2713

CHAPTER

29

Using Direct Messaging

Introduction 273

The Direct-Messaging Concept 273
Direct-Messaging Benefits 274
Application Design 275

Introduction

The benefits of client/server applications are proven and many. The primary benefits
include providing access to all of the resources on your network as well as maximizing
the use of these resources. However, as client/server processing has been adopted and
implemented by the business community, additional requirements have emerged.

In today’'s complex business world, tasks are best accomplished by a series of
programs that work together as an application to produce a result. These programs can
be spread across multiple computing environments that may or may not be
homogeneous.

However, one requirement remains the same whether all of the programs that
comprise an application run on a single processor, or each program runs on a separate
heterogeneous processor: programs must communicate with each other in order to
accomplish the goal of the application. The message facility that is available in SAS
software can address all of these needs by using a flexible method of data exchange
through messages.

This chapter describes the direct-messaging concept and introduces the messaging
services that have been added to SAS to allow you to easily write applications that can
communicate with each other on a single processor or across a network. You can
develop "thin" client applications that talk to "fat" servers. You can implement
applications that perform parallel processing and load balancing.

The Direct-Messaging Concept

Typically, one program communicates with another program by directly calling it.
This can put unnatural restrictions on your applications that add complexity and
hinder the flow of information. Messaging allows applications to communicate by
sending each other data in messages. Any action can be taken upon receipt of a
message, and acknowledgments can be returned to the sender if and when appropriate.

In its simplest form, messaging requires that both the client and the server portions
of the application be active at the same time. This is called direct messaging. In other
words, the client cannot send a message unless a server is listening for a message.

274 Direct-Messaging Benefits A Chapter 29

Figure 29.1 on page 274 illustrates the basic structure of direct-messaging. In this
figure, Program 1 sends Program 2 a message with a message type of 100 as shown by
path 1. Program 2 receives message type 100 and generates a response with message
type 200 that is sent back to Program 1 as shown by path 2. Programs 1 and 2 are
shown running on separate platforms. These programs could run on a single platform
or separate platforms of the same or of a unique type. Also, any number of programs
can communicate simultaneously by using direct-messaging.

Figure 29.1 Basic Structure of Direct-Messaging

Platform A Platform B
Program 1 Program 2
1
Message Type
100
2
Message Type
200

The direct-messaging facility allows basic and flexible message construction,
transmission, and notification services that span operating system and hardware
boundaries across the enterprise. Messages are free-form. Their structure, which is
defined by the application developer, may range from a simple collection of variables to
complex hierarchies of SCL lists. Additionally, messages may include one or more
attachments in the form of SAS data sets or filtered subsets, catalogs or catalog entries,
and external files.

Each message contains a message type field. This field is used to define the set of
message types that are meaningful to a particular program. When a program receives a
message that has a known message type, it knows the layout of the data that is
contained in the message body, and it can take the appropriate action based on the
values of the data.

Direct-Messaging Benefits

Messaging enables application developers to deploy multi-tiered distributed
applications. This multi-tiered design allows you to separate and centralize business
and data access to the server portion of the application. You can then implement a thin
client application that requires little or no maintenance. Not only is it easy to segment
your logic into individual programs, but these programs can execute on the host that
best meets your data and resource requirements.

To illustrate these benefits consider a three-tiered implementation of a business
application. The first tier could be the thin client piece which is a graphical user
interface. The middle tier would then contain the business logic that is needed to
manipulate data and to produce information. The third tier would perform the data
access logic that is necessary to read or to write the data source.

Using Direct Messaging A Application Design 275

Any piece of this application could be modified without changing the other tiers of
the application. For example, the data source could change from a DB2 database to an
ORACLE database and only the third tier (the data access logic) would need to be
changed.

The SAS System now provides an SCL interface to direct-messaging that allows you
to develop integrated SAS/AF and FRAME applications that can communicate through
a basic yet flexible interface. In addition, the TCP/IP access method is the only access
method that supports direct-messaging.

Application Design

When designing a direct-messaging application, the client and server section must be
choreographed so that they do not block one another. That is, you want to make sure the
client and server applications are completely clear as to what to expect from each other.

A typical server application using direct-messaging would execute the following steps:

1 Initialize the messaging environment.
2 Listen for any messages.

3 Respond to messages when required.

4 Repeat steps 2 and 3 as needed.

5 Shut down the messaging environment.

A typical client application using direct-messaging would execute the following steps:

1 Initialize the messaging environment.

2 Establish communication with a specific server.

3 Send messages.

4 Process any responses from the server.

5 Repeat steps 3 and 4 as needed.

6 Disconnect from the server.

7 Shut down the messaging environment.

To accomplish the above steps, direct messaging provides two SCL classes (STATION
and CNCTION) and a set of SCL methods for each class. When designing a direct
messaging application, the application programmer must choreograph the client and
server portions carefully. Using direct messaging, the SCL _query method will block
until an incoming event is received. Also, the _send method will block if the receiving
side is not listening for any messages.

You must specify a nickname (moniker) in any SAS server session (the session to
which applications will connect). This value is then used by any client session in order

to locate the server when connecting by using the CONNECT method.
The syntax for specifying the moniker is:

$let _moniker=protocol//network_node/service_name;

If you omit protocol, the moniker uses the default access method for that host. If you
omit network_node, the moniker defaults to the local node. For example, by specifying
the following in a SAS session that runs on a node named MYNODE

%$let _moniker=/shrl;

you would default to the TCP/IP access method on the network node MYNODE, which
uses the service name SHR1. The moniker can be initialized anywhere in the SAS
application, prior to calling the direct-messaging methods.

Note: TCP/IP is the only access method that supports distributed messaging. 2

276 Application Design A Chapter 29

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-477-2

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM®, AIX® , DB2®, 0S/2® , 0S/390%® , RS/6000® , System/370TM, and System/390° are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE?® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

