81

CHAPTER

11

Examples That Use Remote
Library Services (RLS)

Example 1. RLS: Accessing Remote Data to Print a List of Reports 81
Purpose 81
Program 81

Example 2. RLS: Accessing Remote Data by Using the WHERE Statement 82
Purpose 82
Program 82

Example 3. RLS: Updating Remote Data 82
Purpose 82
Program 83

Example 4. RLS: An SCL Program That Uses the WHERE Statement 83
Purpose 83
Program 83

Example 5. RLS: Updating a Remote Data Set by Applying a Local Transaction Data Set 84
Purpose 84
Program 84

Example 6. RLS: Subsetting Remote Data for Local Processing and Display 85
Purpose 85
Program 86

Example 1. RLS: Accessing Remote Data to Print a List of Reports

Purpose

The following example uses RLS to access a small portion of the data that exists in a
remote SAS data set, in order to print a list of the reports that are being requested by
the local workstation. This is a good use of RLS, provided the data set
REPORTS.REQUEST has a small number of observations.

Program

signon rempc;

libname reports REMOTE ’‘d:\prod\reports’
server=rempc;
data null ;
set reports.request;

82 Example 2. RLS: Accessing Remote Data by Using the WHERE Statement A Chapter 11

if (copy = "Y") then do;
put "Report " report name
" has been requested";
end;

@ Define a remote library to a local session. The value for SERVER= is the same as
the remote session id that is used in the SIGNON statement.

Example 2. RLS: Accessing Remote Data by Using the WHERE Statement

Purpose

In this example, WHERE statement processing modifies the previous example in
order to reduce the amount of data that is being requested and the impact on network
traffic. The WHERE statement moves to local processing only those observations for
which a report is being requested. This move is more efficient than moving every
observation to local processing and checking the COPY variable for a ¥ value.

Program
signon rempc;

libname reports ’d:\prod\reports’
server=rempc;

data _null ;
set reports.request;
where copy = "Y";
put "Report " report name
" has been requested";
end;

@ Define a remote library to a local session.
@ Use the WHERE statement to filter unneeded observations.

Example 3. RLS: Updating Remote Data

Purpose

This example enables you to take advantage of the mainframe’s superior data
handling and security features, while you work in a user-friendly GUI environment.

Examples That Use Remote Library Services (RLS) A Program 83

RLS is used to update remote data. This application of RLS eliminates the need to
transfer a disk copy of the data to the local system before processing the data. It also
involves low volume, transaction processing.

Program

signon remos390;

libname rlib REMOTE 'hrs.emp.data’
server=remos390;

2]

proc fsedit data=rlib.employee;
run;

@ Define the remote human resource library to the local SAS session.

@ Execute a local FSEDIT to update the employee data set that exists on the OS/390
host.

Example 4. RLS: An SCL Program That Uses the WHERE Statement

Purpose

This example is an excerpt from an SCL program that uses RLS to query a remote
reservation database. Reservations are selected based on the value that is stored in the
variable RESNUM. The use of the WHERE clause in this example is important because
the WHERE clause is applied in the remote session before any data is transferred. As a
result, only the observations that meet the criteria are moved to the local session.

This example is a good use of RLS because (as in the previous example) it involves
transaction-type processing and enables the local GUI to be used for data entry on the
selected observations in the database.

However, if you were to use the SCL LOCATEC function, every observation would be
transferred to the local session and compared against the specified criteria. The
response time in this case would be poor, at best. These alternative programming
choices emphasize the importance of being aware of the amount of data that local
processing is requesting and minimizing this amount when using RLS.

Program

signon 0s390;

libname master REMOTE "hg.prod.data"

84 Example 5. RLS: Updating a Remote Data Set by Applying a Local Transaction Data Set A Chapter 11

server=0s390;

o

rdsid = open("master.reserv", ‘u’);

2]

wherecls="resnum=" || "’'" || resnum || "'";

rc = where(rdsid, wherecls);

call set(rdsid);

rc = fetchobs(rdsid, 1);

@ Open the remote Headquarters database.

@ Build and apply the WHERE clause to speed up retrieval.

Example 5. RLS: Updating a Remote Data Set hy Applying a Local
Transaction Data Set

Purpose

In cases where data must be kept current and the number of updates that you need
to perform is small, RLS can be used efficiently between a local and a remote host. RLS
enables you to perform a local update to a remote data set.

This example creates a data set remotely by remotely submitting a DATA step. Next,
it creates a local transaction data set. Using RLS, it assigns a local LIBNAME to the
remote library. Finally, the program modifies the remote data set with the local
transactions.

Program

signon;
rsubmit;

(1) data sasuser.my budget;
length category $ 9;
input category $ balance;
format balance dollarl0.2;
datalines;

utilities 500
mortgage 8000
telephone 1000
food 3000;
run;

endrsubmit;

@ data bills;
length category $ 9;
input category $ bill amount;
datalines;
utilities 45.83

Examples That Use Remote Library Services (RLS) A Purpose 85

mortgage 649.95
food 68.21;
run;

© libname rlslib slibref=sasuser
server=&rsession;

@ data rlslib.my budget;
modify rlslib.my budget bills;
by category;
balance=balance-bill_ amount;
run;

@ data _null ;
set rlslib.my budget;
put ’'Balance for ' category @25
"is: ’ balance;
run;

@ signoff;

@ Create the master data set MY_BUDGET in the library SASUSER in the remote
session.

@ Create a local or work transaction data set for updating the remote data set
MY_BUDGET.

©® Assign a local library to the library SASUSER in the remote session.
O Apply the transaction data set to the remote data set MY_BUDGET.
© Review the results. All items except TELEPHONE will be updated.

@ Sign off from the remote host. The libref RLSLIB is deassigned as part of the
sign-off processing.

Example 6. RLS: Subsetting Remote Data for Local Processing and
Display

Purpose

If the amount of data that is needed for a processing job is small, RLS is an efficient
way to gather current data on a remote host for local processing and display. This
program subsets the data on the remote host so that only the data you need is
transferred. This method saves computing resources on the remote machine and
diminishes network traffic while it gives you access to the most current data.

In this example, a large reservations database exists on a remote UNIX platform.
Several local procedures need to be run against a small subset of the data that is
contained in the master reservations database. This situation is ideal for RLS.

The LIBNAME statement is issued in the local SAS session to define the remote
library that contains the data set RESERVC. The PROC SORT statement sorts the
remote data set and writes the subset data to the local disk.

The WHERE= and KEEP= options are specified in the PROC SORT statement to
reduce the amount of data that moves through the network to local processing. Only

86

Program A Chapter 11

the data that meets the WHERE= and KEEP= criteria is moved across the network to
the local session.

PROC SORT creates the subset data set on the local machine and allows all
subsequent processing to run on the local machine without further remote CPU
consumption. PROC SUMMARY and PROC REPORT summarize and format the local
data so that it can be displayed to the user by using the NOTEPAD command.

Program

2]

init:
submit continue;

libname remlib ’/u/userl/reservations’
server=srvl;

proc sort data=
remlib.reservc (keep=company origin
where=(origin='ATLANTA'))
out=tmp;
by company;
run;

proc summary data=tmp
vardef=n noprint;
by company;
output out=tmp2;
run;

proc printto new print=work.view.report
run;

proc report 1ls=74 ps=85 split=
"/" HEADLINE HEADSKIP CENTER NOWD;
column
("Totals"™ "" "" "" company _freq);
define company / group format=$40.
width=40 spacing=2 left "Company";
define freq / sum width=14
spacing=2 right "# Reservations";
rbreak after /ol dul skip summarize
color=cyan;
run;

proc printto print=print;
run;

endsubmit;

.source;

@ call execcmdi(’notepad work.view.report.source;

color back blue;’);

status='H";
return;

Examples That Use Remote Library Services (RLS) A Program 87

main:
return;

term:
return;

@ Submit local LIBNAME statement to define the remote library.

@ PROC SORT runs locally but accesses the remote data set RESERVC. A subset of
RESERVC is written to the local data set TMP. The WHERE= and KEEP= options
are passed to the server session and evaluated there to minimize the amount of
data that must move across the network.

© Summarize the local data set.
@ Create a report using this local, summary data set.
@ Display the report.

88 Program A Chapter 11

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-477-2

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM®, AIX® , DB2®, 0S/2® , 0S/390%® , RS/6000® , System/370TM, and System/390° are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE?® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

