
153

C H A P T E R

19
Examples of Data Transfer
Services (DTS)

Example 1. DTS: Transferring Data by Using WHERE Statements 154
Purpose 154

Program 154

Example 2. DTS: Transferring Specific Member Types by Using SELECT or EXCLUDE Statements 155

Purpose 155

Programs 155
Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD Statement 155

Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement 155

Example 2.3: Using the MEMTYPE= Option in the SELECT Statement 155

Example 3. DTS: Transferring Specific Catalog Entry Types 156

Purpose 156

Programs 156
Example 3.1: Using the ENTRYTYPE= Option in the PROC UPLOAD Statement 156

Example 3.2: Using the ENTRYTYPE= Option in the EXCLUDE Statement in PROC
DOWNLOAD 156

Example 3.3: Using the ENTRYTYPE= Option in the SELECT Statement in PROC UPLOAD 156

Example 3.4: Using the ENTRYTYPE= Option in Two SELECT Statements 157
Example 3.5: Using Long Member Names in Catalog Transfers 157

Example 4. DTS: Transferring Generations of SAS Data Sets 158

Purpose 158

Programs 158

Example 4.1: Using LIBRARY Transfers to Transfer Data Set Generations 158
Example 4.2: Using a SELECT Statement to Transfer Generations 159

Example 4.3: Inheriting Generation Specific Attributes 159

Example 4.4: Transferring Single Data Sets 160

Example 5. DTS: Transferring Long Member Names 160

Purpose 160

Program 160
Example 6. DTS: Transferring Data by Using Data Set Options and Attributes 160

Purpose 160

Program 161

Example 7. DTS: Transferring Data Set Integrity Constraints 161

Purpose 161
Programs 161

Example 7.1: Omitting the OUT= Option from the PROC DOWNLOAD Statement 161

Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement 162

Example 7.3: Using the INLIB= Option in the PROC UPLOAD Statement 162

Example 7.4: Using the INDEX=NO Option in the PROC DOWNLOAD Statement 162
Example 8. DTS: Transferring Numerics by Using the EXTENDSN= and V6TRANSPORT Options 162

Purpose 162

Programs 162

154 Example 1. DTS: Transferring Data by Using WHERE Statements 4 Chapter 19

Example 8.1: Using the EXTENDSN= and V6TRANSPORT Options in the PROC UPLOAD
Statement 162

Example 8.2: Using the EXTENDSN= Option in the PROC DOWNLOAD Statement 163

Example 9. DTS: Transferring SAS Utility Files 163

Purpose 163

Programs 164
Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD Statement 164

Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD Statement 164

Example 9.3: Using the MEMTYPE= Option in the SELECT Statement 164

Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement 164

Example 10. DTS: Distributing an .EXE File from the Remote Host to Multiple Local Hosts 165

Purpose 165
Programs 165

Example 10.1: UPLOAD 165

Example 10.2: DOWNLOAD 165

Example 11. DTS: Uploading a Catalog That Contains Graphics Output 166

Purpose 166
Program 166

Example 12. DTS: Downloading a Partitioned Data Set from an OS/390 Host 167

Purpose 167

Program 167

Example 13. DTS: Combining Data from Multiple Remote Sessions 167
Purpose 167

Program 168

Example 1. DTS: Transferring Data by Using WHERE Statements

Purpose
The UPLOAD and DOWNLOAD procedures process WHERE statements and the

WHERE= data set option when you transfer a single SAS data set. The transferred
data set contains only the observations that meet the WHERE condition.

Program

proc upload data=school out=kindergarten;
where class=’K’;

run;

Examples of Data Transfer Services (DTS) 4 Example 2.3: Using the MEMTYPE= Option in the SELECT Statement 155

Example 2. DTS: Transferring Specific Member Types by Using SELECT
or EXCLUDE Statements

Purpose
If you include the INLIB= and OUTLIB= options in the PROC UPLOAD or PROC

DOWNLOAD statements, you can specify which member types to transfer by using the
MEMTYPE= option in one of the following statements:

� PROC UPLOAD
� PROC DOWNLOAD
� SELECT
� EXCLUDE.

Valid values for the MEMTYPE= option are DATA, CATALOG (or CAT), MDDB view,
FDB, DBDB, and ALL. If you use this option in the EXCLUDE statement, you can
specify only one value. If you use this option in the PROC UPLOAD or the PROC
DOWNLOAD statement, you can specify a list of MEMTYPE values enclosed in
parenthesis.

Programs

Example 2.1: Using the MEMTYPE= Option in the PROC UPLOAD
Statement

This example uploads all catalogs and data sets that are in the library THIS on the
local host and stores them in the library THAT on the remote host.

proc upload inlib=this outlib=that
memtype=(data catalog);

Example 2.2: Using the MEMTYPE= Option in the EXCLUDE Statement
This example uploads all catalogs and data sets except the data sets that are named

Z4, Z5, Z6, and Z7 that are in the library LOCLIB on the local host and stores them in
the library REMLIB on the remote host:

proc upload inlib=loclib outlib=remlib mt=all;
exclude z4-z7 / memtype=data;

run;

Example 2.3: Using the MEMTYPE= Option in the SELECT Statement
This example downloads the catalogs NAMES and SALARY and the data set MEDIA

in the data library REMLIB on the remote host and stores them in the library LOCLIB
on the local host:

proc download inlib=remlib outlib=loclib;
select names salary media(mt=data) / memtype=cat;

run;

156 Example 3. DTS: Transferring Specific Catalog Entry Types 4 Chapter 19

Example 3. DTS: Transferring Specific Catalog Entry Types

Purpose
When you include the INCAT= and OUTCAT= options in the PROC UPLOAD or

PROC DOWNLOAD statement, you can specify which entry types to transfer by using
the ENTRYTYPE= option in one of the following statements:

� PROC UPLOAD

� PROC DOWNLOAD

� SELECT

� EXCLUDE.

If you omit the ENTRYTYPE= option and also omit the SELECT and EXCLUDE
statements, all catalog entries are transferred.

Programs

Example 3.1: Using the ENTRYTYPE= Option in the PROC UPLOAD
Statement

This example uploads all SLIST catalog entries from the CAT catalog in the library
LOCLIB on the local host and stores them in the catalog UPCAT in the library
REMLIB on the remote host:

proc upload incat=loclib.cat
outcat=remlib.upcat entrytype=slist;

run;

Example 3.2: Using the ENTRYTYPE= Option in the EXCLUDE
Statement in PROC DOWNLOAD

This example downloads all catalog entries except the format entries XYZ and
GRADES, which are in the catalog REMOTE.MAIN_FORMATS on the remote host and
stores them in the catalog LOCAL.SECONDARY_FORMATS on the local host:

proc download incat=remote.main_formats
outcat=local.secondary_fomats;
exclude xyz grades / entrytype=format;

run;

Example 3.3: Using the ENTRYTYPE= Option in the SELECT Statement
in PROC UPLOAD

If the default library is WORK, this example uploads the FORMAT catalog entries
XYZ and ABC, the INFMT catalog entry GRADES, and the SCL entries A and B, which
are in the WORK.LOCFMT catalog on the local host and stores them in the
WORK.REMFMT catalog on the remote host:

Examples of Data Transfer Services (DTS) 4 Example 3.5: Using Long Member Names in Catalog Transfers 157

proc upload incat=locfmt outcat=remfmt;
select xyz.format grades

abc (et=format) / et=infmt;
select a b / et=scl;

run;

Example 3.4: Using the ENTRYTYPE= Option in Two SELECT Statements
This example maintains the original ordering and grouping when transferring

catalog entries that contain graphics output. Assume that you have a catalog named
FINANCE that has two entries that contain graphics output, INCOME and EXPENSE.
You want to download the two catalog entries that contain graphics output in the order
in which they are stored on the remote host; that is, you want INCOME to appear
before EXPENSE, not alphabetically as the DOWNLOAD procedure would normally
transfer them.

In addition, you have some catalog entries that are grouped by the name GROUP1,
and you want to preserve the grouping when the entries are downloaded. Remote
submit the following program to transfer these entries in the order that you specify in
the first SELECT statement and in the group that you specify in the second SELECT
statement:

proc download incat=rhost.finance
outcat=lhost.finance;
select income expense et=grseg;
select group1;

run;

Example 3.5: Using Long Member Names in Catalog Transfers
This example uses PROC UPLOAD to transfer catalogs by using the INCAT= and/or

OUTCAT= options:

rsubmit;
proc upload

incat=loclib.monthlysalary
outcat=monthlyupdate;

run;
proc upload

incat=loclib.employeedata
outcat=remlib.cat;

run;

proc upload incat=sasuser.base
outcat = remlib.basecatalog;

run;

endrsubmit;

158 Example 4. DTS: Transferring Generations of SAS Data Sets 4 Chapter 19

Example 4. DTS: Transferring Generations of SAS Data Sets

Purpose
Generation data sets are historical versions of SAS data sets, SAS views, and SAS/

ACCESS files. They enable you to keep a historical record of the changes that you
make to these files. There are two data set options that are useful when manipulating
generations of SAS data sets: maximum number of generations (GENMAX) and
generation number (GENNUM). GENMAX indicates how many generations to keep,
and GENNUM is used to access a specific version of a generation group.

SAS/CONNECT transfers generations of SAS data sets by default during library
transfers. The base data set, as well as all of its historical versions, are transferred.

If the user does not want all generations to be transfered, single data set transfers
should be used. With single data set transfers, only the specified data set is transferred.

Programs

Example 4.1: Using LIBRARY Transfers to Transfer Data Set
Generations

This example transfers the local data set LOCAL.SALES as well as its generations to
the remote library REMOTE. If the data set SALES already exists in the output library,
the base and all existing generations will be deleted and replaced by those that are
uploaded.

data local.sales(genmax=3);
input store sales95 sales96 sales97;
datalines;

1 221325.85 214664.02 212644.60
2 134511.96 159369.47 317808.48
3 321662.42 244789.33 236782.59

;
run;

data local.sales;
input store sales95 sales96 sales97;
datalines;

1 251325.25 217662.16 222614.60
2 144512.11 179369.47 327808.48
3 329682.43 249989.93 256782.59

;
run;

data local.sales;
input store sales95 sales96 sales97;
datalines;

1 261325.33 218862.16 222614.60
2 145012.11 189339.47 328708.71
3 330682.46 259919.92 258722.52

;
run;

Examples of Data Transfer Services (DTS) 4 Example 4.3: Inheriting Generation Specific Attributes 159

/* PROC DATASETS will show that the */
/* base data set as well as two */
/* generations exist in the library. */

proc datasets lib=local;
quit;

rsubmit;
proc upload in=local out=remote cstatus=no;
run;

endrsubmit;

Example 4.2: Using a SELECT Statement to Transfer Generations

Specific generations cannot be specified in the SELECT or the EXCLUDE statements
for library transfers. When the SELECT statement is specified for the library transfer,
the selected base data set as well as all of its historical versions will be transferred.
Similarly, when the EXCLUDE statement is specified for the library transfer, the
selected base data set as well as all of its historical versions will be excluded from the
transfer.

In the following example, the data set LOCAL.SALES as well as all of its generations
will be uploaded.

rsubmit;
proc upload in=local out=remote cstatus=no;

select sales (mt=data);
run;

endrsubmit;

Example 4.3: Inheriting Generation Specific Attributes
During library transfers and single data set transfers when OUT= is not specified,

data set attributes are inherited in the output data set. In Version 7 or Version 8, the
maximum number of generations will be a new inherited attribute. In addition, the
next generation number attribute is inherited ONLY when a library transfer occurs.
This attribute is only inherited when the generations are actually transferred, and
therefore it is NOT inherited for any single data set transfers. In the following
example, both the maximum number of generations and the next generation number
attributes are inherited in the output data set because this is a library transfer.

rsubmit;
proc download in=remote out=local;

select sales(mt=data);
run;

endrsubmit;

In the following example, only the maximum number of generations attribute is
inherited. The next generation number attribute is not inherited because this is a
single data set transfer, and therefore no generations are transferred.

rsubmit;
proc download data=remote.sales;
run;

endrsubmit;

160 Example 4.4: Transferring Single Data Sets 4 Chapter 19

Example 4.4: Transferring Single Data Sets
A specific generation can be transferred by specifying the GENNUM= data set option

for a single data set transfer. In the following example, a specific historical version is
updated by specifying GENNUM=1.

rsubmit;
proc upload data=local.sales(gennum=1);
run;

endrsubmit;

Example 5. DTS: Transferring Long Member Names

Purpose
SAS/CONNECT supports the transfer of long member names for single data set

transfers, as long as the host supports long member names. This example uses PROC
UPLOAD and PROC DOWNLOAD to transfer a data set and a catalog that have long
member names:

Program
rsubmit;

proc upload in=work out=sasuser;
select longdatasetname(mt=data)
cat longcatalogname/mt=cat;

run;

data x.sas_institute_employee_data;
set empdata;

run;

proc download inlib=x outlib=work;
run;

endrsubmit;

Example 6. DTS: Transferring Data by Using Data Set Options and
Attributes

Purpose
PROC UPLOAD and PROC DOWNLOAD permit you to specify SAS data set options

in the DATA= and OUT= options. Note that SAS data set options are not supported
when using the INLIB= and OUTLIB= options, even when you upload only data sets.

The data set options must be associated with a specific SAS data set, so they must be
used in the DATA= or OUT= options. There are additional restrictions described in

Examples of Data Transfer Services (DTS) 4 Example 7.1: Omitting the OUT= Option from the PROC DOWNLOAD Statement 161

Chapter 17, “The UPLOAD Procedure,” on page 107 and Chapter 18, “The
DOWNLOAD Procedure,” on page 129.

This example illustrates using the DATA= option and the INDEX=NO option. It also
shows the use of the RENAME= and DROP= SAS data set options. Note that because
no OUT= option is specified, the transferred data set inherits all of the characteristics
of the input data set except for the index (because the INDEX=NO option is specified).

Program

proc download data=survey
(rename(r=response) drop=comments)
index=no;

run;

Example 7. DTS: Transferring Data Set Integrity Constraints
PROC UPLOAD and PROC DOWNLOAD in SAS/CONNECT permit a transferred

SAS data set to inherit the characteristics of the input data set. If the OUT= option is
omitted when transferring a specific SAS data set, then the transferred data set
inherits the characteristics of the input data set. A transferred data set also inherits
the characteristics of the input data set if it is part of a library transfer (See the
INLIB= and OUTLIB= options for PROC UPLOAD and PROC DOWNLOAD).

A new potential characteristic of a SAS data set known as integrity constraints has
been added for SAS Version 7 or Version 8. Integrity constraints are a set of data
validation rules that preserve the consistency and correctness of the stored data. These
rules are defined by the applications programmer and are enforced by SAS for each
request to modify the data.

Purpose
PROC UPLOAD and PROC DOWNLOAD have been modified for Version 7 or

Version 8 to enable the transfer of integrity constraints that are defined on a data set.
As with other data set characteristics, integrity constraints are inherited by a
transferred data set under the conditions stated above. The only exception to this will
be if the input file has an index defined and the user specifies the INDEX=NO option,
then any integrity constraints that are defined for the input file will not be inherited.
Also, referential integrity constraint types are never transferred.

Programs

Example 7.1: Omitting the OUT= Option from the PROC DOWNLOAD
Statement

This example downloads the SAS data set REM in the library WORK on the remote
host to the library WORK on the local host. Any non-referential integrity constraints
defined for the input data set are inherited by the output data set.

proc download data=rem;

162 Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement 4 Chapter 19

Example 7.2: Using the DROP= Option in the PROC UPLOAD Statement
This example uploads the SAS data set LOC in the library WORK on the local host

to the library WORK on the remote host. The variable ONE is dropped from the output
data set. Any non-referential integrity constraints that are defined for the input data
set that do not include the variable ONE are inherited by the output data set.

proc upload data=loc(drop=one);

Example 7.3: Using the INLIB= Option in the PROC UPLOAD Statement
This example uploads all SAS data sets in the library SASUSER on the local host

and stores them in the library WORK on the remote host. Any non-referential integrity
constraints that are defined for each of the input data sets are inherited by the
corresponding output data set.

proc upload inlib=sasuser outlib=work;

Example 7.4: Using the INDEX=NO Option in the PROC DOWNLOAD
Statement

This example downloads the SAS data set STUDENTS in the library WORK on the
remote host to the library WORK on the local host. Any non-referential integrity
constraints defined for the input data set are inherited by the output data set unless
there are indexes defined on the input data set, then no integrity constraints are
defined for the output data set.

proc download data=students index=no;

Example 8. DTS: Transferring Numerics by Using the EXTENDSN= and
V6TRANSPORT Options

Purpose
For releases prior to Version 7, when transferring short numerics (length less than

8) the length of these numerics is automatically increased to preserve precision. In
Version 7 or Version 8, the length of these numerics are increased by default unless the
V6TRANSPORT option is specified. Using the V6TRANSPORT and EXTENDSN=
options in PROC UPLOAD and PROC DOWNLOAD statements, you have the choice of
whether or not to promote the length of numerics.

Programs

Example 8.1: Using the EXTENDSN= and V6TRANSPORT Options in the
PROC UPLOAD Statement

This example uploads the data set A in the directory WORK on the local host to the
directory REMOTE on the remote host. The V6TRANSPORT option causes the short

Examples of Data Transfer Services (DTS) 4 Purpose 163

numerics to be promoted; therefore EXTENDSN=NO must be specified to override this
default, so that numerics will not be promoted.

proc upload data=a out=remote
v6transport extendsn=no;

run;

Example 8.2: Using the EXTENDSN= Option in the PROC DOWNLOAD
Statement

This example downloads the catalog SCAT in the directory REMOTE on the remote
host to the directory WORK on the local host. By default, catalog transfers promote the
length of short numerics within SCREEN entry types. This behavior can be overridden
by specifying EXTENDSN=NO on the catalog transfer download. The EXTENDSN=
option is supported by catalog transfer of SCREEN entry types only.

Note: The V6TRANSPORT option is not needed when transferring a catalog. 4

proc download incat=remote.scat outcat=work.scat
extendsn=no;

run;

Example 9. DTS: Transferring SAS Utility Files
By using the INLIB= and OUTLIB= options with PROC UPLOAD or PROC

DOWNLOAD in SAS/CONNECT, multiple SAS files may be transferred in a single step.
This capability enables you to transfer an entire library or selected members of a
library. You can specify which member types to transfer by using the MEMTYPE=
option in one of the following statements:

� PROC UPLOAD
� PROC DOWNLOAD
� SELECT
� EXCLUDE.

If you use this option in the SELECT or the EXCLUDE statement, you can specify
only one value. If you use this option in the PROC UPLOAD or the PROC DOWNLOAD
statement, you can specify a list of MEMTYPE values enclosed in parenthesis.

Note: The INLIB= option must be used with the OUTLIB= option, but you can use
any form (INLIB=, IN=, INDD=) of the INLIB= option with any form (OUTLIB=,
OUT=, OUTDD=) of the OUTLIB= option. Also, any form (MEMTYPE=, MT=,
MTYPE=) of the MEMTYPE= option may be used. 4

Purpose
Previously, the only SAS files that were supported for transfer by using the method

described above were SAS data sets and catalog files. This new feature also supports
transfer of SQL views, MDDB files, FDB files, and DMDB files. Valid values of the
MEMTYPE= option now include:

� DATA (SAS data sets)

164 Programs 4 Chapter 19

� CATALOG or CAT (catalog files)
� VIEW (SQL views)
� MDDB (MDDB files)
� FDB (FDB files)
� DMDB (DMDB files)
� ALL (all of the above).

Programs

Example 9.1: Using the INLIB= Option in the PROC DOWNLOAD
Statement

This example downloads all SAS data sets, catalog files, SQL views, MDDB files,
FDB files, and DMDB files in the library WORK on the remote host and stores them in
the library WORK on the local host:

proc download inlib=work outlib=work;

Example 9.2: Using the MEMTYPE= Option in the PROC UPLOAD
Statement

This example uploads all MDDB and FDB files that are in the library THIS on the
local host and stores them in the library THAT on the remote host:

proc upload inlib=this outlib=that
memtype=(mddb fdb);

Example 9.3: Using the MEMTYPE= Option in the SELECT Statement
This example downloads the DMDB files TEST1 and TEST2 and the SAS data set

TEST3 that are in the library WORK on the remote host and stores them in the library
LOCAL on the local host:

proc download inlib=work outlib=local;
select test1 test2 test3(mt=data)/memtype=dmdb;

run;

Example 9.4: Using the MEMTYPE= Option in the EXCLUDE Statement
This example uploads all SAS data sets, catalog files, MDDB files, FDB files, DMDB

files, and SQL views except the SQL views A1, A2, A3 that are in the library LOCAL on
the local host and stores them in the library REMOTE on the remote host:

proc upload inlib=local outlib=remote memtype=all;
exclude a1-a3/memtype=view;

run;

Examples of Data Transfer Services (DTS) 4 Example 10.2: DOWNLOAD 165

Example 10. DTS: Distributing an .EXE File from the Remote Host to
Multiple Local Hosts

Purpose
Access to remote host files by means of SAS/CONNECT makes it easy to distribute

information to large numbers of local host users. Rather than distributing files on
diskettes, one central file on the remote host can be copied by each local host by using
SAS/CONNECT.

For example, suppose you update an executable on your PC and would like to
distribute the update to other PCs in your organization. You decide that the most
efficient way to update all PCs is to upload PROGRAM.EXE to the remote host, and
notify each person who uses this software on their workstations that the file is available
and should be downloaded. This method allows all users on the local host quick access
to the updated software and eliminates passing a diskette from user to user.

Note: A SAS/CONNECT application like this one, in which an external nontext file
is uploaded and then downloaded, requires the BINARY option. The BINARY option is
used in the DOWNLOAD and UPLOAD procedures. The BINARY option transfers files
without any character conversion (for example EBCDIC to ASCII) or insertion of record
delimiters. 4

Programs

Example 10.1: UPLOAD
The PROGRAM.DLL module must first be uploaded to an external file on the remote

host. You start SAS/CONNECT and remote submit these statements:

rsubmit;
filename rfile ’remote-host-file’;
proc upload infile=’a:\program.dll’

outfile=rfile binary;
run;

endrsubmit;

This example uses a SAS FILENAME statement to identify the target file on the
remote host.

Notice that the INFILE= and OUTFILE= options are used in the PROC UPLOAD
statement rather than the DATA= and OUT= options. This is because the file that is
being uploaded is an external file, not a SAS data set.

Execute the PROC UPLOAD program by using an RSUBMIT command. As the
program executes, messages are displayed in the LOG window tracking the procedure’s
status. The ENDRSUBMIT command is used to terminate the remote submit.

Example 10.2: DOWNLOAD
With the PROGRAM.DLL module available on the remote host, each user on the

local host at the installation can acquire the update module by downloading it from the
remote host.

166 Example 11. DTS: Uploading a Catalog That Contains Graphics Output 4 Chapter 19

The process for downloading the PROGRAM.DLL module is like the process for
uploading except that you invoke the DOWNLOAD procedure, and the target file is on
the remote host, not the local host. For example, to copy the PROGRAM.DLL module to
your directory \SAS\SASEXE, use:

rsubmit;
filename rfile ’remote-host-file’;
proc download infile=rfile

outfile=’\sas\sasexe\program.dll’ binary;
run;

endrsubmit;

This example uses a SAS FILENAME statement to identify the target file on the
remote host.

The INFILE= and OUTFILE= options are used in the PROC DOWNLOAD statement.
Execute the PROC DOWNLOAD step with the RSUBMIT command. As the file

downloads, messages that track the status of the transfer are displayed in the LOG
window. The ENDRSUBMIT command is used to terminate the remote submit.

Example 11. DTS: Uploading a Catalog That Contains Graphics Output

Purpose
You can use the UPLOAD and DOWNLOAD procedures to transfer catalog entries

that contain graphics output. By default, the catalog entries are transferred
individually and are re-created in the destination catalog in alphabetical order.
However, you can alter the order or grouping of the catalog entries in the destination
catalog by using SELECT statements in the UPLOAD and DOWNLOAD procedures.

Program
Assume that you have a catalog named FINANCE that has two entries, INCOME

and EXPENSE, which contain graphics output. You want to download the two catalog
entries that contain graphics output in the order that they are stored on the remote
host. For example, you want INCOME to appear before EXPENSE, not alphabetically
as the DOWNLOAD procedure would transfer them by default. In addition, you have
some catalog entries that are grouped by the name GROUP1 and you want to preserve
the grouping when the entries are downloaded. This program preserves the order and
grouping by using SELECT statements.

proc download incat=rhost.finance
outcat=rhost.finance;
select income expense/et=grseg;
select group1;

run;

Examples of Data Transfer Services (DTS) 4 Purpose 167

Example 12. DTS: Downloading a Partitioned Data Set from an OS/390
Host

Purpose
This example shows users who have an OS/390 host how to download all members of

a partitioned data set. Suppose you need to download a collection of SAS programs
from an OS/390 host to your local host. The SAS programs are members of one
partitioned data set named MFHOST.SAS.PROGRAMS. You can copy all the programs
from the partitioned data set to the local host using a single DOWNLOAD procedure.
An asterisk (*) can be used in the DOWNLOAD procedure as a wildcard character
which greatly simplifies the code needed to transfer all members of the data set.

Program

u filename locdir
’/unixhost/sas/programs’;

v rsubmit;
w filename inpds

’mfhost.sas.programs’ shr;

x proc download infile=inpds(’*’)
outfile=locdir(’*’);

y endrsubmit;

u The first FILENAME statement defines the fileref LOCDIR, which identifies the
physical location for the files that are downloaded to the local UNIX host.

v The RSUBMIT statement indicates the following statement will be processed on
the OS/390 host. By not specifying a remote-session-id, this example assumes that
the OS/390 machine is your current remote host.

w The second FILENAME statement defines the fileref INPDS for the partitioned
data set MFHOST.SAS.PROGRAMS, which contains the SAS programs that are to
be downloaded to the local host.

x The PROC DOWNLOAD step transfers all the files in the partitioned data set on
the remote OS/390 host to the library on the local UNIX host.

y The ENDRSUBMIT statement indicates the end of the block of statements that
are submitted to the remote host for processing.

Example 13. DTS: Combining Data from Multiple Remote Sessions

Purpose
Using SAS/CONNECT to establish links to multiple remote hosts, you can access

data on several hosts, draw that data together on the local host, and analyze the

168 Program 4 Chapter 19

combined data. For example, if you have data that is stored under OS/390 in a DB2
database and related data that is stored in an ORACLE database under UNIX, you can
use SAS/CONNECT in combination with SAS/ACCESS to combine that data on your
local host. This example uses salary and employee data gathered from two remote hosts
to illustrate the process.

Program
This example signs on to two remote hosts, downloads data from both hosts, and

performs analyses on the local host. The program uses the SIGNON and RSUBMIT
statements. Therefore, it can be run from a line-mode session as well as from the
windowing environment.

Note: Bullets v through y apply to downloading both DB2 and ORACLE data. 4

/*************************************/
/* establish link to OS/390 */
/*************************************/

u options comamid=ehllapi;
filename rlink

’!sasroot\connect\saslink\logtso.scr’;
signon a;

/*************************************/
/* download DB2 data using */
/* SAS/ACCESS view */
/*************************************/

v rsubmit a;
w libname db ’app.db2.views’ disp=shr;
x proc download data=db.employee

out=db2dat;
run;

y endrsubmit;

/*************************************/
/* establish link to UNIX */
/*************************************/

U options
remote=hrunix comamid=tcp;

filename rlink
’!sasroot\connect\saslink\tcpunix.scr’;

signon;

/*************************************/
/* download ORACLE data using */
/* SAS/ACCESS view */
/*************************************/

v rsubmit hrunix;
w libname oracle ’/hr/emp/records/’;
x proc download

data=oracle.employee out=oracdat;

run;
y endrsubmit;

Examples of Data Transfer Services (DTS) 4 Program 169

/*************************************/
/* sign off both links */
/*************************************/

V signoff hrunix;
signoff a cscript=

’!sasroot\connect\saslink\logtso.scr’;

/*************************************/
/* join data into SAS view */
/*************************************/

W proc sql;
create view joindat as

select * from db2dat, oracdat
where oracdat.emp=db2dat.emp;

/*************************************/
/* create summary table */
/*************************************/

X proc tabulate data=joindat
format=dollar14.2;
class workdept sex;
var salary;
table workdept*(mean sum) all,
salary*sex;
title1 ’Worldwide Inc. Salary Analysis

by Departments’;
title2 ’Data Extracted from Corporate

DB2 Database’;
run;

/* display graphics */
at proc gchart data=joindat;

vbar workdept/type=sum
sumvar=salary
subgroup=sex
ascending
autoref
width=6
ctext=cyan;

pattern1 v=s c=cyan;
pattern2 v=s c=magenta;
format salary dollar14.;
title1 h=5.5pct f=duplex

c=white
’Worldwide Inc. Salary Analysis’;

title2 h=4.75pct f=duplex
c=white
’Data Extracted from Corporate DB2

Database’;
run;
quit;

u To sign on to a remote host, you need to provide several items of information:

170 Program 4 Chapter 19

� the remote-session id, which is specified in a REMOTE= system option or as
an option in the SIGNON statement.

� the communications access method, which is specified by using the
COMAMID= system option in an OPTIONS statement.

� the script file to use when signing on to the remote host. This script file is
usually associated with the fileref RLINK. Using this fileref is the easiest
method for accessing the script file.

When you have provided all of the necessary information, you can submit the
SIGNON statement. You can specify the remote-session id in the SIGNON
statement. If you omit the remote-session id from the RSUBMIT statement, the
statements are submitted to the remote session that was identified most recently
in a SIGNON statement, an RSUBMIT statement or command, or in a REMOTE=
system option.

v After you have established links to two or more sessions, you can remote submit
statements to any of the remote hosts by simply identifying in the RSUBMIT
statement which host should process the statements. When the remote-session id
has been specified by a previous statement or option, you are not required to
specify the remote-session id in the REMOTE statement. This example includes
the remote-session id in the RSUBMIT statements, even when the remote-session
id is not required, to clarify which host is processing each group of statements.

w Associate a libref with the library that contains the SAS/ACCESS view of the
database on the remote host.

x The SAS/ACCESS view can then be downloaded to the local host. Note that when
you download a view of a database, a temporary SAS data set is materialized from
the view and downloaded to the local host. In this example, the output data set on
the local host is a temporary SAS data set.

y The ENDRSUBMIT statement ends the block of statements (named in the
previous RSUBMIT statement) that are submitted to the remote host.

U To establish a second remote session, re-set the REMOTE= and COMAMID=
options to values that are appropriate for the second host. You also need to reset
the fileref RLINK to associate it with the script file for the second remote host.

V Terminate the links to both the UNIX remote host and the OS/390 remote host.
Use the CSCRIPT= option to identify the script file for signing off the OS/390 host.

W On the local host, you can now use the SQL procedure to join into a single view
the two SAS data sets that were created when you downloaded the views from the
remote host.

X To analyze the joined data, use the name of the view on the local host in a PROC
TABULATE step.

at If you have SAS/GRAPH on your local host, you can also use graphics procedures
to analyze the view that is created from the two remote databases.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

