
55

C H A P T E R

7
Examples of Combining Compute
Services and Data Transfer
Services

Introduction 55
Example 1. Compute Services and Data Transfer Services Combined: Local and Remote Processing 56

Purpose 56

Program 56

Running the Program 57

Example 2. Compute Services and Data Transfer Services Combined: Sorting and Merging Data 58
Purpose 58

Program 58

Example 3. Compute Services and Data Transfer Services Combined: Macro Capabilities 59

Purpose 59

Program 59

Introduction
If you need information from data that is stored on a remote system, and you do not

want to move a copy of the data to the local system, then you can benefit from
combining compute services and data transfer services. Reasons for not moving a copy
of the data could include:

� the amount of data is too large.
� the data is frequently updated.
� you want to avoid data duplication.

Regardless of the motivation for reducing the amount of data that is transferred,
incorporating compute services will achieve your goal. As Figure 7.1 on page 56
illustrates, compute services enable you to format and pre-process data into a subset or
a summarized form on the remote system, prior to transferring the subsequent smaller
amount of data to the local platform. This balances the use of CPU cycles between the
local and remote systems and minimizes the amount of data contributing to network
traffic.



56 Example 1. Compute Services and Data Transfer Services Combined: Local and Remote Processing 4 Chapter 7

Figure 7.1 Combined Compute and Data Transfer Services Processing Model

Example 1. Compute Services and Data Transfer Services Combined:
Local and Remote Processing

Purpose
The SAS/CONNECT statements SIGNON, SIGNOFF, RSUBMIT, and

ENDRSUBMIT enable you to submit statements to a remote host from a session on the
local host. You can include these statements in a SAS program and do both local and
remote processing within a single SAS program. This program can be run in an
interactive line-mode SAS session, in a non-interactive SAS session, or by including the
program in a session that is running on your local host. In each case, the program
executes statements on both the local host and the remote host.

Program
For example, suppose that you want to perform some processing on a remote host,

download the resulting SAS data set, create a permanent data set on the local host, and
print a report on the local host.

The following example illustrates how to put all of these tasks into a single program.

/*************************************/
/* prepare to sign on */
/*************************************/

u options
comamid=netbios
remote=netpc;

v libname lhost ’c:\sales\reg1’;

/*************************************/
/* sign on and download data set */
/*************************************/

w signon;
x rsubmit;



Examples of Combining Compute Services and Data Transfer Services 4 Running the Program 57

y libname rhost ’d:\dept12’;
proc sort data=rhost.master

out=rhost.sales;
where gross > 5000;
by lastname dept;

run;

U proc download data=rhost.sales
out=lhost.sales;

run;
V endrsubmit;

W
/*************************************/
/* print data set in local session */
/*************************************/

proc print data=lhost.sales;
run;

u Specify the COMAMID= and the REMOTE= system options in an OPTIONS
statement. These two system options define to the local session what type of link
you want to establish to which remote host.

v Define a libref for the SAS data library on the local session where the downloaded
data set should be stored.

w Sign on to the remote host. It is not necessary to include remote-session-id when
you have defined the REMOTE= system option in a previous OPTIONS statement.

Note: This connection is not using a script file. 4

x Send statements to the remote session for processing with the RSUBMIT
statement. All statements are sent to the remote session until an ENDRSUBMIT
statement is encountered. Although it is not necessary to include
remote-session-id, using remote-session-id in the RSUBMIT statement clarifies
which remote session should process a group of statements when more than one
link is active. If you omit remote-session-id, the RSUBMIT statement submits the
statements to the remote session that is most recently identified in a SIGNON or
an RSUBMIT statement or a REMOTE= system option.

y Define the libref for the SAS data library on the remote host.
U The PROC DOWNLOAD step transfers the data from the library on the remote

host (RHOST) to the library on the local host (LHOST).
V The ENDRSUBMIT statement signals the end of the block of statements that is to

be submitted to the remote session. Statements following the ENDRSUBMIT
statement are processed by the local session.

W The PROC PRINT step executes in the local session and reads the SAS data set
that was downloaded in the PROC DOWNLOAD step.

Running the Program
You have several options for running this program:
� Type and submit each line in a line-mode SAS session. All of the statements

between the RSUBMIT and ENDRSUBMIT statements are sent to the remote
host for processing. All other statements are processed on the local host.



58 Example 2. Compute Services and Data Transfer Services Combined: Sorting and Merging Data 4 Chapter 7

Note: When statements are submitted to the remote host, several statements
may be grouped into a single packet of data sent to the remote host. Therefore, a
line that is remote-submitted is not necessarily processed immediately after you
enter it on the local host. 4

� Build a file containing all of these statements and use a %INCLUDE statement to
include the file in a line-mode session. The file is processed immediately.

� Build a file containing all of these statements and run a non-interactive SAS job to
process the statements as follows:

sas file-containing-program

Note: Refer to Chapter 23, “Starting and Stopping SAS/CONNECT Software,” on
page 193 for more information about automatic logon scripts. 4

� Build a file containing all of these statements and use an INCLUDE command to
include the file. You must submit the included statements from the windowing
environment.

� Build a file and issue the SUBMIT command from the Explorer window.

Example 2. Compute Services and Data Transfer Services Combined:
Sorting and Merging Data

Purpose
In cases where the same remote data set needs to be manipulated by multiple local

hosts, data transfer services can be used to distribute the subset of data that is needed
by each local host. Each local host receives only the data it needs and uses its compute
services to process that data in the local GUI. With this method, local hosts do not have
to continually access the data set on the remote machine.

Program
The following SCL program fragment distributes a reservations data set from a

remote host at a central office to local hosts at a number of franchise offices. The
program enables distribution of reservations to a franchise office by using a WHERE
statement to select the desired reservations.

INIT:
submit continue;
signon atlanta;

u rsubmit;
libname mres "d:\counter";
libname backup "d:\counter\backup";

proc upload data=mres.reserv
out=combine status=no;
where origin="Atlanta";

run;

v proc sort data=combine;
by resnum;



Examples of Combining Compute Services and Data Transfer Services 4 Program 59

run;

w proc copy in=mres out=backup;
select reserv;

run;

x data mres.reserv;
update mres.reserv combine;
by resnum;

run;
endrsubmit;

signoff;
endsubmit;

u Upload all reservations for a particular location.
v Sort uploaded data sets for merging.
w Backup existing data set.
x Merge new and existing data sets.

Example 3. Compute Services and Data Transfer Services Combined:
Macro Capabilities

Purpose
SAS/CONNECT is fully functional from within the macro facility. Both the

UPLOAD and the DOWNLOAD procedures can update the macro variable SYSINFO
and set it to a nonzero value when the procedure terminates due to errors.

You can also use the %SYSRPUT macro statement on the remote host to send the
value of the SYSINFO macro variable back to the local SAS session. Thus, you can
submit a job to the remote host and test whether a PROC UPLOAD or a PROC
DOWNLOAD step has successfully completed before beginning another step on either
the remote host or the local host.

Program
Suppose that you have a transaction file on your local host and you want to upload it

to the remote host, and then use it to update a master file. You can test the results of
the PROC UPLOAD step on the remote host by checking the value of the SYSINFO
macro variable.

The SYSINFO macro variable can be used to determine if the transaction file was
successfully uploaded. If successful, the master file is updated with the new information.
If the upload was not successful, you receive a message that explains the problem.

You can use the %SYSRPUT macro statement to send the return code from the
remote host back to the local session. Your SAS session on the local host can test the
results of the upload and, if it is successful, use the DATASETS procedure to archive
the transaction data set.

u libname trans ’local-SAS-data-library’;
libname backup ’local-SAS-data-library’;



60 Program 4 Chapter 7

v rsubmit;
w proc upload data=trans.current out=current;

run;

x %sysrput upload_rc=&sysinfo;
%macro update_employee;

y %if &sysinfo=0 %then %do;
libname perm ’remote-SAS-data-library’;
data perm.employee;

update perm.employee current;
by employee_id;

run;
%end;

U %else %put ERROR: UPLOAD of CURRENT
failed. Master file was
not updated.;

%mend update_employee;
V %update_employee;

endrsubmit;

W %macro check_upload;
X %if &upload_rc=0 %then %do;
at proc datasets lib=trans;

copy out=backup;
run;

%end;
%mend check_upload;

ak %check_upload;

u Associate a libref with the SAS data library that contains the transaction data set
on the local host.

v Send the PROC UPLOAD statement and the UPDATE_EMPLOYEE macro to the
remote host for execution.

w Because a single-level name for the OUT= argument is specified, the PROC
UPLOAD step stores CURRENT in the default library (usually WORK) on the
remote host.

x If the PROC UPLOAD step successfully completes, the SYSINFO macro variable
is set to 0. The %SYSRPUT macro statement creates the UPLOAD_RC macro
variable on the local host and puts the value that is stored in the SYSINFO macro
variable into UPLOAD_RC. The UPLOAD_RC macro variable is passed to the local
host and can be tested to determine if the PROC UPLOAD step was successful.

y Tests the SYSINFO macro variable on the remote host. If the PROC UPLOAD
step is successful, the transaction data set is used to update the master data set.

U If the SYSINFO macro variable is not set to 0, the PROC UPLOAD step has
failed, and the remote host sends messages to the SAS log (which appear in the
local SAS session) notifying you that the step has failed.

V Executes the UPDATE_EMPLOYEE macro on the remote host.

W The CHECK_UPLOAD macro is executed on the local host because it follows the
ENDRSUBMIT statement.



Examples of Combining Compute Services and Data Transfer Services 4 Program 61

X Tests the value of the UPLOAD_RC macro variable created by the %SYSRPUT
macro statement on the remote host to see if the PROC UPLOAD step was
successful.

at When the transaction data set has been successfully uploaded and added to the
master data set, the transaction file can be archived on the local host by using the
COPY statement in the DATASETS procedure.

ak Executes the CHECK_UPLOAD macro on the local host.



62 Program 4 Chapter 7



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


