
37

C H A P T E R

4
Examples That Use Compute
Services

Example 1. Compute Services: Using Remote Applications from a Local Host 37
Purpose 37

Program 37

Example 1.1: SAS/STAT Software 38

Example 1.2: Sorting 38

Example 2. Compute Services: Administration Tasks for Remote Data Sets 39
Purpose 39

Program 39

Example 3. Compute Services: Remote Graphics Processing 40

Purpose 40

Program 40

Example 4. Compute Services: Asynchronous Remote Processing 42
Purpose 42

Program 42

Example 5. Compute Services: Output Delivery System 43

Purpose 43

Program 43
Example 6. Compute Services: Using MP CONNECT for Multi-Processing 45

Purpose 45

Program 45

Example 1. Compute Services: Using Remote Applications from a Local
Host

Purpose

Some applications may not be available on every host at your computing site. In
addition, the applications that are available on a remote host may perform some tasks
better than the applications that are available on your local host. From a local host, you
can use compute services to run applications that are available on a remote host.

Program

Here are two examples: the first example uses an application that is available only
on the remote host; the second example uses an application that performs a sorting task
more efficiently than the applications that are available on the local host.

38 Example 1.1: SAS/STAT Software 4 Chapter 4

Example 1.1: SAS/STAT Software
This example assumes that SAS/STAT is licensed only on the remote host. The

program runs statistical procedures remotely by using SAS/STAT.

rsubmit;
/**************************************/
/* The output from GLM is returned */
/* to the local SAS listing. */
/**************************************/

proc glm data=main.employee
outstat=results;
model sex=income;

run;
/**************************************/
/* Use GLM’s output data set RESULTS */
/* to create macro variables F_STAT */
/* and PROB, which contain the */
/* F-statistic PROB>F respectively. */
/**************************************/

data _null_; set results
(where=(_type_= ’SS1’));
call symput(’f_stat’,f);
call symput(’prob’,prob);

run;

/**************************************/
/* Create macro variables that */
/* contain the two statistics of */
/* interest in the local session. */
/**************************************/

%sysrput f_statistic=&f_stat;
%sysrput probability=&prob;

endrsubmit;

Example 1.2: Sorting
In this example, the remote host has access to a fast sorting utility, so that the data

is sorted on the remote host before it is transferred to the local host.

rsubmit;
/**************************************/
/* Indicate to the remote host that */
/* the HOST sort utility should be */
/* used with PROC SORT. Ask SORT to */
/* subset out only those observations */
/* of interest. */
/**************************************/

options sortpgm=host;
proc sort data=tsolib.inventory

out=out_of_stock;
where status=’Out-of-Stock’;
by orderdt stockid ;

run;

Examples That Use Compute Services 4 Program 39

/**************************************/
/* Output results; local side will */
/* receive the listing from PRINT. */
/**************************************/

title ’Inventory That Is Currently Out-
of-Stock’;

title2 ’by Reorder Date’;
proc print data=out_of_stock;

by orderdt;
run;

endrsubmit;

Example 2. Compute Services: Administration Tasks for Remote Data
Sets

Purpose
While working on a local host, you can use compute services to perform

administration tasks on remote data sets.

Program
This example administers password protection to the TASKLIST data set and backs

up a data set that is named CURRENT.

rsubmit;
proc datasets lib=tsolib;

/**************************************/
/* Add password SESAME to remote */
/* data set TASKLIST. */
/**************************************/

modify tasklist (alter=sesame);
run;

/**************************************/
/* Maintain a week’s worth of backup */
/* copies of data set CURRENT. */
/**************************************/

age current backup1 - backup7;
run;
quit;

endrsubmit;

40 Example 3. Compute Services: Remote Graphics Processing 4 Chapter 4

Example 3. Compute Services: Remote Graphics Processing

Purpose
If you have SAS/GRAPH software installed on both your local host and remote host,

you can submit graphics programs from your SAS session on a local host to a SAS
session on a remote host, have the procedure execute on the remote host, and display
the graphics output on your local host (or on a device attached to your local host). The
link is especially useful when you want to generate graphics on your local host by using
a large database on the remote host.

The GRLINK driver is a special driver available with SAS/CONNECT. You must
always use the GRLINK driver on the remote host when using the link to display
remote host graphics on your local host.

If you frequently use the link for remote graphics processing, consider specifying the
GRLINK device driver in a script file (if you use a script file with the SIGNON
command). You do this by including the driver specification for the remote host in the
TYPE statement that invokes the remote SAS System. In the following example, if you
are using TSO by means of a TCP/IP connection, change the TYPE statement in the
script file to the following:

type
"sas options(remote=tcp device=grlink)";

By doing this every time you use the SIGNON command, you automatically specify
the GRLINK driver on the remote host.

Note: This has already been specified in the sample scripts supplied with your SAS
software. 4

Program
Use the RSUBMIT command to submit your SAS statements. This includes any

LIBNAME statement that is needed by the remote host. When the SAS/GRAPH
procedure runs on the remote host, the output is displayed on your local host or on an
attached device (based on the driver that you specified in your local session). If you did
not specify a remote host driver name in step 2, you are prompted by the remote host to
do it.

u
goptions device=hplj;

v
rsubmit;

proc sort data=master.bg_reserve out=tmp;
by origin rental_type;

run;

proc summary data=tmp vardef=n noprint;
by origin rental_type;
output out=temp_rental;

run;

w

Examples That Use Compute Services 4 Program 41

goptions dev=grlink ftitle=centx
ftext=simplex htitle=2;

title ’Rental Types by Franchise’;
pattern value=solid color=blue;

axis1 label=(’Franchise’)
order=
(’ATLANTA’ ’CHICAGO’ ’LOS ANGELES’

’NEW YORK’ ’TORONTO’)
width=3;
axis2 label=none width=3;
axis3 label=none
order=0 to 1000 by 100 width=3;
proc gchart data=temp_rental;

label rental_type=’00’x;
label origin=’00’x;
hbar rental_type / frame
sumvar= _freq_
maxis=axis2
raxis=axis3
minor=0
nostats
group=origin
gaxis=axis1
discrete;

run;
quit;

endrsubmit;

u Specify an EGA graphics adapter to display the remote host graph on your local
host. You can specify the name of the graphics driver for your local host display or
its attached hardcopy device. To get a complete list of values for the DEVICE=
option, run the GDEVICE procedure in your local SAS session.

v Remote submit procedures to preprocess data and graphics procedures to the
remote SAS session.

w Specify GRLINK device driver so that commands to draw the graph will be sent
over the network to the local session.

When using the link to display remote host graphs, you can use any graphics
procedure on the remote host (including the GREPLAY procedure) and any graphics
device driver on the local host.

The GRLINK remote host driver uses the attributes of the driver that is specified in
the local host session when selecting default colors, character sizes, and other
attributes. For example, if you specify DEVICE=EGAL in your local session, the
GRLINK driver uses the default colors of the EGAL driver, but if you specify the
printer driver DEVICE=FX85 in your local session, the GRLINK driver uses only black
as a foreground color.

Note the following reminders when using the link for graphics:
� Do not specify GOPTIONS NODISPLAY in the program that you submit to the

remote host. The option is not supported with the GRLINK driver on the remote
host.

42 Example 4. Compute Services: Asynchronous Remote Processing 4 Chapter 4

� Do not specify DEVICE=GRLINK in your local host SAS session. The GRLINK
driver can only be specified on the remote host. In your local host SAS session, you
can specify only a device driver that is available with SAS/GRAPH on that host.

� You can use hardware options, such as NOCHARACTERS, only on the local host
side. That is, you cannot use hardware options that are not available with your
particular local host hardware configuration even though they are supported on
the remote host.

� To use the CBACK= or the ROTATE= option, you must specify it in your local host
program, not in the program that you are submitting to the remote host. If you
use the CBACK= or ROTATE= option in the program submitted to the remote
host, the option is accepted but has no effect.

� To use the GREPLAY procedure through the link, you must use the NOFS option
in the PROC GREPLAY statement.

� Every time you generate graphics output on the local host, it is stored temporarily,
while running the same SAS session, in a catalog called GSEG in the WORK
library of your local host. Later, displays of the same graphics output can be
generated from this catalog. Copy this catalog to a permanent location if you want
to retain a copy after termination of your current SAS session.

You can also transfer catalog entries containing graphics output by using the
UPLOAD and DOWNLOAD procedures, as described in “Example 11. DTS: Uploading
a Catalog That Contains Graphics Output” on page 166.

Example 4. Compute Services: Asynchronous Remote Processing

Purpose
Enables you to submit processing to be performed on a remote host so that the local

host can immediately continue processing, and then retrieve and merge the results
upon completion of that process.

Program
This example submits a PROC SORT and a PROC PRINT statement to be executed

asynchronously on a remote host. This remote process can be tested for completion by
using the macro variable DONE.

rsubmit cwait=no cmacvar=done;
proc sort data=permdata.standard(keep=fname

lname major tgpa gender)
out=honor_graduates(where=(tgpa>3.5));
by gender;

run;

title ’Male and Female Honor Graduates’;
proc print;

by gender;
run;

endrsubmit;

%macro get_results_when_complete;

Examples That Use Compute Services 4 Program 43

%if &done=0 %then %do;
%put Remote submit complete,

issuing "rget" to get the results.;
rget;

%end;
%else %do;

%put Remote submit not complete.;
%put Issue:

"%nrstr(%%)get_results_when_complete"
later.;

%end;
%mend;
%get_results_when_complete;

/* issue again if RSUBMIT not complete */

%get_results_when_complete;

Example 5. Compute Services: Output Delivery System

Purpose
ODS allows you to format and change the appearance of a procedure’s output. The

output is converted into objects that can be stored in HTML or in a SAS data set. The
output can then be manipulated and viewed in many different ways.

Program
This example creates a SAS data set and a SAS data view on a remote host, which

contain information about U.S. Presidents and generates ODS output from them. The
first half of this example creates HTML from the SAS data set and view. The second
half uses ODS to create a SAS data set from the SAS data view.

rsubmit;

data presidnt;
length fname lname $8 party $1 lady1 $10;
input fname lname party year_in lady1;

datalines;
John Kennedy D 1961 Jackie
Lyndon Johnson D 1963 LadyBird
Richard Nixon R 1969 Pat
Gerald Ford R 1974 Betty
Jimmy Carter D 1977 Rosalynn
Ronald Reagan R 1981 Nancy
George Bush R 1989 Barbara
Bill Clinton D 1993 Hillary

;
run;

proc sql nocheck;

44 Program 4 Chapter 4

create view democrat as
select fname,lname,party,lady1

from presidnt
where party=’D’;

quit;

endrsubmit;

/* Use ODS to create HTML from the output */
ods html

file="rsub.html"
contents="rsubc.html"
frame="rsubf.html";

/* Remote SQL PassThru to DATA step view */
proc sql nocheck;

connect to remote (server=rmthost);
select fname,lname,lady1

from connection to remote
(select * from democrat);

quit;

/* mix remote-submitted SQL with local SQL */
rsubmit;

proc print data=democrat;
run;

endrsubmit;

ods html close;

/* Use ODS to create a SAS data set */
ods output output="rdata";

rsubmit;
proc print data=democrat;
run;

endrsubmit;

Examples That Use Compute Services 4 Program 45

Example 6. Compute Services: Using MP CONNECT for Multi-Processing

Purpose
To perform two encapsulated tasks in parallel and to wait for the completion of both

tasks before continuing the local SAS session execution.

Program
This example sorts two data sets asynchronously. After both sorts complete, the

results are merged together.

/* Global SAS system option SASCMD starts an MP CONNECT remote session. */
option sascmd="sas";

/* Remote submit first task. */
rsubmit process=task1 wait=no;
libname mydata ’/project/test1’;

/* Sort the first data set as one task. */
/* SIGNON performed automatically by RSUBMIT. */
proc sort data=mydata.part1;

by x;
run;
endrsubmit;

46 Program 4 Chapter 4

/* Remote submit second task. */
/* SIGNON performed automatically by RSUBMIT. */
rsubmit process=task2 wait=no;
libname mydata ’/project/test2’;

/* Sort the second data set as one task. */
proc sort data=mydata.part2;

by x;
run;
endrsubmit;

/* Wait for both tasks to complete. */
waitfor _all_ task1 task2;

*/ Merge the results and continue processing. */
libname mydata ’/project/test2’;
data work.sorted;

merge mydata.part1 mydata.part2;
run;

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

