
301

C H A P T E R

34
SAS Component Language (SCL)
Interface to Direct Messaging

Introduction 301
Station Class Overview 301

Station Class Usage 302

Station Class Methods 302

Dictionary 302

Cnction Class Overview 306
Cnction Class Methods 306

Dictionary 307

Introduction
In its simplest form, messaging requires that both the client and the server portions

of the application be active at the same time. The client cannot send a message unless
a server is listening for a message. This is referred to as direct messaging.

The direct-messaging facility allows basic and flexible message construction,
transmission, and notification services that span operating system and hardware
boundaries across the enterprise. Messages are free-form. Their structure, which is
defined by the application developer, may range from a simple collection of variables to
complex hierarchies of SCL lists. Additionally, messages may include one or more
attachments that can take the form of SAS data sets or filtered subsets, catalogs or
catalog entries, external files, MDDB files, DMDB files, FDB files, and SQL Views.

These applications can run on a single platform or on separate platforms of the same
or of a unique type. Also, any number of applications can be simultaneously
communicating using direct messaging.

SAS/CONNECT provides tools that enable application developers to deploy
multi-tiered distributed applications based on a message-passing paradigm. This
multi-tiered design allows you to separate and centralize business logic and data access
from the client environment.

The application developer tools include a Station class and a Cnction class. Direct
messaging allows messages to be sent (using SCL methods) between two or more
instances of the Station class. After station initialization has occurred, the Cnction class
is used to make a connection. A server station can service any number of client stations.

Station Class Overview
Access to all distributed messaging services is obtained by opening a station

interface instance. After opening, the station interface instance can be used for either
direct or indirect (queued) messaging.

302 Station Class Usage 4 Chapter 34

PARENT:
SASHELP.FSP.OBJECT.CLASS

CLASS:
SASHELP.CONNECT.STATION.CLASS

Station Class Usage
For information about using the Station class interface, refer to Chapter 29, “Using

Direct Messaging,” on page 273.

Station Class Methods
The instance methods that are defined to the Station class are discussed in this

section. The syntax for these methods requires that they be enclosed in single quotes.

_open
Open a station interface instance for distributed messaging collection services.

_query
Generic query on any connection.

CAUTION:
_query is only valid for direct messaging. Indirect messaging communicates using
message queues, and therefore does not require a connection. 4

_close
Close a station interface instance.

Notation that is used to define the parameter type:

C Character Type

N Numeric Type

L SCL List Type

Dictionary

_open

Open a station interface instance for distributed messaging services.

Syntax
CALL SEND(stationInst, ’_open’, instanceName, rc);

SAS Component Language (SCL) Interface to Direct Messaging 4 _query 303

Where... Is Type... And represents...

instanceName C name of station instance

rc N return code

When invoked on a station instance, _open initializes a station interface instance
and enables access to distributed messaging services. The station instanceName must
be unique to the SAS session in which _open is invoked. The _open method must be
successfully invoked before any point-to-point or queue messaging can take place.

The instanceName parameter represents a collection name in the queue messaging
environment. A collection is a user-defined grouping of queues that is managed by the
same collection manager.

Example

This example opens the station interface instance DMMAPPL.

stationid = loadclass(’sashelp.connect.station’);
stationInst = instance(stationid);
call send(stationInst, ’_open’, "DMMAPPL", rc);

_query

Generic query on any connection.

Syntax
CALL SEND(stationInst, ’_query’, etype, msgtype, header, attachlist, cnctionInst, rc);

Where... Is type... And represents...

etype C type of event received

msgtype N message type of received message

header L delivery header list

attachlist L attachment list

cnctionInst N Cnction instance on which the event was received

rc N return code

Used for direct messaging, the _query listens on a station instance for incoming
events on any connection.

The event type etype is returned with one of the following values:

304 _query 4 Chapter 34

CONNECT
connect event received

DISCONNECT
disconnect event received

MESSAGE
message received

ABORT
abort event received.

The msgtype parameter can be set by the user when the message is sent and is
surfaced on the query. This value is user-specified, and when surfaced by the query, the
user can use the message type to determine how many and what type of parameters
should be used in receiving the actual message when using the _recv and _recvlist
methods.

The header parameter is an SCL list that returns delivery information. A value of 0
may be passed in to indicate that the delivery information should not be surfaced by the
query. Otherwise, header must be passed into the _query as an empty SCL list. If a
message event is returned, header is updated with the delivery information.

The attachlist parameter is a list of attachments that have been included with the
message. A value of 0 may be passed in to indicate that the attachment list should not
be surfaced by the query. In this scenario, the attachment list is never surfaced and so
the attachments do not have to be received and accepted. If the value is not 0,
attachlist must be an empty SCL list. If a message event is returned, attachlist is
updated only if attachments were received along with the message. If attachments are
surfaced, actions must be taken to receive the attachments and to indicate that the
receipt is complete. See “Sending Attachments” on page 358 for more information about
the receiving of attachments.

The cnctionInst parameter is set upon return. This indicates the Cnction instance on
which the event was received.

� If a CONNECT event is received, a successfully opened instance of the Cnction
class is returned in cnctionInst. This Cnction instance can now be used to send,
receive or query on the connection.

� If a MESSAGE event is received, cnctionInst will be the Cnction instance on which
the message was received.

� If a DISCONNECT or ABORT event is received, cnctionInst will be the Cnction
instance on which the disconnect or abort was received.

If an error or warning condition is encountered during the query, a non-zero return
code will be returned in the rc parameter. The return codes that are listed are a defined
set of warning and error conditions that can be checked for by using the SYSRC macro,
which is provided in the autocall library that is supplied by SAS Institute.

If the parameter rc is not one of the parameters that are listed below, use SYSMSG()
to determine the exact error message.

_SEREL
This return code indicates that the query failed because the previous message
(surfaced by previous query) has not been received . When a _query returns a

SAS Component Language (SCL) Interface to Direct Messaging 4 _query 305

message, no subsequent queries will be allowed until the previous message is
received using the _recv or _recvlist method.

_SEATTAC
This return code indicates that the query failed because the attachment transfer is
not complete. If the previous message that is surfaced by the query had attachments,
no subsequent queries will be allowed until the _acceptAttachment method is called
using the COMPLETE flag. This signals that the attachment transfer is complete.
The COMPLETE flag may be specified without an attachment list to signal that no
attachments are to be received and that attachment acceptance is complete:

call send(cnctionInst, "_acceptAttachment",
0, rc, "COMPLETE");

_SEATTEM
This return code indicates that the query failed because a non-empty attachment list
was passed in. If non-zero, attachlist must be an empty SCL list.

_SEHEADR
This return code indicates that an invalid delivery header list was specified. If
non-zero, the header must be an empty SCL list so that it can be updated by the
query.

Example

This example queries on the station instance by listening for messages on any
connections.

/*************************************/
/* create empty attachment list to */
/* pass into query */
/*************************************/

attachlist = makelist();
call send(stationInst, ’_query’, etype,

msgtype, attachlist, cnctionInst, rc);

if (etype = "CONNECT") then do;
/**********************************/
/* send message back on new */
/* connection instance */
/**********************************/

msgtype = 5;
call send(cnctionInst, ’_send’,

msgtype, 0, 0, rc, "Return string");
end;

else if (etype = "DISCONNECT") then
end;

else if (etype = "MESSAGE") then do;
/**********************************/
/* will have meaning to some user */
/**********************************/

if (msgtype = 1) then
...more data lines...

306 _close 4 Chapter 34

end;

_close
Close a station interface instance.

Syntax
CALL SEND(stationInst, ’_close’, rc);

Where... Is type... And represents...

rc N return code

When the _close method is invoked, the station interface instance is closed. All
active Cnction instances on the station (meaning any connections not previously
disconnected) will be disconnected at _close time.

After the _close has executed, the station object still exists but is no longer open.
Therefore, no subsequent distributed messaging services can be executed until the
station object is re-opened by using an _open call.

Example

This example closes a station interface instance.

call send(stationInst, ’_close’, rc);

Cnction Class Overview
Direct-messaging services are provided by the Cnction class. The instance methods

for the Cnction class, which is defined below, enable end-user applications to implement
client/server applications through the provision of a stateless, message-passing facility.

PARENT:
SASHELP.FSP.OBJECT.CLASS

CLASS:
SASHELP.CONNECT.CNCTION.CLASS

For information about using the Cnction class, refer to Chapter 29, “Using Direct
Messaging,” on page 273.

Cnction Class Methods
The instance methods defined to the Cnction class are discussed in this section

SAS Component Language (SCL) Interface to Direct Messaging 4 _open 307

_open
Bind to a same-named interface instance in another SAS session.

_send
Message exchange between two bound session instances.

_sendlist
Message exchange of SCL lists between two bound session instances.

_query
Query on a specific connection.

_recv
Receive message into SCL variables.

_recvlist
Receive SCL lists.

_getfield
Receive one or more parameters at a time.

_getlist
Receive one or more parameters at a time.

_acceptAttachment
Receives attachments.

_getConnectInfo
Get connection information.

_disconnect
Sever a session instance binding.

Here is the notation that is used to define the parameter types:

C Character Type

N Numeric Type

L SCL List Type

Dictionary

_open

Bind to a same-named interface instance in another SAS session.

Syntax
CALL SEND(cnctionInst, ’_open’, stationInst,

connection_name, rc);

308 _open 4 Chapter 34

Where... Is

type...

And represents...

stationInst N successfully opened station instance

connection_name C connection name (destination)

rc N return code

When invoked on a Cnction instance, _open creates a duplex message channel between
the bound session instances, which enables point-to-point messaging. The user is
responsible for obtaining the instance of the Cnction class, and then sending the _open
method to it. After opening, the active connection can send and receive stateless,
free-form messages.

A station interface instance should have already been opened, and should be passed
in as the stationInst. In order for the Cnction _open to be successful, the station
instance names that are used to create the station instance must be the same in both
SAS sessions. If the station names do not match, the Cnction _open fails.

The connection_name designates the destination; it may be network qualified or
moniker based. The supported syntax is

[protocol]//[network node]
/[network resource identifier]

or

[domain]:[moniker]

Note: Not all qualifiers are required. 4

For example, the specification: tcp//host1/shr1 defines the communications
access method as TCP/IP, the host node as HOST1 and the service as SHR1. If the
protocol qualifier is omitted, the default COMAMID setting is used. If the network node
qualifier is omitted, the binding is LOCAL.

The rc return code will be non-zero if an error is encountered during the open. Use
SYSMSG() to determine the exact error message.

Example

This example binds to the same-named station interface (DMMAPPL) in another
SAS session, designated by the service "/SHR1". No network node is provided on the
connection name, so the binding is LOCAL, that is, both SAS sessions are on the same
host. In addition, no protocol qualifier was provided on the connection name, so the
default COMAMID setting is used.

/* create and open station instance */
stationid = loadclass(’sashelp.connect.station’);
stationObj = instance(stationid);
call send(stationObj, ’_open’, "DMMAPPL", rc);

/* open connection */
cnctionid = loadclass(’sashelp.connect.cnction’);
cnctionInst = instance(cnctionid);
call send(cnctionInst, ’_open’, stationObj,

"/shr1", rc);

SAS Component Language (SCL) Interface to Direct Messaging 4 _send 309

_send

Message exchange between two bound session instances.

Syntax
CALL SEND(cnctionInst, ’_send’, msgtype, header,

attachlist, rc <, parm1,...,parmn>);

Where... Is type... And represents...

msgtype N user-specified message type

header L delivery header list (or 0 if none)

attachlist L attachment list (or 0 if none)

rc N return code

parm1...parmn N or C message to send, which consists of 0 or more
numerics or characters in any order

The _send method allows a message to be sent between two bound session instances.
A message can consist of numerics and/or characters. SCL lists are not supported by
_send; use _sendlist to send SCL lists.

The msgtype parameter is set by the user when the message is sent and will be
surfaced on the receiving side upon return from the query. When surfaced by the query,
on the receiving side, the message type can be used to determine how many and what
type of parameters should be used in receiving the actual message using the _recv
method.

The delivery header parameter is an SCL list that represents delivery information
that is to be included. This information is surfaced on the query so it may be viewed by
the receiver. If there is no information to include, header may be set to 0. Otherwise,
header should be a valid SCL list, which consists of supported named items that are
used to relay delivery information.

The attachlist parameter is an SCL list that represents a list of attachments to be
sent with the message. If there are no attachments to send, a 0 should be specified.
Otherwise, a valid attachment list should be passed in. This attachment list will be
surfaced by the query on the receiving side. The receiving side then has the flexibility
to decide which (if any) attachments to receive. See “Sending Attachments” on page 358
for further details about the specific syntax for attachlist.

If an error or warning condition is encountered during the send, a non-zero return
code is returned in the rc parameter. The return codes listed are a defined set of
warning and error conditions that can be checked by using the SYSRC macro, which is
provided in the autocall library that is supplied by SAS Institute.

If the rc is not one of the parameters that are defined below, use SYSMSG() to
determine the exact error message.

310 _sendlist 4 Chapter 34

_SEREL
This return code indicates that the send failed because the previous message
(surfaced by a query) has not been received. When _query returns a message, no
sends are allowed on that connection until the previous message is received using the
_recv or _recvlist method.

_SEATTAC
This return code indicates that the send failed because the attachment transfer is not
complete. If the previous message surfaced by the query had attachments, no sends
will be allowed on the connection until the _acceptAttachment method is called by
using the COMPLETE flag. This signals that attachment transfer is complete. The
COMPLETE flag may be specified without an attachment list to signal that no
attachments are to be received and that attachment acceptance is complete:

call send(obj, "_acceptAttachment",
0, rc, "COMPLETE");

_SEDISCP
This return code indicates that the send failed because a DISCONNECT is pending
on this connection. If this return code is surfaced, _query should be called for this
connection so that the disconnect can be received and the resources cleaned up.

_SWATTXF
This return code is a WARNING that indicates that the message was sent
successfully, but one or more errors were encountered during attachment transfer.
See “Attachment Error Handling” on page 370 for more details.

The parm1...parmn parameters are the 0 to n numeric and/or character values that
are sent. Any number of parameters can be sent in any order.

Example

This example invokes the _send method on the Cnction instance to send 5
parameters with no attachments.

name = "John Doe"
age = 35;
company = "SAS";
code = 13484;
type = 472;
msgtype = 11;
header = 0;
attachlist = 0;

call send(cnctionInst, ’_send’, msgtype,
header, attachlist, rc, name,
age, company, code, type);

_sendlist

Message exchange between two bound session instances.

SAS Component Language (SCL) Interface to Direct Messaging 4 _sendlist 311

Syntax
CALL SEND(cnctionInst, ’_sendlist’, msgtype, header, attachlist, rc <, list1,...,listn>);

Where... Is type... And represents...

msgtype N user-specified message type

header L delivery header list (or 0 if none)

attachlist L attachment list (or 0 if none)

rc N return code

list1...listn L message to send which consists of 0 or more SCL
lists

The _sendlist method allows one or more SCL lists to be sent between two bound
session instances. Any type of SCL list is supported (that is, named lists, unnamed
lists, embedded lists, and recursive lists).

The msgtype parameter is set by the user when the message is sent and will be
surfaced on the receiving side upon return from the query. When surfaced by the query,
the message type can be used to determine how many and what type of parameters
should be used in receiving the actual message using the _recvlist method.

The delivery header parameter is an SCL list that represents delivery information
that is to be included. This information is surfaced on the query so it may be viewed by
the receiver. If there is no information to include, header may be set to 0. Otherwise,
header should be a valid SCL list, which consists of supported named items used to
relay delivery information.

The attachlist parameter is an SCL list that represents a list of attachments to be
sent with the message. If there are no attachments to send, a 0 should be specified.
Otherwise, a valid attachment list should be identified by attachlist. This attachment
list will be surfaced by the query on the receiving side. The receiving side then has the
flexibility to decide which (if any) attachments to receive. See “Sending Attachments”
on page 358 for more details about the specific syntax for attachlist.

If an error or warning condition is encountered during the send, a non-zero return
code is returned in the rc parameter. The return codes that are listed are a defined set
of warning and error conditions that can be checked by using the SYSRC macro, which
is provided in the autocall library that is supplied by SAS Institute. If the rc is not one
of the return codes that are listed below, use SYSMSG() to determine the exact error
message.

_SEREL
This return code indicates that the send failed because the previous message
(surfaced by a query) has not been received. When _query returns a message, no
sends are allowed on that connection until the previous message is received by using
the _recv or _recvlist method.

_SEATTAC
This return code indicates that the send failed because the attachment transfer is not
complete. If the previous message surfaced by the query had attachments, no sends

312 _sendlist 4 Chapter 34

will be allowed on the connection until the _acceptAttachment method is called with
the COMPLETE flag. This signals that attachment transfer is complete. The
COMPLETE flag may be specified without an attachment list to signal that no
attachments are to be received and that attachment acceptance is complete:

call send(obj, "_acceptAttachment",
0, rc, "COMPLETE");

_SEDISCP
This return code indicates that the send failed because a DISCONNECT is pending
on this connection. If this return code is surfaced, _query should be called for this
connection so that the disconnect can be received and the resources cleaned up.

_SWATTXF
This return code is a WARNING that indicates that the message was sent
successfully but one or more errors were encountered during attachment transfer.
See “Attachment Error Handling” on page 370 for more details.

The list1...listn parameters are the 0 to n SCL lists to send.

Example

This example invokes the _sendlist method on the Cnction instance to send two SCL
lists that have no attachments.

/*************************************/
/* first list to send has 4 items */
/*************************************/

namelist=makelist();
rc=setnitemc(namelist, "Mary Gill", "STUDENT");
rc=setnitemc(namelist, "Jane Smith", "TEACHER");
rc=setnitemc(namelist, "Julie Jones","PRINCIPAL");
rc=setnitemc(namelist, "Bob Thomas", "COACH");

/*************************************/
/* second list to send is a list */
/* that contains two embedded lists */
/*************************************/

mainlist = makelist();

data1=makelist();
rc=setitemc(data1, ’WORK.ABC’, 1);
rc=setitemc(data1, ’SASUSER.COMPANY’, 2);
rc=setitemc(data1, ’SASUSER.LOCATION’,1);

data2=makelist();
rc=setitemc(data2, ’SASHELP.BASE’, 1);
rc=setitemc(data2, ’SASHELP.EIS’, 2);

/*************************************/
/* insert the above two lists into */
/* mainlist */
/*************************************/

mainlist=insertl(mainlist, data1);
mainlist=insertl(mainlist, data2);

SAS Component Language (SCL) Interface to Direct Messaging 4 _query 313

/*************************************/
/* set message type so that the */
/* receiving side knows how many */
/* lists are to be received */
/*************************************/

msgtype =22;
header = 0;
attachlist = 0;

call send(cnctionInst, ’_sendlist’, msgtype,
header, attachlist, rc, namelist,
mainlist);

_query

Query on a specific connection.

Syntax
CALL SEND(cnctionInst, ’_query’, etype, msgtype, header, attachlist, rc);

Where... Is type... And represents...

etype C type of event received

msgtype N message type of received message

header L delivery header list

attachlist L attachment list

rc N return code

When _query is invoked on a Cnction instance, only events received on this specific
connection are returned. This is different behavior than the _query method that is
invoked on a station instance, which listens for events on all connections.

etype will have one of the following values when returned from the query:

DISCONNECT
Disconnect event received on this connection. The cnctionInst must be opened again
(_open) before any subsequent sends, receives, or queries will be allowed.

MESSAGE
Message received.

ABORT
Abort event received.

314 _query 4 Chapter 34

The msgtype parameter is set by the user when the message is sent and is surfaced
on the query. This value is user-specified. When surfaced by the query, the message
type can be used to determine how many and what type of parameters should be used
in receiving the actual message when using the _recv or _recvlist methods.

The header parameter is an SCL list that returns delivery information. A header
value of 0 indicates that the delivery information should not be surfaced by the QUERY.
Otherwise, header must be an empty SCL list. If a message event is returned, header is
updated with the delivery information.

The attachlist parameter is a list of attachments that have been included with the
message. An attachlist value of 0 indicates that the attachment list should not be
surfaced by the query. In this scenario, the attachment list is never surfaced and so the
attachments do not have to be received and accepted. If non-zero, attachlist must be an
empty SCL list. If a message event is returned, attachlist will be updated only if any
attachments were received along with the message. If attachments are surfaced,
actions must be taken to receive the attachments and to indicate that the receipt is
complete. See “Sending Attachments” on page 358 for more information about the
receiving of attachments.

If an error or warning condition is encountered during the query, a non-zero return
code is returned in the rc parameter. The return codes that are listed are a defined set
of warning and error conditions that can be checked by using the SYSRC macro, which
is provided in the autocall library that is supplied by SAS Institute.

If the rc is not one of the return codes that are listed here, use SYSMSG() to
determine the exact error message.

_SEREL
This return code indicates that the query failed because the previous message
(surfaced by previous query) has not been received. When a _query returns a
message, no subsequent queries will be allowed until the previous message is
received using the _recv or _recvlist method.

_SEATTAC
This return code indicates that the query failed because the attachment transfer is
not complete. If the previous message surfaced by the query had attachments, no
subsequent queries will be allowed until the _acceptAttachment method is called by
using the COMPLETE flag. This signals that the attachment transfer is complete.
The COMPLETE flag may be specified without an attachment list to signal that no
attachments are to be received and that attachment acceptance is complete.

call send(obj, "_acceptAttachment",
0, rc, "COMPLETE");

_SEATTEM
This return code indicates that the query failed because a non-empty attachment list
was passed. If non-zero, attachlist must be an empty SCL list.

_SEHEADR
This return code indicates that an invalid delivery header list was specified. If
non-zero, header must be an empty SCL list so that it can be updated by the query.

SAS Component Language (SCL) Interface to Direct Messaging 4 _recv 315

Example

This example queries on the Cnction instance, listening for messages on this specific
connection only.

/* create empty attachment list to */
attachlist = makelist();

/* create empty header list */
header = makelist();

/* query on this specific connection */
call send(cnctionInst, ’_query’, etype,

msgtype, header, attachlist, rc);

if (etype = "DISCONNECT") then do;
end;

else if (etype = "MESSAGE") then do;

/* if message type is one, */
/* application realizes that only */
/* one list needs to be received */

if (msgtype eq 1) then do;
list1 = makelist();
call send(cnctionInst, ’_recvlist’,

rc, list1);
end;

/* if message type is two, */
/* application realizes that name */
/* and age must be received */

else if (msgtype eq 2) then do;
name = ’’
age = 0;
call send(cnctionInst, ’_recv’,

rc, name, age);
end;

end;

_recv

Receive message into SCL variables.

Syntax
CALL SEND(cnctionInst, ’_recv’, rc <, parm1...parmn>);

316 _recv 4 Chapter 34

Where... Is type... And represents...

rc N return code

parm1...parmn N or C parameters in which to receive the message
surfaced by the query; consists of 0 or more
numerics or characters

When a message is surfaced by a query, it needs to be received into SCL parameters.
The _recv method supports the receipt of numerics and characters. SCL lists are not
supported by _recv; _recvlist should be called to receive SCL lists. The _recv method
must be called with the correct parameter types. For example, if a character and a
numeric variable were sent, _recv must be called with a character and a numeric
variable in the correct order.

If an error or warning condition is encountered during the receive, a non-zero return
code is returned in the rc parameter. The return codes that follow are a defined set of
warning and error conditions that can be checked by using the SYSRC macro, which is
provided in the autocall library that is supplied by SAS Institute.

If the rc is not one of the messages shown here, use SYSMSG() to determine the
exact error message.

_SWTRUNC
is a WARNING that indicates that the message has been truncated because too few
parameters were passed into the _recv method. All parameters that were passed into
the method will be updated, but the remainder of the message is truncated.

_SENOBUF
indicates that the receive failed because there is no message to receive.

_SEMORE
indicates that the receive failed because more receive parameters (parm1...parmn)
were passed into _recv than were actually received. Parameters will NOT be updated
and _recv must be called again to receive the message.

If an unexpected message is received, _recv can be called by using 0 receive
parameters in order to throw away the message. A truncation warning is returned, but
the message will have successfully been received and truncated.

Example 1

This example queries on a specific connection, and based on the msgtype that is
returned, receives the message into the appropriate SCL variables.

attachlist = makelist();
header = makelist();

call send(cnctionInst, ’_query’, etype,
msgtype, header, attachlist,
rc);

if (etype eq "MESSAGE") then do;
if (msgtype eq 1) then do;

name = ’’;

SAS Component Language (SCL) Interface to Direct Messaging 4 _recvlist 317

age = 0;
race = ’’;

/*******************************/
/* receive 3 parameters. */
/*******************************/

call send(cnctionInst, ’_recv’,
rc, name, age, race);

end;

else if (msgtype eq 2) then do;
company = ’’; address=’’;

/*******************************/
/* receive 2 character */
/* parameters. */
/*******************************/

call send(cnctionInst, ’_recv’,
rc, company, address);

end;

else do;
/*******************************/
/* unknown message type; throw */
/* away message by forcing */
/* truncation. */
/*******************************/

call send(cnctionInst, ’_recv’, rc);
end;

end;

Example 2

This example throws the message away by forcing truncation.

call send(cnctionInst, ’_recv’, rc);

_recvlist

Receive SCL lists.

Syntax
CALL SEND(cnctionInst, ’_recvlist’, rc <, list1...listn>);

318 _recvlist 4 Chapter 34

Where... Is type... And represents...

rc N return code

list1...listn L parameters in which to receive the SCL lists;
consists of 0 or more SCL lists to receive into

When a message is surfaced by a query, it must be received into SCL parameters.
_recvlist supports the receipt of SCL lists only. Use the _recv method to receive the
message into numeric and character variables that are not SCL lists.

If an error or warning condition is encountered during the receive, a non-zero return
code is returned in the rc parameter. The return codes that follow are a defined set of
warning or error conditions that can be checked by using the SYSRC macro, which is
provided in the autocall library that is supplied by SAS Institute.

If the rc is not one of the messages shown here, use SYSMSG() to determine the
exact error message.

_SWTRUNC
is a WARNING that indicates the message has been truncated because too few
parameters were passed into the _recvlist method. All parameters that were passed
into the method will be updated, but the remainder of the message is truncated.

_SENOBUF
indicates that the receive failed because there is no message to receive.

_SEMORE
indicates that the receive failed because more receive parameters (list1...listn) were
passed into _recvlist than were actually received. Parameters will NOT be updated
and _recvlist must be called again to receive the lists.

If an unexpected message is received, _recvlist can be called by using 0 receive
parameters in order to throw away the message. A truncation warning is returned, but
the message will have successfully been received and truncated.

Example 1

This example receives two SCL lists.

attachlist = makelist();
header = makelist();

call send(cnctionInst, ’_query’, etype,
msgtype, header, attachlist,
rc);

if (etype eq "MESSAGE") then do;
/**********************************/
/* if message type is one, must */
/* receive two lists */
/**********************************/

if (msgtype eq 1) then do;
namelist = makelist();

SAS Component Language (SCL) Interface to Direct Messaging 4 _getfield 319

agelist = makelist();
call send(cnctionInst, ’_recvlist’,

rc, namelist, agelist);
end;

/**********************************/
/* if message type is two, must */
/* receive one list */
/**********************************/

else if (msgtype eq 2) then do;
reports= makelist();
call send(cnctionInst, ’_recvlist’,

rc, reports);
end;

else do;
/*******************************/
/* unexpected message; */
/* throw away message by */
/* forcing truncation */
/*******************************/

call send(cnctionInst, ’_recvlist’,
rc);

end;
end;

Example 2

This example throws the unexpected message away by forcing truncation.

call send(cnctionInst, ’_recvlist’, rc);

_getfield

Receive one or more parameters at a time.

Syntax
CALL SEND(cnctionInst, ’_getfield’, status, rc <, parm1...parmn>);

320 _getfield 4 Chapter 34

Where... Is type... And represents...

status N status of parameter receipt

rc N return code

parm1...parmn N or C parameters in which to receive the message;
consists of 0 or more numeric or character variables

When a message is surfaced by a query, it must be received into SCL parameters. The
_getfield method behaves like the _recv method in that it receives the message into SCL
parameters. The two methods differ in that _recv requires that you receive the entire
message at one time, while _getfield allows each parameter to be received separately.
The _getfield method supports the receipt of numeric and character parameters, but it
does not support the receipt of SCL lists. Use _getlist to receive SCL lists one at a time.

The status parameter has a value of 1 if this is the last parameter, indicating there
are no additional parameters to retrieve. Otherwise, it has a value of 0.

If an error or warning condition is encountered during the receive, a non-zero return
code is returned in the rc parameter. Use SYSMSG() to determine the exact error
message.

Example

This example receives one parameter, then two parameters, then the last one.

name1 = ’’;
name2 = ’’;
name3 = ’’;
name4 = ’’;
call send(cnctionInst, ’_getfield’,

status, rc, name1);

if (status ne 1) and (rc eq 0) then
call send(cnctionInst, ’_getfield’,

status, rc, name2, name3);

if (status ne 1) and (rc eq 0) then
call send(cnctionInst, ’_getfield’,

status, rc, name4);

/**/
/* If this is the last parameter to be */
/* received, status should have a value */
/* of 1. */
/**/

if (status eq 1) and (rc eq 0) then
/* All parameters have been received */
/* and can be used in processing. */

SAS Component Language (SCL) Interface to Direct Messaging 4 _getlist 321

_getlist

Receive one or more parameters at a time.

Syntax
CALL SEND(cnctionInst, ’_getlist’, status, rc, list1 <, list2...listn>);

Where... Is type... And represents...

status N status of parameter receipt

rc N return code

list1...listn L one or more SCL lists to receive

When a message is surfaced by a query, it must be received into SCL list parameters.
The _getlist method behaves like the _recvlist method in that it receives the message
into SCL list parameters. The two methods differ in that _recvlist requires that you
receive the entire message at one time, while _getlist allows each list to be received
separately. The _getlist method supports the receipt of SCL lists. Use _getfield to
receive non-SCL list parameters (that is numeric and character parameters).

The status parameter has a value of 1 if this is the last list. This indicates there are
no additional lists to retrieve. Otherwise, it has the value of 0.

If an error or warning condition is encountered during the receive, a non-zero return
code is returned in the rc parameter. Use SYSMSG() to determine the exact error
message.

Example

This example receives one SCL list, then two lists, then the last one.

list1 = makelist();
list2 = makelist();
list3 = makelist();
list4 = makelist();
call send(cnctionInst, ’_getlist’,

status, rc, list1);

if (status ne 1) and (rc eq 0) then
call send(cnctionInst, ’_getlist’,

status, rc, list2, list3);

if (status ne 1) and (rc eq 0) then
call send(cnctionInst, ’_getlist’,

status, rc, list4);

/**/

322 _acceptAttachment 4 Chapter 34

/* status should have a value of 1 if */
/* this is the last list to be received */
/**/

if (status eq 1) and (rc eq 0) then
/* all lists have been received and can */
/* be used in processing */

_acceptAttachment

Receives attachments.

Syntax
CALL SEND(cnctionInst, ’_acceptAttachment’, attachlist, rc <, attribs>);

Where... Is type... And represents...

attachlist L list of attachments to receive

rc N return code

attribs C (optional) attributes

When invoked on a Cnction instance, _acceptAttachment indicates which, if any,
attachments are to be received.

When a query surfaces a message event, it also surfaces an attachment list if an
attachment list was included with the message. Only the attachment list is surfaced by
the query, no attachments have actually been transferred at this point. Therefore, the
user must indicate which, if any, attachments should be transferred using the
_acceptAttachment method. See “Accepting Attachments” on page 365 for more
information.

If an attachment list is surfaced by the query, _acceptAttachment must be called with
the COMPLETE attribute before subsequent sends and/or queries will be allowed. This
attribute indicates the completion of attachment receipt. Even if no attachments are to
be transferred, _acceptAttachment with the COMPLETE attribute must be called to
indicate completion.

If an error or warning condition is encountered during attachment transfer, a
non-zero return code is returned in the rc parameter. The return codes that follow are a
defined set of warning and error conditions that can be checked by using the SYSRC
macro, which is provided in the autocall library that is supplied by SAS Institute.

If the rc is different from the message shown here, use SYSMSG() to determine the
exact error message.

SAS Component Language (SCL) Interface to Direct Messaging 4 _getConnectInfo 323

_SWATTXF
is a WARNING that indicates that not all attachments were transferred successfully.
See “Attachment Error Handling” on page 370 for more information.

Example 1

This example accepts two attachments. Setting the COMPLETE flag indicates that
attachment transfer will be complete after these 2 attachments are received.

alist = makelist();

/*************************************/
/* attachment one will be placed */
/* in the file WORK.ABC */
/*************************************/

att1 = makelist();
rc = setnitemn(att1, 1, "ATTACH_ID");
rc = setnitemc(att1, "WORK", "OUTLIB");
rc = setnitemc(att1, "ABC", "OUT");

/*************************************/
/* attachment two is an external */
/* file and will be placed in */
/* /tmp/text.file */
/*************************************/

att2 = makelist();
rc = setnitemn(att2, 2, "ATTACH_ID");
rc = setnitemc(att2, ’/tmp/text.file’,

"OUTFILE");
rc = insert1(alist, att1);
rc = insert1(alist, att2);
call send(cnctionInst,’_acceptAttachment’,

alist, rc, "COMPLETE");

Example 2

In this example, no attachments will be received; however, _acceptAttachment using
the COMPLETE attribute must be called to indicate completion.

call send(cnctionInst,’_acceptAttachment’,
0, rc, "COMPLETE");

_getConnectInfo
Get connection information.

Syntax
CALL SEND(cnctionInst, ’_getConnectInfo’,

324 _disconnect 4 Chapter 34

connect_name, security_id, rc);

Where... Is type... And represents...

connect_name C connection name

security_id C security id

rc N return code

After a valid connection exists, _getConnectInfo may be called to obtain the
connection name and security name that is associated with this particular Cnction
instance.

connect_name
parameter is the partner’s connection name.

security_id
parameter is the partner’s security id. This parameter is returned only if this
information was given by the partner.

If an error is encountered during the open the rc return code will be non-zero. Use
SYSMSG() to determine the exact error message.

Example

This example obtains the connection information.

connect_name=’’;
security_id=’’;
call send(cnctionInst, ’_getConnectInfo’,

connect_name, security_id, rc);

_disconnect

Sever a session instance binding.

Syntax
CALL SEND(cnctionInst, ’_disconnect’, rc);

Where... Is type... And represents...

rc N return code

When the _disconnect method is invoked, the connection is severed. The Cnction
instance still exists, but is no longer bound to a same-named interface. Therefore, no

SAS Component Language (SCL) Interface to Direct Messaging 4 _disconnect 325

subsequent distributed messaging services can be executed until the Cnction instance is
re-opened by using an _open call.

If an error is encountered during the disconnect, rc will be non-zero. Use SYSMSG()
to determine the exact error message.

Example

This example disconnects.

call send(cnctionInst, ’_disconnect’, rc);

326 _disconnect 4 Chapter 34

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

