
495

C H A P T E R

39
Authenticate Program

Support for Version 6 Only 495
Authenticating Userid and Password Pairs 495

Guidelines for Writing and Storing an Authentication Program 496

Obtaining Password Information 496

Authentication Program Examples 496

Compiling the Authenticate Program 496
Changing the Permissions in the Executable File 497

Testing the Authentication Program 497

Support for Version 6 Only
Version 7 and later uses the sasauth program that is automatically invoked to

validate the server userid and password. However, information about the
authenticate program is included here for Version 6 users.

Authenticating Userid and Password Pairs
For connections to a UNIX remote host when using the TCP/IP access method,

SAS/CONNECT and SAS/SHARE use the default authentication program to verify the
remote host userid and to verify that the password is correct for the specified userid.

The UNIX spawner program uses the native UNIX authentication mechanism, by
default, to validate a userid and password pair. Alternatively, the user can invoke the
UNIX spawner program with the -AUTHPROG option and an argument that specifies
the name of the customized authentication program. See “Starting the UNIX Spawner
Program” on page 479 for details about invoking the UNIX spawner with the
-AUTHPROG option.

A SAS/SHARE server implicitly invokes the default authentication program when a
user accesses a SAS/SHARE server that is running in secure mode. To secure a server,
the server administrator sets the TCPSEC environment variable to _SECURE_ (%let
tcpsec=_secure_;) and sets the options OAVALID and UAVALID to YES (proc
server UAVALID=YES OAVALID=YES;).

By default, both UAVALID and OAVALID options are set to NO on all UNIX
platforms. Therefore, you must explicitly set these options to YES to allow only
validated client connections to the server.

Both SAS/CONNECT and SAS/SHARE users can use the sample utility program,
!sasroot /utilities/bin/authenticate , which is shipped with SAS software
(Release 6.11 TS020 or a subsequent release), or they can use a customized
Authenticate program.

496 Guidelines for Writing and Storing an Authentication Program 4 Chapter 39

Guidelines for Writing and Storing an Authentication Program
By default, the TCP/IP access method uses an external program named

authenticate to validate the userid and password pair. The program must take two
arguments, username and password, and it must then verify that the password is correct
for the specified user name. If the password is valid, the program exits with a zero
return code. If the password is invalid, the program exits with a non-zero return code.

It is recommended that you write attempts, successes, and failures from the
Authenticate program to a log. Also, it is recommended that you fail the authentication
for any step in the process that has a problem.

After you finish testing the program, move it to the !sasroot /utilities/bin
directory where SAS expects the program to be located.

Obtaining Password Information
Methods for obtaining password information vary by type of UNIX system. Many

UNIX systems use conventional password files that contain the encrypted password.
Other UNIX systems use a "shadow" password file. Encrypted passwords are stored in
a separate file that is readable only by a user that has root privileges.

The password files and the types of UNIX systems that use them are:

conventional password file /etc/password
SunOS 4.1, HP-UX, AIX

shadow password file /etc/shadow
SVR4-compliant systems (SVR4 is an abbreviation for System V Revision 4.)

Note: Examples of SVR4-compliant systems are Solaris 2 , MIPS ABI, and Intel ABI
UNIX. 4

Note: The AIX system also uses shadow passwords but in a different way than
SVR4-compliant systems. 4

The sample programs in the !sasroot /utilities/src directory contain instructions
that obtain the encrypted password from both the conventional password file and the
shadow password file. See the following authentication program examples for details
about setting up and running these programs.

Note: The password that you set up and the one that was used to log on to the
system do not have to be the same. Any user-supplied method of password validation is
allowed. 4

Authentication Program Examples
The !sasroot /utilities/src directory contains documented examples of the

following authentication programs:

auth.conv.c
obtains the encrypted password from the conventional password file.

auth.shadow.c
obtains the encrypted password from the shadow file.

Compiling the Authenticate Program
In most cases, you can compile the working examples with the following commands:

Authenticate Program 4 Testing the Authentication Program 497

%
cd !sasroot/utilities/src

%
cc -o authenticate

authentication-program

Typically, the cc command is the name of the C language compiler, but the command
that you use on your system may be different. You do not need to set high optimization
or to use an ANSI standard compiler to build the program because it already uses the
standard C library functions for most of the work. authentication-program is either
auth.conv.c, which uses the conventional password file /etc/passwd, or
auth.shadow.c, which uses the shadow password file /etc/shadow.

Changing the Permissions in the Executable File
After you compile the authentication program, you must change the permissions in

the executable file so that it runs with root privileges.
Example 1:
For an SVR4-compliant system that uses the /etc/shadow file, change the file’s

ownership to root. Root must have a setuid (s) privilege.

%
chown root authenticate

%
chmod +s authenticate

Example 2:
The standard AIX and SVR4 implementations of shadow passwords are different.

The AIX system user must compile the auth.conv.c file and change the resulting
executable to setuid root, as follows:

%
chown root authenticate

%
chmod ogu+s authenticate

Other UNIX systems may use different methods to enable programs to run with root
privileges.

Testing the Authentication Program
You can perform all testing of the authentication program outside the

SAS/CONNECT environment because the programs are stand-alone. The simplest way
to test the programs is to check the UNIX status variable in the UNIX shell. For
example, using the C shell, you might test the authenticate program as follows:

%
authenticate bass

valid-password
%
echo $status

0

498 Testing the Authentication Program 4 Chapter 39

%

You must supply a valid password for the userid, in this case, bass. The password is
valid because the exit status is 0.

In the following test, the password is invalid because the exit status is non-zero.

%
authenticate bass

invalid-password
%
echo $status

1
%

After you test the program and are satisfied that it works correctly, move the
program to the !sasroot /utilities/bin directory where SAS expects the program to
be located.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
Communications Access Methods for SAS/CONNECT and SAS/SHARE Software, Version
8, Cary, NC: SAS Institute Inc., 1999. pp. 643.

Communications Access Methods for SAS/CONNECT and SAS/SHARE Software,
Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–479–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, ACF/VTAM® , AIX® , APPN® , MVS/ESA® , OS/®2® , OS/390® , VM/ESA® , and
VTAM® are registered trademarks or trademarks of International Business Machines
Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

