166

HEX 167

IB 168

PD 169

RB 170
w.d 171

ZD 173

ZDB 174

Informats in the CMS Environment
In general, informats are completely portable. Only the informats that have

host-specific behavior are documented in this section.
All of these informats are described in SAS Language Reference: Dictionary; that

information is not repeated here. Instead, each format description includes “CMS
specifics” information that tells how the informat behaves under CMS. Then you are
referred to SAS Language Reference: Dictionary.

Considerations for Using Informats under CMS

EBCDIC and Character Data
The following character informats produce different results on different computing

platforms, depending on which character-encoding system the platform uses. Because
CMS uses the EBCDIC character-encoding system, all of the following informats
convert data to EBCDIC.

These informats are not discussed in detail in this section because the EBCDIC
character-encoding system is their only host-specific aspect.

$ASCIIw.
converts ASCII character data to EBCDIC character data.

164 Floating-Point Number Format and Portability 4 Chapter 15

$BINARYw.
converts binary values to EBCDIC character data.

$CHARw.
reads character data with blanks.

$CHARZBw.
reads character data and converts any byte that contains a binary zero to a blank.

$EBCDICw.
converts character data to EBCDIC. Under CMS, $EBCDIC and $CHAR are
equivalent.

$HEXw.
converts hexadecimal data to EBCDIC character data.

$OCTALw.
converts octal data to EBCDIC character data.

$PHEXw.
converts packed hexadecimal data to EBCDIC character data.

$VARYINGw.
reads character data with blanks.

$w.
reads standard character data.

All the information that you need in order to use these informats under CMS is
included in SAS Language Reference: Dictionary.

Floating-Point Number Format and Portability
The manner in which CMS stores floating-point numbers can affect your data. See

“Representation of Floating-Point Numbers” on page 111 for details.

Reading Binary Data
If a SAS program that reads binary data is run on only one type of machine, you can

use the following native-mode informats. Native mode means that these informats use
the byte-ordering system and floating-point representation that is standard for the
machine.

IBw.d reads integer binary (fixed-point) values, including negative values,
that are represented in twos complement notation

PDw.d reads data that are stored in the IBM packed decimal format

PIBw.d reads positive integer binary (fixed-point) values

RBw.d reads real binary (floating-point) data.

ZDw.d reads zoned decimal data

If you want to write SAS programs that can be run on multiple machines that use
different byte-storage systems, then use the following IBM 370 informats:

S370FIB
reads integer binary data in the IBM mainframe format

S370FIBU
reads unsigned integer binary data in the IBM mainframe format

Informats 4 Date and Time Informats 165

S370FPD
reads packed decimal data in the IBM mainframe format

S370FPDU
reads unsigned packed decimal data in the IBM mainframe format

S370FPIB
reads positive integer binary data in the IBM mainframe format

S370FRB
reads real binary data in the IBM mainframe format

S370FZD
reads zoned decimal data in the IBM mainframe format

S370FZDL
reads zoned decimal leading sign data in the IBM mainframe format

S370FZDS
reads zoned decimal separate leading sign data in the IBM mainframe format

S370FZDT
reads zoned decimal separate trailing sign data in the IBM mainframe format

S370FZDU
reads unsigned zoned decimal data in the IBM mainframe format.

These IBM 370 informats enable you to write SAS programs that can be run in any
SAS environment, regardless of the standard for storing numeric data. They also
enhance your ability to port raw data between host operating environments.

For more information about the IBM 370 informats, see SAS Language Reference:
Dictionary.

Date and Time Informats
Several informats are designed to read time and date stamps that have been written

by the System Management Facility (SMF), or by the Resource Management Facility
(RMF). SMF and RMF are standard features of the OS/390 operating environment.
They record information about each job that is processed. The SAS System under CMS
can be used to analyze SMF and RMF data from an OS/390 system.

The following informats are used to read time and date stamps that are generated by
SMF and RMF:

PDTIMEw.
reads the packed decimal time of SMF and RMF records.

RMFDUR.
reads the duration values of RMF records.

RMFSTAMPw.
reads the time and date fields of RMF records.

SMFSTAMPw.
reads the time and date of SMF records.

TODSTAMP.
reads the 8-byte time-of-day stamp.

TUw.
reads Timer Unit values.

166 Column-Binary Informats 4 Chapter 15

In order to facilitate the portability of SAS programs, you may use these informats
with any operating environment that is supported by the SAS System; therefore, they
are documented in SAS Language Reference: Dictionary.

Column-Binary Informats
Four informats read data from column-binary files:

$CBw. reads standard character data from column-binary files.

CBw. reads standard numeric values from column-binary files.

PUNCH.d reads whether a row of column-binary data is punched.

ROWw.d reads a column-binary field down a card column.

Data that are stored in column-binary form have usually been read into the SAS
System from punch cards. Although column-binary files are not unique to CMS, that
method of storing punch card data was used extensively on IBM 370 computer systems,
and many files that were originally stored on punch cards are still in use today.

The $CB, CB, PUNCH, and ROW informats are completely portable. They enable
SAS programs to read data that are stored in column-binary format regardless of which
operating environment your site is running under. The only CMS-specific aspect of
these informats is the historical relationship between the Hollerith card-coding system
and IBM. See SAS Language Reference: Dictionary for complete information about the
column-binary informats.

E

Reads numeric values that are stored in scientific notation

Numeric

Width range: 7– 32
Default width: 12
Decimal range: 0– 31
CMS specifics: interprets input as EBCDIC, minimum and maximum values

Syntax
Ew.d

w
specifies the field width of the input value.

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
Numbers are interpreted using the EBCDIC character-encoding system, with one digit
per byte. The range of acceptable values is 5.398E-79 to 7.237E75. Any number outside

Informats 4 HEX 167

this range causes an overflow error. The following table illustrates the use of the E
informat.

EBCDIC Data Pattern Read Informat Numeric Value
Scientific
Notation

’40F14BF2F3F0C54EF0F2’x e10. 123 1.230E+02

’60F14BF2F3F0C54EF0F2’x e10. -123 -1.230E+02

’40F14BF2F3F0C54EF0F1’x e10. 12.3 1.230E+01

’40F14BF2F3F5C54EF0F8’x e10. 123500000 1.235E+08

’40F14BF2C54EF0F8’x e8. 120000000 1.2E+08

Note:

� ’40’x=blank

� ’F1’x=1, ’F2’x=2, and so on

� ’4B’x=decimal point

� ’C5’x=E

� ’4E’x=plus sign

� ’60’x=minus sign

4

See Also

� Format: “E” on page 128

� SAS Language Reference: Dictionary.

HEX

Converts hexadecimal positive binary values to either integer (fixed-point) or real (floating-point)
binary values

Numeric

Width range: 1– 16

Default width: 8

CMS specifics: IBM floating-point format

Syntax
HEXw.

w
specifies the field width of the input value and determines whether the input
represents an integer or real binary value.

168 IB 4 Chapter 15

Details
Each hexadecimal digit that is read by the HEX informat is interpreted using the
EBCDIC character-encoding system, with one digit per byte. For example, the
hexadecimal value ’F1’x (EBCDIC 1) results in the number 1.0 using the HEX1.
informat.

When you specify a width value of 1 through 15, the input hexadecimal number
represents an integer binary value. When you specify 16 for the field width, the input
hexadecimal number represents a real binary number.

For example, suppose a floating-point number has been stored as the following
hexadecimal character value:

433E800000000000
(’F4F3F3C5F8F0F0F0F0F0F0F0F0F0F0F0’x)

If you read the value using HEX16. as the informat, the number is converted to its
correct floating-point value of 1000. However, if you specify HEX15. as the informat,
SAS expects the input to represent an integer binary value. Since the number was
originally stored in IBM floating-point format, the second result is incorrect.

If a number has been stored as a character representation of an integer binary value,
it is correct to use a w value of less than 16. For example, if 256 has been stored as the
following hexadecimal character value, then using HEX6. gives the correct result:

000100 (’F0F0F0F1F0F0’x)

However, using HEX16. produces an incorrect result of 3.38E-80 in the preceding
example.

You can use the HEX informat to read negative floating-point numbers; however, it
cannot be used to read negative integer binary numbers. For example, if you write -10
using the HEX16. format, it is stored in a character representation of a floating-point
format, as follows:

C1A0000000000000
(’C3F1C1F0F0F0F0F0F0F0F0F0F0F0F0F0’x)

If this character representation of a floating-point number is then read with the
HEX16. informat, the value is correctly interpreted as the number -10.

However, if you write -10 as an integer binary number using the HEX2. format, it is
written in EBCDIC as the hexadecimal string F6, which is the twos complement
notation for -10. If you then read this value using HEX2. as the informat, it is read as
a positive number, giving a result of 246.

See Also

� “Representation of Floating-Point Numbers” on page 111

� Format: “HEX” on page 129

� SAS Language Reference: Dictionary.

IB

Reads integer binary (fixed-point) values, including negative values

Numeric

Width range: 1– 8

Informats 4 PD 169

Default width: 4

Decimal range: 0– 10

CMS specifics: twos complement notation

Syntax
IBw.d

w
specifies the field width of the input value.

d
specifies a divisor for the input value. If the informat includes a d value, the input
value is divided by 10d.

Details
The integer binary values include negative values represented in twos complement
notation. The following table shows several examples of the IBw.d informat.

Data Pattern Read
Actual Numeric
Value Informat

Resulting Numeric
Value

’000004D2’x 1234 ib4. 1234

’FFFFFB2E’x -1234 ib4. -1234

’0000000C’x 12 ib4. 12

’000000003034’x 12340 ib6.2 123.4

’00000001E208’x 123400 ib6.2 1234

’00000012D450’x 1234000 ib6.2 12340

See Also

� Format: “IB” on page 130

� SAS Language Reference: Dictionary.

PD

Reads data stored in IBM packed decimal format into a floating-point number

Numeric

Width range: 1– 16

Default width: 1

Decimal range: 0– 10

CMS specifics: IBM packed decimal format

170 RB 4 Chapter 15

Syntax
PDw.d

w
specifies the field width of the input value.

d
specifies a divisor for the input value. If the informat includes a d value, the input
value is divided by 10d.

Details
In packed decimal format, each byte represents two decimal digits. An IBM packed
decimal number consists of a sign and up to 31 digits, thus giving a range from 1031 -1
to 10-31 +1. The sign is written in the rightmost nibble, with a ’C’x indicating a positive
value and a ’D’x indicating a negative value. The rest of the nibbles to the left of the
sign nibble represent decimal digits. The hexadecimal values of these digit nibbles
correspond to decimal values; therefore, only values between ’0’x and ’9’x can be used in
the digit positions. The following table shows several examples of how data is read
using the PDw.d informat.

Data Pattern Read
Actual Numeric
Value Informat

Resulting
Numeric Value

’01234C’x 1234 pd3. 1234

’01234D’x -1234 pd3. -1234

’0001234C’x 1234 pd4. 1234

’0012340C’x 12340 pd4.1 1234

’0123400C’x 123400 pd4.2 1234

See Also

� Format: “PD” on page 131

� SAS Language Reference: Dictionary.

RB

Reads real binary (floating-point) data into a floating-point number

Numeric

Width range: 2– 8

Default width: 4

Decimal range: 0– 10

CMS specifics: IBM floating-point format

Informats 4 w.d 171

Syntax
RBw.d

w
specifies the field width of the input value.

d
specifies a divisor for the input value. If the informat includes a d value, the input
value is divided by 10d.

Details
The format of floating-point numbers is specific to CMS. (See “Representation of
Floating-Point Numbers” on page 111 for a description of the format used to store
floating-point numbers.) The following table shows how data that represent several
decimal numbers are read as floating-point numbers using the RBw.d informat.

Data Pattern Read

Actual
Numeric
Value Informat

Resulting
Numeric Value

’427B000000000000’x 123 rb8. 123

’434CE00000000000’x 1230 rb8.1 123

’44300C0000000000’x 12300 rb8.2 123

’C27B000000000000’x -123 rb8. -123

’434D200000000000’x 1234 rb8. 1234

’41C570A3D70A3D70’x 12.34 rb8. 12.34

See Also

� “Representation of Floating-Point Numbers” on page 111
� Format: “RB” on page 132
� SAS Language Reference: Dictionary.

w.d
Reads standard numeric data

Numeric

Width range: 1– 32
Decimal range: 0– 31, d < w.
CMS specifics: minimum and maximum values

Syntax
w.d

172 w.d 4 Chapter 15

w
specifies the field width of the input value in bytes or character digits.

d
specifies the number of digits to the right of the decimal point in the input value.

Details
Numbers are interpreted using the EBCDIC character-encoding system, with one digit
per byte. The w.d informat reads numeric values located anywhere in the field. Blanks
can precede or follow a numeric value with no effect. A minus sign with no separating
blanks must immediately precede a negative value. Data can be stored with decimal
points or in scientific notation.

Include a d value in the w.d informat when you want SAS to insert a decimal point.
When you include a d value, values read without decimal points are divided by 10d. If
the value read already has a decimal point, the d is ignored.

The range of acceptable values that can be read with the w.d informat can range from
5.398E-79 to 7.237E+75. The following table illustrates the use of the w.d informat.

Data Pattern Read
Actual Numeric
Value Informat

Resulting
Numeric
Value

’F1F2F3F4’x 1234 4. 1234

’40F1F2F3F4’x 1234 5. 1234

’F1F24BF5F0’x 12.50 5. 12.50

’F1F24BF5F0’x 12.50 5.1 12.50

’F1F2F5F040’x 1250 5.1 125

’40F1F0F0F0’x 1000 5.1 100

’4060F1F2F3F4’x -1234 6. -1234

’40F14BF0C54EF0F3’x 1.0E+03 8. 1000

Note:

� ’40’x=blank
� ’F1’x=1, ’F2’x=2, and so on
� ’4B’x=decimal point
� ’C5’x=E
� ’4E’x=plus sign
� ’60’x=minus sign

4

Informats 4 ZD 173

See Also

� Format: “w.d” on page 133
� SAS Language Reference: Dictionary.

ZD

Reads zoned decimal data

Numeric

Width range: 1– 32
Default width: 1
Decimal range: 0– 31
CMS specifics: IBM zoned decimal format

Syntax
ZDw.d

w
specifies the field width of the input value.

d
specifies a divisor for the input value. If the informat includes a d value, the input
value is divided by 10d.

Details
Like numbers stored in standard format, zoned decimal digits are represented as
EBCDIC characters. Each digit requires one byte of storage space. The rightmost byte
represents both the least significant digit and the sign of the number. Digits to the left
of the least significant digit are represented as the EBCDIC characters 0 through 9.
The character printed for the least significant digit depends on the sign of the number.

In the least significant byte, negative numbers are coded with the high-order nibble
being a ’D’x and with the low-order nibble being the numeric value. Positive numbers
are represented with the high-order nibble being a ’C’x. For example, compare the
zoned decimal data for 123 and -123 in the following table.

Data Pattern Read

Actual
Numeric
Value Informat

Resulting
Numeric Value

’F0F0F0F0F0F1F2C3’x 123 zd8. 123

’F0F0F0F0F1F2F3C4’x 1234 zd8. 1234

’F0F0F0F0F1F2F3C0’x 1230 zd8.1 123

’F0F0F0F1F2F3F0C0’x 12300 zd8.2 123

’F0F0F0F0F0F1F2D3’x -123 zd8. -123

174 ZDB 4 Chapter 15

Data Pattern Read

Actual
Numeric
Value Informat

Resulting
Numeric Value

’F0F0F0F0F0F1F2C3’x 123 zd8.6 0.000123

’F0F0F0F0F1F2F3C0’x 1230 zd8.6 0.00123

’F0F0F0F0F0F0F0C1’x 1 zd8.6 1E-6

See Also

� Informat: “ZDB” on page 174
� Format: “ZD” on page 135
� SAS Language Reference: Dictionary

ZDB

Reads zoned decimal data with blanks

Numeric

Width range: 0– 31
Default width: 1
Decimal range: none
CMS specifics: used on IBM 1410, 1401, and 1620

Syntax
ZDBw.d

w
specifies the field width of the input value, in bytes.

d
specifies a divisor for the input value. If the informat includes a d value, the input
value is divided by 10d.

Details
The ZDB informat reads zoned decimal data that are produced in IBM 1410, 1401, and
1620 form, in which zeros are left blank rather than being written. Each digit is
represented as an EBCDIC character as previously described for the ZD informat. The
only differences are the way in which zeros are represented, and that the ZDB informat
does not allow you to use a d value while ZD does. The ZDB informat treats EBCDIC
blanks (’40’x) as zeros. (EBCDIC zeros are also read as zeros.) Like the ZD informat,
the ZDB informat also uses the rightmost byte to represent both the least significant
digit and the sign.

The table under “ZD” on page 173 shows the convention that is used to store digits in
zoned decimal format. The following table shows several examples of how the ZDB
informat reads data.

Informats 4 ZDB 175

Data Pattern Read

Actual
Numeric
Value Informat

Resulting
Numeric
Value

’40404040404040C1’x 1 zdb8. 1

’404040404040F1C0’x 10 zdb8. 10

’4040404040F140C0’x 100 zdb8. 100

’40404040F14040C0’x 1000 zdb8. 1000

’4040404040F1F2D3’x -123 zdb8. -123

’4040404040F1F2C3’x 123 zdb8. 123

See Also

� Informat: “ZD” on page 173

� Format: “ZD” on page 135

� SAS Language Reference: Dictionary

176 ZDB 4 Chapter 15

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the CMS Environment, Version 8 , Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the CMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–481–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

