217

CHAPTER

30

Examples of Direct Messaging

Introduction 277

Loading a Station Instance 277
Open a Station Instance 277
Query a Station 278

Query a Connection Object 278
Loading a Connection Instance 278
Open a Connection Instance 278
Send a Message 279

Receive a Message 279
Disconnect from a Server 279
Close Station Instance 279

Introduction

This chapter outlines the general steps for implementing a sample distributed
application by using direct messaging.

Loading a Station Instance

The first thing you must do in both the client and server portions of the SCL
application is to set up a station instance.

stationid = loadclass(’sashelp.connect.station’);
stationInst = instance(stationid);

Open a Station Instance

After you have your station instance, both the client and server portions of the SCL
application must initialize the messaging environment by using the _open method to
open the station instance.

call send(stationInst, ' open’, ’payroll’, rc);

Note: The client is only able to talk with its targeted server if their instance names
match. In this example, the matching instance name is the third parameter, PAYROLL.
A



278 Query a Station A Chapter 30

Query a Station

After the station has been successfully opened, the server application can use the
_query method to listen for incoming messages. A server application can either listen
for messages from any user by doing a _query on a station, or a server application can
listen for messages from a specific user by doing a _query on a connection object.

call send(stationInst, ' query’, eventtype,
msgtype, attach list,
connection object, rc);

Query a Connection Object

The event types returned by the _query method are CONNECT, MESSAGE,
DISCONNECT, and ABORT.

If a CONNECT event is returned from the _query method, it means that a client
application has initiated a connect so that it can communicate with the server
application. The server application can then use the returned connection_object
parameter for subsequent queries from that specific user.

call send(connection object, ' query'’, eventtype,
msgtype, attach list, rc);

If a MESSAGE event is returned by the _query method, the server receives the
MESSAGE and responds.

If a DISCONNECT event is returned by the _query method, the specific client
application has terminated the connection and the connection object is deleted.

Loading a Connection Instance

In order for the client application to establish communication with the server
application, it must set up a connection instance.

cnctid=loadclass(’'sashelp.connect.cnction’);
connection=instance(cnctid);

Open a Connection Instance

After you have your connection instance, the client portion of the SCL application
must establish communication with the server application by using the _open method.
The client must know the server’s nickname in order to connect to it.

call send(connection, ' open’,
stationInst, ’‘/shrl’, rc);

Note: The station instance names in both the client and the server applications
must match or the connection open will fail. In this example, the station instance name
is the third parameter. A



Examples of Direct Messaging A Close Station Instance 279

Send a Message

When the connection is successfully opened, the client application is ready to send
messages by means of the _send method. Using the _send method, the client application
can optionally specify a message type. The message-type values are defined by the
application, and both the client and server pieces of the application must be coded to
recognize and process this defined set of message types. For example, the message type
can be used to indicate the number and the types of parameters in the message:

O Message type 1 indicates one parameter of type character (that is, a string).
O Message type 2 indicates one parameter of type numeric.

msgtype=1;
call send(payobj, ' send’, msgtype, rc,
'Start nightly processing’);

Receive a Message

When the server detects that it has been sent a message, it attempts to receive the
message. The message type may be used by the server to determine the type and
number of parameters to fetch.

call send(connection object, ' recv’, rc, task string);

Disconnect from a Server

The _query, _send, and _recv methods can continue repeatedly until the particular
needs of the application are accomplished. When the client is finished, it indicates this
to the server by sending a _disconnect.

call send(connection, ' disconnect’, rc);

Close Station Instance

Both the client and the server shut down the messaging environment by executing
the close method.

call send(stationInst, ' close’, rc);



280 Close Station Instance A Chapter 30



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-477-2

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM®, AIX® , DB2®, 0S/2® , 0S/390%® , RS/6000® , System/370TM, and System/390° are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE?® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.



