505

CHAPTER

41

Sign-on Script Files

General Script Statement Rules 505
Syntax 505

Sample Scripts 506

TSO.SCR Script 507

TCPUNIX.SCR Script 508

LOGCMS.SCR Script 513

TCPWIN.SCR Script 517

TCPMVS.SCR Script 520

General Script Statement Rules

This section contains general rules for writing script statements. A script statement
that is not valid for your access method is ignored. For details about the statements
that are used in the scripts, see SAS/SHARE User’s Guide.

Syntax

o Like other SAS statements, all script statements must end with a semicolon(;).

O Script statements have a free format, which means that there are no spacing or
indention requirements. You can split a statement across several lines, or you can
put one or more statements on a single line. You can put statement keywords in
uppercase, lowercase, or mixed case.

o Enclose case-sensitive text strings in quotation marks. For example, if your script
defines a text string in a WAITFOR statement, be sure that the uppercase and
lowercase characters in the text string exactly match the text string from the
remote host.

O You can use either single or double quotation marks to enquote a string, such as a
remote host command, in a script statement. The rules that you use to embed
guotation marks in a SAS statement and to embed quotation marks in a script
statement are the same.

o Any script statement can include a label specification. The label must be a valid
SAS name, with a maximum of eight characters. The first character must be an
alphabetic character or an underscore. A label must be followed immediately by a
colon (:) and it can be defined only once in the script.

O Some script statements specify a time in seconds. The form of the time
specification follows:

506 Sample Scripts A Chapter 41

n SECONDS

where n can be any number, including decimal fractions. SECOND is an alias
for SECONDS. Examples of valid time specifications follow:

0 SECONDS
0.25 SECONDS
1 SECOND
3.14 SECONDS.

The techniques that are used in these scripts are basic to writing scripts.

When writing a script or modifying an existing script, pay special attention to the
WAITFOR and the TYPE statements. To ensure that the script recognizes the expected
prompt during each stage of signing on, you must be careful to specify the exact
sequence of prompts and responses for the remote host. The simplest method for
determining sequence is to go to the remote host and to manually go through the process
that you want to capture in the WAITFOR and the TYPE statements. For each display
on the remote host, choose a word from that display for the WAITFOR statement.
Whatever information that you type to respond to a display should be captured in the
TYPE statement. Be sure to note all carriage returns or other special keys.

For example, if TSO is the remote host and you need to use a TYPE statement in a
sign-on script whose length is greater than 80 characters, divide the TYPE statement
into two or more TYPE statements. To divide the TYPE statement, insert a hyphen (-)
at the division point. The remote TSO host interprets the hyphen as the continuation of
the TYPE statement from the previous line. For example, consider the following TYPE
statement:

type "sas options (’'dmr comamid=tcp’)" enter;
To divide the statements, change it to:

type "sas options (’'dmr comamid=-" enter;
type "tcp’)" enter;

Note: Do not insert spaces around the hyphen. a

Sample Scripts

The content and explanation follow for typical
SAS/CONNECT scripts that sign on and sign off.

TSO.SCR
connects to an OS/390 remote host with the EHLLAPI 3270 access method.

TCPUNIX.SCR
connects to a UNIX remote host with the TCP/IP access method.

LOGCMS.SCR
connects to a CMS remote host with the EHLLAPI access method.

TCPWIN.SCR

connects to a Windows NT or a Windows 95 remote host with the TCP/IP access
method.

TCPMVS.SCR
connects to an OS/390 remote host without TSO with the TCP/IP access method.

Sign-on Script Files A TS0.SCR Script 507

TS0.SCR Script

The following script signs on and signs off an OS/390 remote host with the EHLLAPI
3270 access method. This script assumes that the user has already logged on to an OS/
390 remote host.

/* trace on; */
/* echo on; */

/K e -

Copyright (C) 1996 by SAS Institute Inc., Cary NC

name: tso.scr

purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting to an
0S/390 (with TSO) host using the EHLLAPI access method
from a local WINDOWS or an 0S/2 operating system.

assumes: 1. This script assumes the remote session is already

logged on.

2. The command to execute SAS in your remote 0S/390 (with TSO)
environment is "sas". If this is incorrect for your
site, change the contents of the line that contains
type "sas

support: SAS Institute staff
__ */
@ log "NOTE: Script file ’'tso.scr’ entered.";
(2] if signoff then goto signoff;
/*=—==— EHLLAPI SIGNON ———— - e e */
(3]
waitfor 'READY’, 0 seconds: noinit;
log 'NOTE: Starting remote SAS now.';
/* NOTERMINAL suppresses prompts from remote SAS session. */
/* NOSSYNTAXCHECK prevents remote side from going into syntax */
/* checking mode when a syntax error is encountered. */
type "sas options('’dmr,comamid=pclink,noterminal,no$syntaxcheck’)" enter;
goto continue;
O continue:
waitfor ’'IN PROGRESS’, 20 seconds: waitsas;
© onok:
log 'NOTE: SAS/CONNECT conversation established.’;
stop;
/*=—==— EHLLAPI SIGNOFF ————— e e e */
@ signoff:

log 'NOTE: SAS/CONNECT conversation terminated.’;
log 'NOTE: Remote session left logged on.’;
stop;

508 TCPUNIX.SCR Script A Chapter 41

@ waitsas:
log 'NOTE: Waiting for startup screen...’;
type EREOF enter;
goto continue;

A Te—— ERROR HANDLING === == e e e e e */
© noinit:
snapshot;

log 'ERROR: Did not get remote prompt. Remote session not active.’;
log 'NOTE: You must log on to the remote session before signing on’;
log ’ using this script file.’;

abort;

1 LOG statements write messages to the local host SAS log that provide information
about the progress of the sign on.

2 If the SIGNOFF statement invokes this script, processing jumps to the SIGNOFF
label. See step 6 in this list.

3 The WAITFOR statement looks for the READY prompt from the remote host and
processing goes to step 8 if no prompt is received. When the READY prompt is
received, the note is written to the local host's log, and the TYPE statement
invokes SAS on the remote host. The DMR option is necessary to invoke a special
processing mode for SAS/CONNECT. The COMAMID= option specifies the access
method that is used to establish the connection.

4 The WAITFOR statement looks for the message IN PROGRESS, which is
displayed when a SAS session starts on the remote host. If the message is not
found, processing goes to the WAITSAS label in step 7.

5 This LOG statement prints a message to the log to indicate that you have
successfully established a link.

6 These statements are executed when step 2 directs processing here. The two notes
are written to the local log, and the link is terminated.

7 Processing continues from step 4. The note is written to the local log, and
processing returns to step 4.

8 Processing continues from step 3 if the READY prompt is not received. The
SNAPSHOT statement captures messages that are displayed on the remote host
and writes them to the local host’s log. The log messages can help you determine
the reasons why the sign on to the remote host was interrupted. You can save or
print the local log to have a record of these messages. The error and note
messages are written to the local log, and the script aborts.

TCPUNIX.SCR Script

The following script connects to a UNIX remote host with the TCP/IP access method.

/* trace on; */
/* echo on; */

/K e */
[*=—= Copyright (C) 1996 by SAS Institute Inc., Cary NC --%*/
[*== -=%/
/*-— name: tcpunix.scr -—%x/

/% -/

Sign-on Script Files A TCPUNIX.SCR Script

/*-— purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting -—%/
/*—= to any UNIX host by means of the TCP/IP access -—%/
[*== method -=%/
[*== -=%/
/*-- notes: 1. This script may need modifications that account -—%/
/*—= for the local flavor of your UNIX environment. -—%x/
/*—= The logon procedure should mimic the events that --*/
/*—= you go through when "telnet"-ing to the same -—%/
/*—= UNIX host. If you are connecting to a spawner -—%/
/*—= that is running in your UNIX environment, this -—%/
/*—= script should need little or no modifications. -—%/
[*=—= -=%/
/*—= 2. You must have specified OPTIONS COMAMID=TCP -—%/
/*—= in the local SAS session before using the SIGNON -—-*/
/*—= statement. ——x/
[*== -=%/
/*—— assumes: 1. The command to execute SAS in your remote (UNIX) --%*/
/*—= environment is "sas". If this is incorrect -—%/
/*—= for your site, change the contents of the line -—%/
/*—= that contains: -—%/
/*—= type ’'sas ... —-—x/
[*== -=%/
/*-— support: SAS Institute staff —-—x/
[*== -=%/
/ F e */
/ F e */
/*-—- if you are connecting to DEC ULTRIX, and the remote —-—x/
/*—- machine does not run the DECnet connection/gateway A
/*-- software, logins by means of SAS/CONNECT will appear to -—%/
/*-- hang. This is due to the ULTRIX "/etc/telnetd" server —-—x/
/*—- treating a DONT ECHO request for both input and output -—x/
/*-- streams. -=%/
[*== -=%/
/*—- This DEBUG statement causes the SAS TCP/IP access method -=%/
/*-—- not to reply to the ECHO request, keeping the DEC telnetd --*/
/*-- server happy. A
[*== -=%/
/*-— Uncomment the DEBUG statement, if the logon appears to hang--*/
/K e */
/* debug '00001000'; */
/ F e - */
/*—- If you are connecting to INTEL ABI, you need to uncomment --%*/
/*-- the following DEBUG statement. This DEBUG statement -—x/
/*-- allows SAS/CONNECT to set the terminal type to TTY during --%*/
/*-- the TELNET negotiations that take place during SIGNON. ——x/
S */

/* debug '00004000’"; */

@ log "NOTE: Script file ’'tcpunix.scr’ entered.";

509

510 TCPUNIX.SCR Script A Chapter 41

if not tcp then goto notcp;
@® if signoff then goto signoff;

©® waitfor ’'login:’
, 'Username:’
, 'Scripted signon not allowed’ : noscript
, 120 seconds: noinit;

T UNIX LOGON= == m oo e e */
/*-- for some reason, it needs an LF to turn the line around -—%/
/*-- after the login name has been typed. (CR will not do) -—%/
P —— */

@ input ’'Userid?’;
type LF;

@ waitfor ’'Password’, 30 seconds : nolog;
input nodisplay ’‘Password?’;

type LF;
unx log:
@ waitfor 'Hello>’ : unxspawn /*- UNIX spawner prompt-*/
, 'S’ /*-— a common prompt character -—%/
, > /*-- another common prompt character --*/
, '8 /*-- another common prompt character --*/
, T} /*-- another common prompt character --*/
, 'Login incorrect’ : nouser
, 'Enter terminal type’ : unx_term
, '"TERM’ : unx_term
, 30 seconds : timeout
4
log 'NOTE: Logged onto UNIX... Starting remote SAS now.';
/* NOTERMINAL suppresses prompts from remote SAS session. */
/* NO\S$SYNTAXCHECK prevents remote side from going into */
/* syntax checking mode when a syntax error is encountered. */

@ type ’'sas -dmr -comamid tcp -device grlink -noterminal -no\$syntaxcheck’ LF;
@ waitfor 'SESSION ESTABLISHED’, 90 seconds : nosas;

© log 'NOTE: SAS/CONNECT conversation established.’;
stop;

@ unxspawn:
/* The UNIX spawner executes only a single UNIX command */
/* after the client logs on. In the TYPE statement below, */
/* you may specify a SAS command line. You may also specify */
/* a UNIX shell script that issues the SAS command line in */
/* addition to any other commands to be executed prior to */

/* SAS invocation. The following is a sample startup */
/* file: */
[F e e - */

/*# sas_startup */

Sign-on Script Files A TCPUNIX.SCR Script 511

Y et e T e e e e e */
/*#!/bin/ksh */
/*. ~/.profile */
/*sas -dmr -noterminal -no\$syntaxcheck -device grlink */
Y e ettt ettt */
/* */
/* If you choose to use a "startup" file, change the TYPE */
/* statement below to something like the following: */
/* type '/usr/local/whatever/sas_startup’ LF; */

® type ’'sas -dmr -comamid tcp -device grlink -noterminal ';
type ’'-no\$syntaxcheck’ LF;

waitfor ’'SESSION ESTABLISHED'’, 90 seconds : nosas;

stop;
[* e TCP/IP SIGNOFF ——— e */
signoff:
/* If you have established your connection to UNIX by means */
/* of a UNIX spawner, you should delete or comment the */
/* following WAITFOR and TYPE statements. They are not */
/* necessary for signing off a UNIX spawner and will */
/* result in slower performance of SIGNOFF. */
@® waitfor s’
, 1> /*-- another common prompt character --*/
, '8 /*-- another common prompt character --*/
, T} /*-- another common prompt character --*/
, 30 seconds
4
type "logout’ LF;
log 'NOTE: SAS/CONNECT conversation terminated.’;
stop;
[* e SUBROUTINES -—-————————— e — */
unx_term:
Ry */
/*—— Some UNIX platforms want the terminal type, -—%/
/*-- so tell them we are the most basic of terminals. -—%/
e */

type ’'tty’ LF;
goto unx_log;

Y ERROR ROUTINES ————— oo e */
® timeout:
log 'ERROR: Timeout waiting for remote session response.’;
abort;
nouser:

log 'ERROR: Unrecognized userid or password.’;

512

notcp:

nolog:

TCPUNIX.SCR Script A Chapter 41
abort;
log 'ERROR: Incorrect communications access method.’;
log 'NOTE: You must set "OPTIONS COMAMID=TCP;" before using this’;
log ’ script file.’;
abort;
noinit:
log 'ERROR: Did not understand remote session banner.’;
log 'ERROR: Did not receive userid or password prompt.’;
abort;

nosas:
log 'ERROR: Did not get SAS software startup messages.’;

abort;

noscript:

/* This is the result of trying to sign on with a script file */
/* to a UNIX spawner that has been invoked with the -NOSCRIPT */
/* option. You need to clear any script file reference and */
/* then re-execute SIGNON. */
log 'ERROR: Scripted signons are not allowed.’;

log 'NOTE: Clear any script file reference and retry SIGNON.';
abort;

1 The LOG statement sends the enquoted message to the log file or to the LOG
window of the local SAS session. Although it is not necessary to include LOG
statements in your script file, the LOG statements keep the user informed about

the progress of the connection.

2 The IF/THEN statement can detect whether the script was called by the SIGNON
statement or the SIGNOFF statement. When you are signing off, the IF/THEN
statement directs script processing to the statement labeled SIGNOFF. See step 12.

3 The WAITFOR statement awaits the login prompt from the remote host. If the
statement does not receive the prompt within 120 seconds, it directs script

processing to branch to the statement labeled NOINIT.

4 The INPUT statement displays a window with the text Userid? to allow the user
to enter a remote host logon userid. The TYPE statement sends a line feed to the

remote host to enter the userid to the remote host.

5 The WAITFOR statement waits for the password prompt from the remote host and
branches to the NOLOG label if it is not received within 30 seconds. The INPUT
statement that follows the WAITFOR statement displays a window in which the

user enters a password.

6 The WAITFOR statement waits for one of several common UNIX prompts and
branches to various error handles if a prompt is not displayed. For a connection to
the UNIX spawner, the string "Hello >" is received and the control branches to the
unxspawn label in step 10. Verify that the WAITFOR statement in the script looks

for the correct prompt for your site.

7 The TYPE statement invokes SAS on the remote host. The DMR option is

necessary to invoke a special processing mode for SAS/CONNECT. The

Sign-on Script Files A LOGCMS.SCR Script 513

COMAMID= option specifies the access method that is used to make the
connection.

8 The message SESSION ESTABLISHED is displayed when a SAS session is started
on the remote host with the DMR and the COMAMID=TCP options. The
WAITFOR statement awaits the display of the message SESSION ESTABLISHED
to be issued by the remote host. If the SESSION ESTABLISHED response is
received within 90 seconds, processing continues with the next LOG statement. If
the SESSION ESTABLISHED response does not occur within 90 seconds, the script
assumes that the remote SAS session has not started, and processing branches to
the statement labeled NOSAS.

9 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

10 This section of code is executed when you connect to a remote UNIX spawner.

11 The TYPE statement invokes SAS on the remote host. The DMR option is
necessary to invoke a special processing mode for SAS/CONNECT. The
COMAMID= option specifies the access method that is used to make the
connection.

12 This section of code is executed when the script is invoked to terminate the link.
The IF statement (see step 2) sends processing to this section of the script when
the script is invoked by a SIGNOFF statement. This section logs the user off the
remote host after the user executes LOGOFF. Before it stops the link, the script
issues a LOG statement to notify the user that the link is terminated.

13 These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the local SAS log
and then abnormally ends the script processing as well as the SIGNON.

LOGCMS.SCR Script

The following script signs on and signs off a CMS remote host with the EHLLAPI
access method.

/* trace on; */
/* echo on; */

Copyright (C) 1996 by SAS Institute Inc., Cary NC
name: logcms.scr
purpose: SAS/CONNECT SIGNON/SIGNOFF script for automatically
connecting to a CMS host using the EHLLAPI access method
from a local WINDOWS or an 0S/2 operating system.
notes: 1. This script may need modifications that account for
the local flavor of your VM/CMS environment. The
SIGNON sequence should mimic the events that you go
through when logging on to the same VM/CMS host.
assumes: 1. The command to execute SAS in your remote (CMS)
environment is "sas". If this is incorrect for your
site, change the contents of the line that contains...
type "sas ...
support: SAS Institute staff

@ log "NOTE: Script file ’'logcms.scr’ entered.";

514 LOGCMS.SCR Script A Chapter 41

@ if signoff then goto signoff;

@® waitfor ’'SAS Institute Inc.’, 0 seconds: noinit;

type ‘'vmm '’ enter;

@ waitfor 'USERID’ , 20 seconds: nolog;

input ’'Enter userid:
type enter;
@ waitfor 'ENTER PASSWORD',

7 e
14

"Enter logon password’,

"SESSION NOT BOUND’
"NOT IN CP DIR’
20 seconds

input nodisplay ’‘Enter password: ’;

type enter;

@ waitrdy:
waitfor 'R;’,
'Ready; ',
"READY’,
"INCORRECT PASSWORD'
"RECONNECT’
"UNSUCCESSFUL’
"MORE...'
30 seconds
ready32:
type clear;
waitfor ’'VM READ’, 'RUNNING’,
log 'NOTE: Logged on to CMS

/* NOTERMINAL suppresses prompts from remote SAS session.

novtam,
nouser,
nolog;

7 e

nopass,
recon32,
nostrt,
more,
nostrt;

20 seconds: timeout;

Starting remote SAS now.’;
*/

/* NOSSYNTAXCHECK prevents remote side from going into syntax */

/* checking mode when a syntax error is encountered.

*/

@ type ’'sas (dmr comamid=pclink noterminal no$syntaxcheck)’ enter;

goto continue;
continue:

@® waitfor 'IN PROGRESS’, 60 seconds: nosas;
© log 'NOTE: SAS/CONNECT conversation established.’;

stop;

signoff:
@ type 'logoff’ enter;

waitfor ’'Press enter key’, 10 seconds: noterm;
type enter;

waitfor 'SAS Institute Inc.’ 10 seconds: noterm;
type tab;

type tab;

type ‘vmexit’ enter;

waitfor 'SAS Institute Inc.’, 10 seconds: noterm;

stop;

log 'NOTE: SAS/CONNECT conversation terminated.’;

Sign-on Script Files A LOGCMS.SCR Script 515

@ recon:
type ’‘begin’ enter;
waitfor 'RUNNING’, 'VM READ’, 20 seconds: timeout;
type 'hx’ enter;
goto ready32;

more:
snapshot;
type clear;
goto waitrdy;

® noinit:
snapshot;
log 'ERROR: No data center network screen.’;
abort;

novtam:
snapshot;
log 'ERROR: VTAM session not bound - contact VTAM support.’;
abort;

nolog:
snapshot;
log 'ERROR: Did not get userid or password prompt.’;
abort;

nouser:
log 'ERROR: Unrecognized userid.’;
goto kill;

nopass:
log 'ERROR: Invalid password.’;
goto kill;

nostrt:
snapshot;
log 'ERROR: Did not get CMS startup messages after logon.’;
goto kill;

nosas:
snapshot;
log 'ERROR: Did not get SAS software startup messages.’;
goto kill;

noterms:
snapshot;
log 'WARNING: Did not get messages confirming logoff.’;
goto kill;

516

LOGCMS.SCR Script A Chapter 41

log 'ERROR: Timeout waiting for remote session response.’;

timeout:
kill:
snapshot;
type '#cp
abort;
1
2
3
4
5
6
7
8
9

logoff’ enter;

The LOG statement issues the enquoted message in the log file or in the LOG
window of the local SAS session. Although it is not necessary to include LOG
statements in your script file, the LOG statements keep the user informed about
the progress of the connection.

The IF/THEN statement detects whether the script was called by the SIGNON
command or statement or by the SIGNOFF command or statement. When you
sign off, the IF/THEN statement directs script processing to the statement that is
labeled SIGNOFF.

This section logs the user onto CMS with the EHLLAPI access method.

The WAITFOR statement awaits the login prompt from the remote host. If the
statement does not receive the prompt within 20 seconds, it directs script
processing to branch to the statement that is labeled NOLOG. The INPUT
statement displays a window with the text Enter userid: to allow the user to
enter a remote host logon userid. The TYPE statement sends an ENTER to the
remote host to enter the userid to the remote host.

The WAITFOR statement awaits the password prompt from the remote host. If
the statement does not receive the prompt within 20 seconds, it directs script
processing to branch to the statement that is labeled NOLOG. The INPUT
statement that follows the WAITFOR statement displays a window in which the
user enters a password.

The WAITFOR statement looks for the READY prompt from the remote host, and
processing goes to the NOSTRT label if no prompt is received.

When the READY prompt is received, the TYPE statement invokes SAS on the
remote host. The DMR option is necessary to invoke a special processing mode for
SAS/CONNECT. The COMAMID= option specifies the PCLINK access method
that is used to establish the connection.

The WAITFOR statement looks for the message IN PROGRESS, which is
displayed when a SAS session starts on the remote host. If the message is not
found, processing goes to the NOSAS label.

This LOG statement prints a message to the log that indicates that you have
successfully established a link. After the connection has been successfully
established, you must stop the rest of the script from processing. Without this
STOP statement, processing continues through the remaining statements in the
script.

10 This is the SIGNOFF section for the EHLLAPI connection. See step 2. The TYPE

statement logs you off CMS.

11 This section issues a LOG statement to notify the user that the link is terminated.

After the connection has been terminated, you must stop the rest of the script
from processing. Without this STOP statement, processing continues through the
remaining statements in the script.

12 These are subroutines that handle various conditions that are found in the

WAITFOR statements throughout the script file.

13 These statements are processed only if the prompts that are expected in the

previous steps are not received. This section of the script issues messages to the

local SAS log and then abnormally ends the script processing as well as the

SIGNON.

Sign-on Script Files A TCPWIN.SCR Script

517

TCPWIN.SCR Script

The following script signs on and signs off a Windows NT or a Windows 95 remote

host with the TCP/IP access method.

/* trace on; */
/* echo on; */

/K e */
[*== Copyright (C) 1996 by SAS Institute Inc., Cary NC --%*/
/*—= -—%/
/*-— name: tcpwin. scr -—%/
/*—= -—%/
/*-— purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting -—%/
[*—= to either a Windows 95 or a Windows NT host by -—%/
/*—= means of the TCP/IP access method. -—%/
/*—= -—%x/
/*-- notes: 1. You must have the spawner program executing on ——%/
/*—= the remote Windows 95 or Windows NT workstation —-—%x/
/*—= in order for the local session to be able to —-—x/
/*—= establish the connection. If the spawner is —-—x/
/*—= running on the remote node, you will receive a -—x/
/*—= message telling you that the connection has —-—%x/
/*—= been refused. —-—x/
/*—= —-—%x/
/*—= 2. You must have specified OPTIONS COMAMID=TCP ——%/
/*—= in the local SAS session before using the SIGNON -—-*/
/*—= command. —-—%/
/*—= -—%x/
/*—— assumes: 1. The command to execute SAS in your remote -—%/
/*—= (Windows 95 or Windows NT) environment is "sas". --%/
/*—= If this is incorrect for your site, change the ——x/
/*—= contents of the line that contains: —-—%x/
/*—= type ’'sas A
/*—= —-—x/
/*-— support: SAS Institute staff ——x/
/*—= —-—x/
/ * e */

@ log "NOTE: Script file ’'tcpwin.scr’ entered.";

if not tcp then goto notcp;
@® if signoff then goto signoff;

/% e TCP/IP SIGNON === — oo

©® waitfor ’'Username:’
, 'Hello>’ : ready
, 'access denied’ : nouser
, 120 seconds ¢ noprompt

4

518 TCPWIN.SCR Script A Chapter 41

@ input ’'Userid?’;
type LF;

© vaitfor ’'Password:’ , 120 seconds: nolog;
input nodisplay ’‘Password?’;
type LF;

@ wvaitfor ’'Hello>’

, 'access denied’ : nouser
, 120 seconds : timeout
14
ready:
log 'NOTE: Logged onto Windows... Starting remote SAS now.’;
/* NOTERMINAL suppresses prompts from remote SAS session. */
/* NOSSYNTAXCHECK prevents remote side from going into syntax */
/* checking mode when a syntax error is encountered. */

@ type ’'sas -dmr -comamid tcp -device grlink -noterminal -no$syntaxcheck’ LF;
@® waitfor 'SESSION ESTABLISHED’, 120 seconds : nosas;

© log 'NOTE: SAS/CONNECT conversation established.’;

stop;
Y TCP/IP SIGNOFF ——— oo */
@ signoff:
log 'NOTE: SAS/CONNECT conversation terminated.’;
stop;
Y SUBROUTINES ——— = m oo */
Y ERROR ROUTINES ————— e */
notcp:
log 'ERROR: Incorrect communications access method.’;
log 'NOTE: You must set "OPTIONS COMAMID=TCP;" before using this’;
log script file.’;
abort;
noprompt:
log 'ERROR: Did not receive userid prompt.’;
log 'NOTE: Ensure spawner process is running on remote node.’;
abort;
nolog:
log 'ERROR: Did not receive password prompt.’;
abort;
nouser:

log 'ERROR: Unrecognized userid or password.’;
abort;

Sign-on Script Files A TCPWIN.SCR Script 519

nosas:
log 'ERROR: Did not get SAS software startup messages.’;
abort;

timeout:
log 'ERROR: Timeout waiting for remote session response.’;
abort;

1 The LOG statement sends the enquoted message to the log file or to the LOG
window of the local SAS session. Although it is not necessary to include LOG
statements in your script file, the LOG statements keep the user informed about
the progress of the connection.

2 The IF/THEN statement detects whether the script was called by the SIGNON
statement or by the SIGNOFF statement. When you sign off, the IF/THEN
statement directs script processing to the statement that is labeled SIGNOFF. See
step 10.

3 The WAITFOR statement awaits the login prompt from the remote host and
branches to various error handles if this prompt is not displayed.

4 The INPUT statement displays a window with the text Userid? to allow the user
to enter a remote host logon userid. The TYPE statement sends a line feed to the
remote host to enter the userid to the remote host.

5 The WAITFOR statement awaits the password prompt from the remote host and
branches to the NOLOG label if it is not received within 120 seconds. The INPUT
statement that follows the WAITFOR statement displays a window in which the
user enters a password.

6 The WAITFOR statement awaits the "Hello > " prompt that it expects to see from
the PC spawner. If the statement does not receive the prompt within 120 seconds,
it directs script processing to branch to the statement that is labeled TIMEOUT.

7 The TYPE statement invokes SAS on the remote host. The DMR option is
necessary to invoke a special processing mode for SAS/CONNECT. The
COMAMID= option specifies the access method that is used to make the
connection.

8 The message SESSION ESTABLISHED is displayed when a SAS session is started
on the remote host with the DMR and COMAMID=TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the remote host. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the SESSION
ESTABLISHED response does not occur within 120 seconds, the script assumes that
the remote SAS session has not started and processing branches to the statement
labeled NOSAS.

9 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

10 This section of code is executed when the script is invoked to terminate the link.
The IF statement (see step 2) sends processing to this section of the script when
the script is invoked by a SIGNOFF statement. Before it stops the link, the script
issues a LOG statement to notify the user that the link is terminated.

11 These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the local SAS log
and then abnormally ends the script processing as well as the SIGNON.

520 TCPMVS.SCR Script A Chapter 41

TCPMVS.SCR Script

The following script signs on and signs off an OS/390 remote host with TSO by using
the TCP/IP access method.

/K e - */
[*== Copyright (C) 1990 by SAS Institute Inc., Cary NC --%*/
[*== -=%/
/*—— name: tcpmvs.scr -—%/
[*== -=%/
/*-— purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting -—%/
/*—= to any 0S/390 host with the TCP/IP access method -—%/
[*== -=%/
/*-- notes: 1. This script may need modifications that account -—x/
/*—= for the local flavor of your 0S/390 environment. -—-%*/
/*—= The logon procedure should mimic the events that --*/
/*—= you go through when "telnet"-ing to the same —-—%/
[* == 0S/390 host, either to TSO or to the 0S/390 ——%/
/*—= spawner. —-—%/
[*== -=%/
/*—= 2. You must have specified OPTIONS COMAMID=TCP -—%/
/*—= in the local SAS session before using the SIGNON -—-*/
/*—= command. —-—%/
[*== -=%/
/*—= 3. This script supports two flavors of connection: —-—x/
/*—= through a TSO session whose logon procedure -—%/
/*—= invokes SAS directly rather than the TSO TMP, or --%/
/*—= through the 0S/390 spawner. -—%/
[*== -=%/
/*—= 4. If you use TSO to start the SAS session, in the —-—x/
/*—= signoff portion of the script, uncomment the —-—%x/
/*—= LOGOFF command to complete session termination. -—%/
[*== -=%/
/*—= 5. If you use the 0S/390 spawner to start the SAS A
/*—= session, and the client session is running a -—%/
/*—= release prior to 6.09E or 6.11 TS040, uncomment -—%/
/*—= the 'type CR LF;'’ statements after the prompts. -—x/
[*== -=%/
/*-— support: SAS Institute staff —-—x/
[*== -=%/
/ F e */

@ log "NOTE: Script file 'tcpmvs.scr’ entered.";

@® if not tcp then goto notcp;
if signoff then goto signoff;

S TCP/IP SIGNON ———— e */
/* make sure we are running the IBM TCP/IP or the 0S/390 spawner */
© waitfor ’'Userid: '’ : spnlogon,

"ENTER USERID’ : tsologon,

120 seconds : noinit;

Sign-on Script Files A TCPMVS.SCR Script

spnlogon:
@ input ’'Userid?’;
/* type CR LF; */

@ waitfor ’'Password’,
120 seconds : spnfail;

input nodisplay 'Password?’;
/* type CR LF; */

spndone:

@ waitfor ’'Options’,
'Userid’ : spnlogon,
'Password expired’ : spnnewp,
120 seconds : spnfail;

@ type "DMR NOTERMINAL NO$SYNTAXCHECK COMAMID=TCP";
/* type CR LF; */

@ waitfor 'SESSION ESTABLISHED’',
120 seconds : spnfail;

© log 'NOTE: SAS/CONNECT conversation established.’;

stop;

spnnewp:
@ input nodisplay ’‘New Password?’;
/* type CR LF; */

waitfor ’'Verify new password’,
120 seconds : spnfail;

input nodisplay ’‘Verify New Password’;
/* type CR LF; */

goto spndone;

spnfail:

log 'ERROR: Invalid SPAWNER prompt message received.’;

abort;

tsologon:
® input ’'Userid?’;
type LF;

@ waitfor 'ENTER PASSWORD',
120 seconds : nolog;

tsopass:
input nodisplay 'Password?’;

521

522 TCPMVS.SCR Script A Chapter 41

type LF;

tsodone:

@ waitfor 'SESSION ESTABLISHED',
"PASSWORD INVALID' : tsopass,
"ENTER NEW PASSWORD' : tsonewp,
"CURRENTLY LOGGED ON'’ : dup_log,
"NOT VALID’ : nouser,
120 seconds : notso;

waitfor 1 second;
@ log 'NOTE: SAS/CONNECT conversation established.’;
stop;
tsonewp:
@ input nodisplay ’‘New Password?’;

type LF;

waitfor ’'VERIFY NEW PASSWORD',
120 seconds : notso;

input nodisplay ’‘Verify New Password’;
type LF;

goto tsodone;

. SIGNOFF ——— e * /
@ signoff:
[* mmmm for TSO, uncomment the following section —-—-————————-—- */
type ’'logoff’ LF;
waitfor ’'LOGGED OFF’ : logoff,

20 seconds;

log 'WARNING: Did not get messages confirming logoff.’;
abort;

logoff:
/% mmmmmmm for TSO, uncomment the previous section —-——-———————- */

log 'NOTE: SAS/CONNECT conversation terminated.’;
stop;

@ nouser:
log 'ERROR: Unrecognized userid.’;
abort;

nopass:
log 'ERROR: Invalid password.’;
abort;

notcp:
log 'ERROR:
log ’'NOTE:
log '
abort;
noinit:
log 'ERROR:
abort;
nolog:
log 'ERROR:
abort;
notso:
log 'ERROR:
abort;
dup_log:
log 'ERROR:
abort;

Sign-on Script Files A TCPMVS.SCR Script 523

Incorrect communications access method.’;
You must set "OPTIONS COMAMID=TCP;" before using this’;
script file.’;

Did not understand remote session banner.’;

Did not get userid or password prompt.’;

Did not get TSO startup messages after logon.’;

User is already logged onto TSO.';

The LOG statement sends the enquoted message to the log file or to the LOG
window of the local SAS session. Although it is not necessary to include LOG
statements in your script file, the LOG statements keep the user informed about
the progress of the connection.

The IF/THEN statement detects whether the script was called by the SIGNON
statement. When you are signing off, the IF/THEN statement directs script
processing to the statement labeled SIGNOFF. See step 8.

The WAITFOR statement awaits the login prompt from the remote host. If the
statement does not receive the prompt within 120 seconds, it directs script
processing to branch to the statement labeled NOINIT.

The INPUT statement displays a window with the text Userid? to allow the user
to enter a remote host logon userid. The TYPE statement sends a line feed to the
remote host to enter the userid to the remote host.

The WAITFOR statement waits for the password prompt from the remote host and
branches to the NOLOG label if it is not received within 120 seconds. The INPUT
statement that follows the WAITFOR statement displays a window for the user to
enter a password.

The WAITFOR statement awaits the prompt for SAS options and branches to
various condition handlers if this prompt is not received.

The TYPE statement sends the appropriate options for the SAS/CONNECT
session.

The message SESSION ESTABLISHED is displayed when a SAS session is started
on the remote host with the DMR and COMAMID=TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the remote host. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the SESSION
ESTABLISHED response does not occur within 120 seconds, the script assumes that
the remote SAS session has not started and processing branches to the statement
labeled NOSTRT.

524

TCPMVS.SCR Script A Chapter 41

9 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

10 This section prompts for a new password if the password has expired.

11 The INPUT statement displays a window with the text Userid? to allow the user
to enter a remote host logon userid. The TYPE statement sends a line feed to the
remote host to enter the userid to the remote host.

12 The WAITFOR statement waits for the password prompt from the remote host and
branches to the NOLOG label if it is not received within 120 seconds. The INPUT
statement that follows the WAITFOR statement displays a window for the user to
enter a password.

13 The message SESSION ESTABLISHED is displayed when a SAS session is started
on the remote host with the DMR and COMAMID=TCP options. The WAITFOR
statement awaits the display of the message SESSION ESTABLISHED to be issued
by the remote host. If the SESSION ESTABLISHED response is received within 120
seconds, processing continues with the next LOG statement. If the SESSION
ESTABLISHED response does not occur within 120 seconds, the script assumes that
the remote SAS session has not started and processing branches to the statement
labeled NOSTRT.

14 After the connection has been successfully established, the user must stop the rest
of the script from processing. Without this STOP statement, processing continues
through the remaining statements in the script.

15 This section prompts for a new password if the password has expired.

16 This section of code is executed when the script is invoked to terminate the link.
The IF statement (see step 2) sends processing to this section of the script when
the script is invoked by a SIGNOFF statement. This section awaits a remote host
prompt before displaying LOGOFF, which logs the user off the remote host. Before
it stops the link, the script issues a LOG statement to notify the user that the link
is terminated.

17 These statements are processed only if the prompts expected in the previous steps
are not received. This section of the script issues messages to the local SAS log
and then abnormally ends the script processing as well as the SIGNON.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
Communications Access Methods for SAS/CONNECT and SAS/SHARE Software, Version
8, Cary, NC: SAS Institute Inc., 1999. pp. 643.

Communications Access Methods for SAS/CONNECT and SAS/SHARE Software,
Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-479-9

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, September 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM®, ACF/VTAM® , AIX® , APPN® , MVS/ESA® , 0S/®2® , 0S/390® , VM/ESA® , and
VTAM® are registered trademarks or trademarks of International Business Machines
Corporation. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

