
357

C H A P T E R

36
SAS Component Language (SCL)
Interface to Message
Attachments

Introduction 357
Sending Attachments 358

Data Set Attachments 358

Example 1 359

Example 2 360

Catalog Attachments 360
Example 361

External File Attachments 362

Example 363

Utility Attachments 364

Example 364

Accepting Attachments 365
Data Set Attachments 366

Example 366

Catalog Attachments 367

Example 368

External File Attachments 369
Example 369

Attachment Error Handling 370

Transfer Errors: Direct vs Indirect 370

Accept Errors 371

Attachment Error Codes 371
Example 372

Introduction
Both direct and indirect messaging services allow attachments to be included with

messages that are being sent between a client and a server portion of an application.
When a query surfaces a message event, it also surfaces an attachment list if an
attachment list was included with the message. Only the attachment list is surfaced by
the query; no attachments have actually been transferred at this point. This chapter
explains how to send and receive attachments in the SCL environment, as well as how
to handle error conditions that are associated with message attachments.

358 Sending Attachments 4 Chapter 36

Sending Attachments
To include attachments with the sending of a message, an attachment list must be

built to indicate what attachments to include. Both the _send and _sendlist methods
(for the Cnction and the Queue classes) use an attachlist parameter.

The attachlist parameter is an SCL list that contains other SCL lists and must
contain a separate list for each attachment to include with the message. The syntax for
building the attachment list is the same, whether using direct or indirect (queued)
messaging.

The supported attachment types are:
� Data Set
� External File
� Catalog
� MDDB
� DMDB
� FDB
� SQL Views

Data Set Attachments
When data set attachments are transferred, all data set attributes are cloned by

default. These include label, type, passwords, encryption, index, and sort order
information.

To specify a data set attachment, the following named items are required:

TYPE
The value of this named item must be "DATASET" to indicate that this is a data
set attachment.

MEMNAME
The value of this named item should be the data set’s member name.

LIBNAME
The value of this named item should be the data set’s library name.

Additionally, there are optional named items that may be specified for data set
attachments. These optional settings not only provide a means to subset the data
before transfer, but they also provide a way to surface descriptive information to the
receiving side. The optional named items that are supported include:

DESCRIPTION
The value of this named item is user-specified, descriptive text to accompany the
attachment. This information is surfaced to the user on the receiving side and
allows the user to provide specific information about this attachment.

WHERE
The value of this named item is a WHERE statement to apply to the data set.
This provides a way to subset the data before transfer.

DATASET_OPTIONS
The value of this named item can be any valid data set options string. This too
provides a way to subset the data before transfer.

ATTACH_VERSION
The value of this named item is a character string and the only supported value in
Version 7 or Version 8 is VERSION_612. This parameter only applies to indirect

SAS Component Language (SCL) Interface to Message Attachments 4 Data Set Attachments 359

messaging and only applies when sending catalog or data set attachments. If a
Version 7 or Version 8 application sends a data set or a catalog attachment to a
queue, a Version 6 application cannot accept them; it will fail. However, the
Version 7 or Version 8 application can specify this option to indicate that the
catalog or data set should be sent to the queue in Version 6 format. This way, both
Version 6 and Version 7 or Version 8 applications can accept the attachment.

MAJOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

MINOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

INDEX
The value of this named item must be either N or NO. By default, the data set’s
index is re-created on the output data set. This named item allows the default to
be overridden so that indexes are not created on the output file.

Example 1
This example specifies two data set attachments to be included with the message.

The data sets are SASUSER.DATAX and WORK.ABC.
For data set SASUSER.DATAX, the required named items would be defined as:

� named item TYPE has a value of DATASET

� named item LIBNAME has a value of SASUSER

� named item MEMNAME has a value of DATAX.

For data set WORK.ABC, the required named items would be defined as:

� named item TYPE has a value of DATASET

� named item LIBNAME has a value of WORK

� named item MEMNAME has a value of ABC.

For both data sets, DESCRIPTION was optionally set so that more descriptive
information will be surfaced to the receiver.

/***************************************/
/* list1 contains attachment one, */
/* sasuser.datax */
/***************************************/

list1 = makelist();
rc = setnitemc(list1, "DATASET", "TYPE");
rc = setnitemc(list1, "DATAX", "MEMNAME");
rc = setnitemc(list1, "SASUSER", "LIBNAME");
rc = setnitemc(list1, "Tasklist dataset for

client application.",
"DESCRIPTION");

/***************************************/
/* list2 contains attachment two, */
/* work.abc */
/***************************************/

list2 = makelist();
rc = setnitemc(list2, "ABC", "MEMNAME");
rc = setnitemc(list2, "WORK", "LIBNAME");

360 Catalog Attachments 4 Chapter 36

rc = setnitemc(list2, "DATASET", "TYPE");
rc = setnitemc(list2, "Playpen data.",

"DESCRIPTION");

/***************************************/
/* attachlist is the main attachment */
/* list. It must contain a separate */
/* SCL list for each attachment */
/***************************************/

attachlist = makelist();
attachlist = insertl(attachlist, list1, -1);
attachlist = insertl(attachlist, list2, -1);

msgtype = 25;
hdr = 0;
call send(obj, ’_sendlist’, msgtype, hdr,

attachlist, rc, sendlist);

/*** or ***/

call send(obj, ’_send’, msgtype, hdr,
attachlist, rc, string1);

Example 2
This example illustrates the use of WHERE and DATASET_OPTIONS to subset the

data before transfer.

/***************************************/
/* list 1 contains attachment one, */
/* sasuser.xx */
/***************************************/

list1 = makelist();
rc = setnitemc(list1, "DATASET", "TYPE");
rc = setnitemc(list1, "XX", "MEMNAME");
rc = setnitemc(list1, "SASUSER", "LIBNAME");
rc = setnitemc(list1, "(X>10) AND (Y < 100)",

"WHERE");
rc = setnitemc(list1, "DROP=NAMES READ=X",

"DATASET_OPTIONS");

attachlist = makelist();
attachlist = insertl(attachlist, list1, -1);

msgtype = 2;
hdr = 0;

call send(cobs, ’_send’, msgtype, hdr,
attachlist, rc, Numeric1);

Catalog Attachments
SAS catalogs are another type of attachment that may be included with messages.

To specify a catalog attachment, the following named items are required:

SAS Component Language (SCL) Interface to Message Attachments 4 Catalog Attachments 361

TYPE
The value of this named item must be CATALOG to indicate that this is a catalog
attachment.

MEMNAME
The value of this named item should be the catalog’s member name.

LIBNAME
The value of this named item should be the catalog’s library name.

Additionally, there are optional named items that may be specified for catalog
attachments. These optional settings provide a way to subset the catalog before
transfer and to surface descriptive information to the receiving side. The optional
named items that are supported include:

DESCRIPTION
The value of this named item is user-specified, descriptive text to accompany the
attachment. This information is surfaced to the user on the receiving side and
allows the user to provide specific information about this attachment.

SELECT
The value of this named item is a SELECT statement to apply to the catalog. This
provides a way to select specific entries to include without sending the entire
catalog. The value of this named item should take the form of
ENTRY1.ENTRYTYPE ENTRY2.ENTRYTYPE..., for each entry to select. The
select and exclude items are mutually exclusive so you cannot specify both
SELECT and EXCLUDE for a given catalog attachment.

EXCLUDE
The value of this named item is an EXCLUDE statement to apply to the catalog.
This provides a way to exclude specific entries so that unnecessary entries are not
transferred. The value of this named item should take the form of
ENTRY1.ENTRYTYPE ENTRY2.ENTRYTYPE..., for each entry to exclude. The
select and exclude items are mutually exclusive so you cannot specify both
SELECT and EXCLUDE for a given catalog attachment.

MAJOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

MINOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

Example
This example specifies one catalog attachment to be included with the message. The

catalog is SASHELP.BASE. The required named items are
� named item TYPE has a value of CATALOG
� named item LIBNAME has a value of SASHELP
� named item MEMNAME has a value of BASE.

Optionally, DESCRIPTION is specified to provide descriptive information to the
receiving side, and SELECT is specified to select specific entries to include.

/***************************************/
/* main attachment list */
/***************************************/

attachlist = makelist();

362 External File Attachments 4 Chapter 36

/***************************************/
/* build attachment one with the */
/* SELECT statement */
/***************************************/

list1 = makelist();
rc = setnitemc(list1, "CATALOG", "TYPE");
rc = setnitemc(list1, "BASE", "MEMNAME");
rc = setnitemc(list1, "SASHELP", "LIBNAME");
rc = setnitemc(list1, "RLIST.LIST XYZ.SCL

MAIN.FRAME",
"SELECT");

rc = setnitemc(list1, "A few entries
from base catalog.",
"DESCRIPTION");

/***************************************/
/* insert attachment one into main list*/
/***************************************/

attachlist = insertl(attachlist, list1, -1);

msgtype = 2;
hdr = 0;
call send(cobs, ’_send’, msgtype, hdr,

attachlist, rc, "string1");

External File Attachments
External files may also be sent as attachments. To specify an external file

attachment, the following named items are required:

TYPE
The value of this named item must be either EXTERNAL_TEXT or
EXTERNAL_BIN. If the attachment is a text file, specify EXTERNAL_TEXT so
that the appropriate translation will occur. If including a binary file as an
attachment, specify EXTERNAL_BIN.

FILENAME or FILEREF
If the external file is to be referenced by a fileref, specify the named item
FILEREF; its value will be the fileref that defines this file. If the external file is to
be referenced by its physical filename, specify the named item FILENAME; its
value will be the physical name of the file.

Additionally, there are optional named items that may be specified. These optional
settings include:

DESCRIPTION
The value of this named item is user-specified, descriptive text to accompany the
attachment. This information is surfaced to the user on the receiving side and
allows the user to provide specific information about this attachment.

MAJOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

MINOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

SAS Component Language (SCL) Interface to Message Attachments 4 External File Attachments 363

Example
This example defines three external file attachments to send with the message. The

first attachment is an external text file, /tmp/text.file. The required named items
for this attachment are

� named item TYPE has a value of EXTERNAL_TEXT
� named item FILENAME has a value of /tmp/text.file

The second attachment is an external text file defined by the fileref RLINK. The
required named items for this attachment are

� named item TYPE has a value of EXTERNAL_TEXT
� named item FILEREF has a value of RLINK.

Finally, the last attachment is an external binary file, /tmp/binary.file. The
required named items for this attachment are

� named item TYPE has a value of EXTERNAL_BIN
� named item FILENAME has a value of /tmp/binary.file.

The optional named items that may be specified for external file attachments, which
are used in this example, include DESCRIPTION and MAJOR_VERSION.

/***************************************/
/* LIST1 contains attachment one */
/***************************************/

list1 = makelist();
rc = setnitemc(list1, "EXTERNAL_TEXT", "TYPE");
rc = setnitemc(list1, "/tmp/text.file", "FILENAME");
rc = setnitemc(list1, "modified script file for unix",

"DESCRIPTION");
rc = setnitemc(list1, 11, "MAJOR_VERSION");

/***************************************/
/* LIST2 contains attachment two */
/***************************************/

list2 = makelist();
rc = setnitemc(list2, "EXTERNAL_TEXT", "TYPE");
rc = setnitemc(list2, "RLINK", "FILEREF");

/***************************************/
/* LIST3 contains attachment three */
/***************************************/

list3 = makelist();
rc = setnitemc(list3, "EXTERNAL_BIN", "TYPE");
rc = setnitemc(list3, "/tmp/binary.file", "FILENAME");

/***************************************/
/* ATTACHLIST is the main attachment */
/* list; insert each attachment into */
/* main attachment list. */
/***************************************/

attachlist = makelist();
attachlist = insertl(attachlist, list1, -1);
attachlist = insertl(attachlist, list2, -1);
attachlist = insertl(attachlist, list3, -1);

msgtype = 22;

364 Utility Attachments 4 Chapter 36

hdr = 0;
call send(cobs, ’_send’, msgtype, hdr,

attachlist, rc, string1);

Utility Attachments
Utility files that are supported include files of the following types: MDDB, DMDB,

FDB, and SQL Views.
To specify a utility file attachment, the following named items are required:

TYPE
The value of this named item must be either MDDB, DMDB, VIEW, or FDB to
indicate the type of attachment.

MEMNAME
The value of this named item should be the member name.

LIBNAME
The value of this named item should be the library name.

Additionally, there are optional named items that may be specified for utility file
attachments. These optional settings provide a way to surface descriptive information
to the receiving side. The optional named items that are supported include:

DESCRIPTION
The value of this named item is user-specified, descriptive text to accompany the
attachment. This information is surfaced to the user on the receiving side and
allows the user to provide specific information about this attachment.

MAJOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

MINOR_VERSION
The value of this named item is a numeric, user-specified version that will be
presented to the receiver.

Example
This example specifies two utility file attachments and one data set to be included

with the message. The files are SASUSER.TESTDATA (a SAS data set),
WORK.FMDDB (an MDDB file), and SASUSER.TESTVIEW (an SQL View).

The required named items for the data set SASUSER.TESTDATA are
� named item TYPE has a value of DATASET
� named item LIBNAME has a value of SASUSER
� named item MEMNAME has a value of TESTDATA.

The required named items for the data set WORK.FMDDB are
� named item TYPE has a value of MDDB
� named item LIBNAME has a value of WORK
� named item MEMNAME has a value of FMDDB.

The required named items for the data set SASUSER.TESTVIEW are
� named item TYPE has a value of VIEW
� named item LIBNAME has a value of SASUSER
� named item MEMNAME has a value of TESTVIEW.

SAS Component Language (SCL) Interface to Message Attachments 4 Accepting Attachments 365

For the three data sets, DESCRIPTION was optionally set so that more descriptive
information will be surfaced to the receiver.

list1 = makelist();
rc = setnitemc(list1, "DATASET", "TYPE");
rc = setnitemc(list1, "TESTDATA","MEMNAME");
rc = setnitemc(list1, "SASUSER", "LIBNAME");
rc = setnitemc(list1,

"Testdata in sasuser directory.",
"DESCRIPTION");

list2 = makelist();
rc = setnitemc(list2, "FMDDB", "MEMNAME");
rc = setnitemc(list2, "WORK", "LIBNAME");
rc = setnitemc(list2, "MDDB", "TYPE");
rc = setnitemc(list2, "Playpen mddb",

"DESCRIPTION");

list3 = makelist();
rc = setnitemc(list3, "TESTVIEW","MEMNAME");
rc = setnitemc(list3, "SASUSER", "LIBNAME");
rc = setnitemc(list3, "VIEW", "TYPE");
rc = setnitemc(list3, "SQL view file",

"DESCRIPTION");

/***************************************/
/* ATTACHLIST is the main attachment */
/* list. It must contain a separate */
/* SCL list for each attachment */
/***************************************/

attachlist = makelist();
attachlist = insertl(attachlist, list1, -1);
attachlist = insertl(attachlist, list2, -1);
attachlist = insertl(attachlist, list3, -1);

msgtype = 25;
hdr = 0;
call send(obj, ’_sendlist’, msgtype, hdr,

attachlist rc, sendlist);

/*** or ***/

call send(obj, ’_send’, msgtype, hdr,
attachlist rc, string1);

Accepting Attachments

When a _query surfaces a message that includes attachments, the attachlist
parameter will be non-empty, and it will mirror the attachment list specified on the
sending side, with a few changes. First, the receiving application is not made aware of
any options that may have been used to subset the data (for example, KEEP,
EXCLUDE, WHERE, and data set options). Also, each attachment will have the

366 Data Set Attachments 4 Chapter 36

additional named item ATTACH_ID that is used to identify which attachments are to
be accepted or received.

When the _query surfaces the message and its attachment list, the attachments have
not yet been transferred.

Note: The receiver is responsible for deciding which attachments to receive by
invoking the _acceptAttachment method that has a valid value for the attachlist
parameter. This method initiates the transfer of the specified attachments. If no
attachments are to be accepted, set attachlist to 0 when calling the _acceptAttachment
method. 4

The accept method supports the COMPLETE flag, which indicates that attachment
acceptance is complete. This is an optional flag that does not have to be set on every
call to _acceptAttachment. However, whenever a query surfaces a non-empty
attachment list, _acceptAttachment with the COMPLETE flag must be called at some
point to signal the completion of attachment receipt. No subsequent queries and/or
sends will be allowed until the COMPLETE flag is set on the accept method.

When building the attachment list on the sending side, the main attachment list
parameter contained a separate list for each attachment. The same is required by
_acceptAttachment. The attachlist parameter is required to be an SCL list that
contains other SCL lists; one for each attachment to accept.

Data Set Attachments
A list to accept a SAS data set must include the following required named items:

OUTLIB
The value of this named item should be the output library name.

OUT
The value of this named item should be the output member name.

ATTACH_ID
The value of this named item should be a numeric identifier that indicates which
attachment to receive. This is the attachment id that is surfaced by the query in
the attachlist parameter.

Example
When the query returns with a message and its attachment list, the attachlist

parameter contains three attachments.
List one, first item in attachlist:
� named item TYPE has a value of DATASET
� named item MEMNAME has a value of NAMES
� named item LIBNAME has a value of SASUSER
� named item ATTACH_ID has a value of 1.

List two, second item in attachlist:
� named item TYPE has a value of CATALOG
� named item MEMNAME has a value of CONNECT
� named item LIBNAME has a value of SASHELP
� named item ATTACH_ID has a value of 2.

List three, third item in attachlist:
� named item TYPE has a value of DATASET

SAS Component Language (SCL) Interface to Message Attachments 4 Catalog Attachments 367

� named item MEMNAME has a value of EMPLOYEES

� named item LIBNAME has a value of WORK

� named item ATTACH_ID has a value of 3.

This example accepts two of the three attachments by making two separate calls to
the accept method. First, the contents of the third attachment in attachlist (which is
actually the first item) is received by specifying ATTACH_ID equal to 3. This transfers
the input data set WORK.EMPLOYEES into the output data set WORK.ABC. The
second attachment to be received is identified by specifying ATTACH_ID equal to 1.
This transfers the input data set SASUSER.NAMES into the output data set
SASUSER.NAMES.

alist = makelist();
att1 = makelist();
rc = setnitemn(att1, 3, "ATTACH_ID");
rc = setnitemn(att1, "WORK", "OUTLIB");
rc = setnitemn(att1,"ABC", "OUT");
alist = insertl(alist, att1, -1);

/***************************************/
/* Accept this attachment but do not */
/* set the COMPLETE flag as there are */
/* additional ones to accept. */
/***************************************/

call send(Obj, ’_acceptAttachment’,
alist, rc);

rc = dellist(alist, ’Y’);
alist = makelist();
att2 = makelist();
rc = setnitemn(att2, 1, "ATTACH_ID");
rc = setnitemn(att2, "SASUSER", "OUTLIB");
rc = setnitemn(att2,"NAMES", "OUT");
alist = insertl(alist, att2, -1);

/***************************************/
/* The COMPLETE flag is set to */
/* indicate attachment acceptance is */
/* complete after the second attachment */
/* is transferred. */
/***************************************/

call send(Obj, ’_acceptAttachment’, alist,
rc, "COMPLETE");

Catalog Attachments

To receive catalog attachments, the following named items are required:

OUTLIB
The value of this named item should be the output library name.

OUT
The value of this named item should be the output member name.

368 Catalog Attachments 4 Chapter 36

ATTACH_ID
The value of this named item should be a numeric identifier that indicates which
attachment to receive. This is the attachment id that is surfaced by the query in
the attachlist parameter.

Example
When the query returns with a message and its attachment list, the attachlist

parameter contains the following three attachments:
List one, first item in attachlist:
� named item TYPE has a value of CATALOG
� named item MEMNAME has a value of BASE
� named item LIBNAME has a value of SASHELP
� named item ATTACH_ID has a value of 1.

List two, second item in attachlist:
� named item TYPE has a value of DATASET
� named item MEMNAME has a value of WORK
� named item LIBNAME has a value of TEMP
� named item ATTACH_ID has a value of 2.

List three, third item in attachlist:
� named item TYPE has a value of CATALOG
� named item MEMNAME has a value of INFOCAT
� named item LIBNAME has a value of WORK
� named item ATTACH_ID has a value of 3.

This example accepts two of the three attachments by making one call to the accept
method. The first attachment to receive is identified by setting ATTACH_ID equal to 3.
This transfers catalog WORK.INFOCAT to the output catalog, SASUSER.INFOCAT.
The second attachment to receive is identified by setting ATTACH_ID equal to 1. This
transfers catalog SASHELP.BASE to the output catalog LOCAL.TASKC.

alist = makelist();
att1 = makelist();
rc = setnitemn(att1, 3, "ATTACH_ID");
rc = setnitemn(att1, "SASUSER", "OUTLIB");
rc = setnitemn(att1,"INFOCAT", "OUT");

att2 = makelist();
rc = setnitemn(att2, 1, "ATTACH_ID");
rc = setnitemn(att2, "LOCAL", "OUTLIB");
rc = setnitemn(att2,"TASKC", "OUT");

/***************************************/
/* Insert the attachment lists into */
/* the main attachment list, alist. */
/***************************************/

alist = insertl(alist, att1, -1);
alist = insertl(alist, att2, -1);

/***************************************/
/* The COMPLETE flag is set to */
/* indicate attachment acceptance is */

SAS Component Language (SCL) Interface to Message Attachments 4 External File Attachments 369

/* complete. */
/***************************************/

call send(Obj, ’_acceptAttachment’,
alist, rc, "COMPLETE");

External File Attachments
To accept external file attachments, the following named items are required:

OUTFILE or OUTFILEREF
The value of the named item OUTFILE should be the physical filename of the
output file. The value of the named item OUTFILEREF should be the output
fileref. Only one of these should be specified.

ATTACH_ID
The value of this named item should be a numeric identifier that indicates which
attachment to receive. This is the attachment id that is surfaced by the query in
the attachlist parameter.

Example
When the query returns with a message and its attachment list, the attachlist

parameter contains the following four attachments:
List one, first item in attachlist:
� named item TYPE has a value of DATASET
� named item MEMNAME has a value of NAMES
� named item LIBNAME has a value of SASUSER
� named item ATTACH_ID has a value of 1.

List two, second item in attachlist:
� named item TYPE has a value of EXTERNAL_TEXT
� named item MEMNAME has a value of /tmp/notes.txt

� named item ATTACH_ID has a value of 2.

List three, third item in attachlist:
� named item TYPE has a value of EXTERNAL_BIN
� named item MEMNAME has a value of BINREF
� named item ATTACH_ID has a value of 3.

List four, fourth item in attachlist:
� named item TYPE has a value of EXTERNAL_TEXT
� named item MEMNAME has a value of RLINK
� named item ATTACH_ID has a value of 4.

This example accepts three of the four attachments by making one call to the accept
method. The first attachment to be received is identified by specifying ATTACH_ID
equal to 2. This transfers the input file /tmp/notes.txt to the output file defined by
the fileref AFILE. The second attachment to be received is identified by specifying
ATTACH_ID equal to 3. This transfers the input file defined by the fileref BINREF, to
the output file defined by the fileref BFILE. The third attachment to be received is
identified by specifying ATTACH_ID equal to 4. This transfers the input file defined by
the fileref RLINK, to the output file /tmp/rlink.scr data set SASUSER.NAMES.

alist = makelist();
att1 = makelist();

370 Attachment Error Handling 4 Chapter 36

rc = setnitemn(att1, 2, "ATTACH_ID");
rc = setnitemn(att1, "afile", "OUTFILEREF");
alist = insertl(alist, att1, -1);

att2 = makelist();
rc = setnitemn(att2, 3, "ATTACH_ID");
rc = setnitemn(att2, "bfile", "OUTFILEREF");
alist = insertl(alist, att2, -1);

att3 = makelist();
rc = setnitemn(att3, 4, "ATTACH_ID");
rc = setnitemn(att3, "/tmp/rlink.scr",

"OUTFILE");
alist = insertl(alist, att3, -1);

/***************************************/
/* accept attachments */
/***************************************/

call send(Obj, ’_acceptAttachment’, alist,
rc);

/***************************************/
/* acceptance complete */
/***************************************/

call send(Obj, ’_acceptAttachment’, 0,
rc, "COMPLETE");

Attachment Error Handling

Transfer Errors: Direct vs Indirect
When sending a message to a message queue, all attachments, along with the

message, are transferred to the queue when the _send or _sendlist is invoked. The
attachments are stored at the DOMAIN server until fetched by a user. If an error
occurs while sending the attachments to the queue, neither the message nor the
attachments will be delivered to the queue. In this scenario, the return code from _send
or _sendlist will be set to _SEATTXF. This is an error indicating that neither the
message nor the attachments were delivered because one or more errors occurred
during attachment transfer.

When a message is sent by using direct messaging, only the attachment list, along
with the message, is sent to the receiving side initially. The receiver is then responsible
for determining, which (if any), attachments should actually be transferred. Because
the message is delivered to the receiver before any attachments are actually
transferred, an error that is encountered during the attachment transfer will not cause
the _send to terminate.

If an error is encountered, the current attachment transfer is terminated, but the
remaining attachments selected to be received are sent to the receiving side. If any
errors are encountered during attachment transfer, the return code from _send or
_sendlist will be set to _SWATTXF. This is only a warning that indicates which message
was successfully sent, but one or more errors occurred during attachment transfer.

SAS Component Language (SCL) Interface to Message Attachments 4 Attachment Error Codes 371

Accept Errors
When a message includes attachments, the receiver has the responsibility to

determine (by using the _acceptAttachment method) which attachments are ultimately
transferred. If an error is encountered during attachment transfer, the current
attachment transfer is terminated, but the transfer continues with the next attachment
in attachlist. If any errors are encountered, the return code from _acceptAttachment is
set to _SWATTXF. This is only a warning, which indicates that one or more errors
occurred during attachment transfer. This behavior is the same for both direct and
indirect messaging.

Attachment Error Codes
To review what was mentioned above, a specific return code will be set if an error is

encountered during attachment transfer.
� when sending on a Cnction instance, _SWATTXF is returned
� when sending on a Queue instance, _SEATTXF is returned
� when accepting attachments on either a Queue or a Cnction instance, _SWATTXF

is returned

When one of these scenarios occurs, the attachlist parameter passed to these methods
will be updated. An additional named item, rc, will be added to each separate
attachment list. The value of rc will be a numeric return code that can be used to
determine what caused the error for this particular attachment transfer. The defined
return codes (rc) include:

Input File Errors (error occurred on input file):

20 general I/O error

21 libname does not exist

22 memname does not exist

23 invalid or missing password

24 invalid data set option value

25 invalid data set option name

26 general error parsing data set options

27 error parsing WHERE statement

28 bad physical filename

29 file in use

30 file does not exist

31 invalid authorization for external file

32 general open error

33 error retrieving integrity constraints

34 variable name contains unsupported characters or is too long

35 key name contains unsupported characters or is too long.

Output File Errors (error occurred on output file):

80 general I/O error

372 Attachment Error Codes 4 Chapter 36

81 LIBNAME does not exist

82 invalid or missing password

83 bad physical filename

84 file in use

85 file does not exist

86 invalid authorization for external file

87 general open error

88 file already exists

89 integrity constraint creation failure

90 integrity constraint error.

General and Miscellaneous Errors:

1 out-of-memory error

2 open of catalog by queue manager failed

3 catalog read error encountered by queue manager

4 catalog write error encountered by queue manager

5 index create failure

6 backwards compatibility failure

7 unsupported view; only SQL views supported.

Example
In the following example, one attachment is accepted into a non-existent library

name:

/***************************************/
/* Build one attachment list, att1. */
/***************************************/

att1 = makelist();
rc = setnitemc(att1, 1, "ATTACH_ID");
rc = setnitemc(att1, "NOEXIST", "OUTLIB");
rc = setnitemc(att1, "A", "OUT");

alist = makelist();
alist = insertl(alist, att1, -1);

call send(obj, "_acceptAttachment",
alist, rc);

/***************************************/
/* If error, dump out attachment list */
/* to view rc. */
/***************************************/

if (rc NE 0) then
call putlist(alist, "Attachment list

after accept:", 1);

After the accept method call, the attachment list alist has the following named items:

SAS Component Language (SCL) Interface to Message Attachments 4 Attachment Error Codes 373

� named item ATTACH_ID has a value of 1
� named item OUTLIB has a value of NOEXIST
� named item OUT has a value of A
� named item RC has a value of 81.

Due to an error, the attachment has an additional named item (rc) that is set to 81 to
indicate that the output library does not exist. Similarly, when the sender returns from
the _send or _sendlist, the attachlist parameter will be updated with the rc named item
to reflect that the attachment transfer failed.

att1 = makelist();
rc = setnitemc(att1, "SASUSER","LIBNAME");
rc = setnitemc(att1, "NAMES", "MEMNAME");
rc = setnitemc(att1, "DATASET","TYPE");

attachlist = makelist();
attachlist = insertl(attachlist, att1, -1);

call send(cnctionObj, "_send", msgtype,
attachlist, rc, "Message One");

if (%sysrc(_SWATTXF) = rc) then do;
call putlist(attachlist,

"attachlist after send", -1);
end;

Assuming that the attachment was accepted by the receiving side (as shown in the
example) the attachment list (attachlist) after the send is updated with the rc named
item to reflect that the attachment transfer failed.

� named item LIBNAME has a value of SASUSER
� named item MEMNAME has a value of NAMES

� named item TYPE has a value of DATASET
� named item RC has a value of 81.

Again, the attachment contains an additional named item (rc set to 81) to indicate
any errors that occurred during the transfer.

374 Attachment Error Codes 4 Chapter 36

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

