
375

C H A P T E R

37
CALL Routine Interface to
Indirect Messaging

Introduction 375
CALL Routines 375

Dictionary 376

Introduction
A CALL routine interface has been implemented to provide access to the distributed

messaging services, namely message queueing. This interface has been included with
the SAS/CONNECT software and can be used within a SAS data step or SAS macro
facility. This interface provides the user with CALL routines that can:

� open or close a station.
� open or close a queue.
� set queue parameter values and types.
� query the queue for messages.
� send and receive messages.
� send and receive attachments.

CALL Routines
These CALL routines alter variable values and provide queuing services.
The following is a summary of the supported CALL routines:

STATION_OPEN
Open a station interface for distributed messaging collection services.

STATION_CLOSE
Close a station interface.

QUEUE_OPEN
Open message queue.

QUEUE_SETPARM
Define parameters to be sent to a particular queue.

QUEUE_PARMTYPE
Define parameters and explicitly state their type (char or numeric).

QUEUE_SETHDR
Define queue header information.

376 Dictionary 4 Chapter 37

QUEUE_SETATT
Define attachments.

QUEUE_ATTOPT
Define additional attachment information.

QUEUE_SEND
Send message to a queue.

QUEUE_QUERY
Query on a message queue.

QUEUE_GETHDR
Obtain queue header information.

QUEUE_RECV
Receive message into variables.

QUEUE_GETFLD
Receive one or more parameters at a time.

QUEUE_GETATT
Obtain attachment information.

QUEUE_ACCEPT
Accept attachment.

QUEUE_COMPLETE
Indicate attachment receipt completion.

QUEUE_GETAGENT
Retreives agent header information.

QUEUE_GETPROP
Get queue properties.

QUEUE_SETPROP
Set queue properties.

QUEUE_GETSEC
Get queue security.

QUEUE_SETSEC
Set queue security.

QUEUE_CLOSE
Closes a queue.

Dictionary

STATION_OPEN

Open a station interface for distributed messaging collection services.

Syntax
CALL STATION_OPEN(stationId, collectionName, rc

CALL Routine Interface to Indirect Messaging 4 STATION_CLOSE 377

<, domainName, securityInfo>);

Where... Is type... And represents...

stationId N station id is returned

collectionName C name of collection at the DOMAIN server

rc N return code

domainName C optional domain name

securityInfo C optional security info

This CALL routine initializes a station interface and enables access to distributed
messaging collection services. The collectionName parameter identifies either a new
collection that will be created dynamically by the DOMAIN server or a collection that
already exists in the DOMAIN server. Each collection name must be unique within a
SAS session. The collection name (collectionName) will be used by the QUEUE_OPEN
routine to add a queue to the "collection", thus allowing indirect-messaging.

The domainName is an optional parameter that specifies the name of the DOMAIN
server used to provide the collection service. This domain name is also used when a
queue is opened.

If the domainName is specified, the securityInfo parameter may also be specified.
This supplies the security string that is needed if the DOMAIN server is running
secured.

CAUTION:
domainName should be provided. If the domainName is not specified, the domain
name should be provided using the macro variable _domain. 4

STATION_OPEN Example

This example opens a station interface named DMMAPPL.

stid=0;
stname ="DMMAPPL";
rc= 0;
call station_open(stid, stname, rc);

STATION_CLOSE

Close a station interface.

Syntax
CALL STATION_CLOSE(stationId, rc);

378 QUEUE_OPEN 4 Chapter 37

Where... Is type... And represents...

stationId N station id is returned

rc N return code

When the STATION_CLOSE CALL routine is executed, the station interface is
closed. All active queues on the station will be closed at this time.

After the STATION_CLOSE has executed, the stationId is no longer valid. A new
station must be opened before further distributed messaging can take place on that
station interface.

STATION_CLOSE Example

This example closes a station interface.

call station_close(stid, rc);

QUEUE_OPEN

Open message queue.

Syntax
CALL QUEUE_OPEN(queueId, stationId, queueName, mode, rc, <, attribs>);

Where... Is type... And represents...

queueId N queue identifier is returned

stationId N station identifier

queueName C name of message queue to open

mode C open mode

rc N return code

attribs C optional open attributes

When invoked, QUEUE_OPEN opens a message queue that is associated with a
specific collection.

Upon successful open of the queue, the queueId is updated and returned. The
queueId parameter will be used by subsequent calls to identify which queue to act upon.
After opening, use the queue identifier to send or receive messages on that message
queue (depending on the open mode).

stationId identifies the "collection" that the queue will be associated with. The
stationId parameter should have been obtained from a call to the STATION_OPEN
routine.

CALL Routine Interface to Indirect Messaging 4 QUEUE_OPEN 379

The queueName parameter is the name of the message queue to open. This name
must be unique within its associated collection; however, the same queue name may be
used within another collection.

The mode parameter indicates the open mode. It should be set to one of the following:

FETCH
FETCH mode enables messages to be retrieved from the queue using the
QUEUE_RECV CALL routine. The message is removed from the queue once it is
retrieved using the QUEUE_QUERY CALL routine.

FETCHX
This mode exactly like FETCH mode except that it ensures that this open instance
has exclusive fetching privileges. Anyone can still open the queue for browsing or
delivering messages.

BROWSE
This mode enables the message to be retrieved from the queue without removing it
from other instances of the queue. That is, the message still exists on other instances
of the queue after browsing it.

DELIVERY
This mode enables messages to be sent to the queue.

If an error or a warning condition is encountered during the open, a non-zero return
code is returned in the rc parameter. Use the SYSMSG() function to print the message
that is associated with the non-zero rc.

The following optional attributes may be specified in the attribs parameter(s):

Optional Attributes

dynamic creation attributes:

DYNPERM

DYNTEMP

additional dynamic attributes
� DYN_MSGPSIST
� DYN_NOTICE
� DYN_MAXDEPTH=n

� DYN_MAXMSGL=n

� DYN_REQUIRED.

non-dynamic, instance based attributes:
POLL
ENDPOSITIONING
SURVIVE.

DYNPERM, DYNTEMP
Using one of these attributes causes a queue to be dynamically created. If the queue
already exists, a queue contention error is reported. There are two ways to
dynamically create a queue. Specify DYNPERM to create a permanent queue that
will continue to exist after the queue is closed, or specify DYNTEMP to create a
temporary queue that will be deleted automatically when closed. In contrast to

380 QUEUE_OPEN 4 Chapter 37

dynamic creation is the idea of predefining a queue before it is opened. You can
create an administrator pre-defined queue by defining it during PROC DOMAIN
start-up using registration syntax or by defining it through a remote procedural
command interface that communicates directives to an executing DOMAIN server.
See Chapter 39, “The ADMIN Procedure,” on page 419 for more information.

DYN_MSGPSIST
Dynamic creation attribute that enables message persistence. That is, all messages
delivered to this queue will persist on the queue indefinitely or until they are
explicitly fetched from the queue. By default, messages do not persist.

DYN_NOTICE
Dynamic creation attribute that enables NOTICE message delivery mode. By
default, when a query on a queue executes, it not only retrieves the message header
information, but it also retrieves the actual message itself from the queue. At this
point, QUEUE_RECV is required to receive the message into SAS variables. This
attribute can be specified to override the default behavior so that only message
header information is returned from the query. Because only the header information
(not the message) is retrieved, a QUEUE_RECV is not required to receive the
message. See the QUEUE_QUERY method for more information about how to query
a NOTICE message delivery mode queue.

DYN_MAXDEPTH=n
Dynamic creation attribute that allows you to specify a maximum queue depth
restriction to be placed on this queue. The n parameter is an integer value. The
default value for n is -1, which indicates the depth is unlimited.

DYN_MAXMSGL=n
Dynamic creation attribute that allows you to specify a maximum message length
restriction to be placed on all messages delivered to this queue. This maximum
length must account for additional internal bytes needed to represent the data within
each message. Attachment lengths are not taken into consideration, only the length
of the actual message itself. The n parameter is an integer value. The default value
for n is -1, which indicates the length is unlimited.

DYN_REQUIRED
Dynamic creation attribute that specifies that, to be successful, this open is required.
If a queue already exists, it is used; otherwise, the queue is dynamically created as
specified. It is important to point out that this attribute overrides default dynamic
creation behavior. By default if a same name queue already exists, you get a
contention error. With this attribute specified, a same name queue is opened
successfully without error. Also, if a same name queue already exists, it will be
opened with existing attribute information (dynamic attributes specified on the open
call are ignored).

POLL
The default behavior when querying a queue is to block. This means that the query
will not return until a message is received. Therefore, the querying application is
blocked until a message is received. To override this default behavior, specify this
attribute so that a query will return immediately even if there is no message
(non-blocking). This is a valid option for FETCH, FETCHX, and BROWSE open
modes.

ENDPOSITIONING
When opening a queue, the default behavior is to position it at the beginning. To
override the default, specify this attribute so that it will be positioned at the end of
the queue. This means that any messages on the queue prior to the open will not be
seen by this queue instance.

CALL Routine Interface to Indirect Messaging 4 QUEUE_SETPARM 381

SURVIVE
Specify this attribute to ensure that the queue outlives the application. That is, an
application can dynamically create a temporary queue that has the DYNTEMP and
SURVIVE attributes set, and then exit, leaving the queue to "survive" so that others
can use it. If SURVIVE was not specified, the queue would be automatically deleted
when it is closed.

QUEUE_OPEN Example

This example opens two Queue instances. The first open specifies the DYNTEMP
attribute, which indicates that this queue should not already exist and will, therefore,
be dynamically created. It is opened in FETCH mode so that messages can be received
from the queue named "inventory". In addition, the POLL attribute is set so that the
queries will be non-blocking.

The second open does not specify any dynamic attributes. Therefore, the default
action will be used to open the queue. The default means that the queue already exists
out there with the same name. This second queue instance is opened with the
DELIVERY attribute so that messages can be sent to the queue named "inventory".

f_qid and d_qid are returned from the open and can then be used to send and receive
messages.

/*************************************/
/* open station instance */
/*************************************/

stname = "DMMAPPL";
stid = 0;
rc = 0;
call station_open(stid, stname, rc);

/*************************************/
/* open fetch queue */
/*************************************/

f_qid = 0;
qname = "inventory";
mode = "FETCH";
attrib1 = "DYNTEMP";
attrib2 = "POLL";
call queue_open(f_qid, stid, qname, mode,

rc, attrib1, attrib2);

/*************************************/
/* open delivery queue */
/*************************************/

mode = "DELIVERY";
call queue_open(d_qid, stid, qname,

mode, rc);

QUEUE_SETPARM

Define parameters to be sent to a particular queue.

382 QUEUE_PARMTYPE 4 Chapter 37

Syntax
CALL QUEUE_SETPARM(queueId, rc, parm1, <parm2,...,parmn>);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

parm1,...parmn N or C 1 or more numeric or character parameters

QUEUE_SETPARM defines parameters to a particular queue so that they can be
sent when the QUEUE_SEND CALL routine is invoked.

The queueId parameter identifies the queue.

If an error occurs, rc is updated and returned as a non-zero value. Use the
SYSMSG() function to print the message that is associated with the non-zero rc.

The parm1,...,parmn parameters are the one or more parameters to send to this
particular queue. The parameters are not actually sent until the QUEUE_SEND CALL
routine is invoked. Parameters may be numeric or character and may appear in any
order.

QUEUE_SETPARM Example

This example defines three parameters to be sent to the queue that is identified by
queueId. The message is not sent until the QUEUE_SEND CALL routine is invoked.

name = "John Doe";
age = 35;
company = "SAS";
call queue_setparm(queueId, rc, name, age,

company);

QUEUE_PARMTYPE
Define parameters and explicitly state their type (char or numeric).

Syntax
CALL QUEUE_PARMTYPE(queueId, rc, parm1Type, parm1 <, (parm2Type, parm2) , ...,

(parm4Type, parm4)>);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

CALL Routine Interface to Indirect Messaging 4 QUEUE_PARMTYPE 383

Where... Is type... And represents...

parm1Type C parameter type

parm1 N or C parameter value

QUEUE_PARMTYPE defines parameters to send to a specific queue so that they can
be sent when the QUEUE_SEND CALL routine is invoked. It takes a parameter-type
flag so that the type of parameter may be explicitly set.

If QUEUE_SETPARM is called from within a macro, there is no way to send a
numeric value as a string. For example, the macro variable set to 123 could never be
sent as a string because QUEUE_SETPARM will view it as a numeric. For this reason,
QUEUE_PARMTYPE allows the user to explicitly set the parameter type. So in the
above example, the parameter flag could be set to C and the parameter value of 123
would be converted to a string by QUEUE_PARMTYPE.

The queueId parameter identifies the queue.

If an error occurs, rc is updated and returned as a non-zero value. Use the
SYSMSG() function to print the message that is associated with the non-zero rc.

The parm1Type parameter indicates the parameter type. It must have a value of C if
the parameter is character or a value of N if the parameter is numeric.

The parm1 parameter is the actual parameter value. The parameters are sent when
the QUEUE_SEND CALL routine is invoked. Parameters may be numeric or character
and may appear in any order.

The parameter type and the parameter value must be specified as a pair that has the
type preceding the value. A minimum of one pair (parameter type followed by
parameter value) up to the maximum of four pairs may be specified. This routine may
be called multiple times if more than four parameters need to be defined in this manner.

QUEUE_PARMTYPE Example

This example defines four parameters to the queue that is identified by queueId. In
this example, the year passes in a parameter type of C. This causes
QUEUE_PARMTYPE to convert the numeric into a string and send it as a character
parameter.

ctype = "C";
ntype = "N";
name = "John Doe";
age = 35;
company = "SAS";
year = 1996;
call queue_parmtype(queueId, rc,

ctype, name,
ntype, age,
ctype, company,
ctype, year);

384 QUEUE_SETHDR 4 Chapter 37

QUEUE_SETHDR

Define queue header information.

Syntax
CALL QUEUE_SETHDR(queueId, desc, respQ, datetime, corr, rc);

Where... Is type... And represents...

queueId N queue identifier

desc C user-specified description

respQ C user-specified response queue’s name

datetime N datetime time-out value (currently unsupported,
value will be ignored)

corr N user-specified correlation value

rc N return code

QUEUE_SETHDR defines the queue header information that will accompany the
message when the QUEUE_SEND CALL routine is invoked on this particular queue.
Any information that is supplied by QUEUE_SETHDR is surfaced on the receiving side
by using QUEUE_GETHDR. All parameters are required, but numerics may be set to 0
and strings may be set to double quotes (" ") to indicate that no value should be set for
this particular parameter.

The queueId parameter identifies the queue.

The desc parameter is user-supplied, descriptive text.

The respQ parameter is the user-supplied response queue name.

The datetime parameter is a time-out date-time stamp. However, this parameter is
not supported at this time and should be set to 0.

The corr parameter is the user-specified correlator value.

If an error occurs, rc is updated and returned as a non-zero value. Use the
SYSMSG() function to print the message that is associated with the non-zero rc.

QUEUE_SETHDR Example

This example defines the header information to be included with the queue that is
identified by queueId. Only the description and response queue name are specified.

desc = "Information concerning
employee database.";

resp = "Example Queue";
dt = 0;
corr = 0;

CALL Routine Interface to Indirect Messaging 4 QUEUE_SETATT 385

call queue_sethdr(queueId, desc,resp, dt, corr,rc);

QUEUE_SETATT

Define attachments.

Syntax
CALL QUEUE_SETATT(queueId, rc, atype, ainfo, aname <, atype, ainfo, aname...>);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

atype C attachment type

ainfo C library name or file specification

aname C member name or filename

QUEUE_SETATT defines the attachments that are to be included with the next
message that is sent by using the QUEUE_SEND CALL routine. For each attachment,
three pieces of information must be specified:

� attachment type
� libname or file specification
� filename or member name.

One or more attachments may be defined, but all three pieces of information must be
included for each attachment.

If an error occurs, rc is updated and returned as a non-zero value. Use the
SYSMSG() function to print the message that is associated with the non-zero rc.

The atype parameter specifies the attachment type. The ainfo and aname parameters
will be set differently depending on the value of atype.

The atype parameter should be one of the following:

DATASET or CATALOG
If the attachment is a catalog or a data set, the ainfo parameter will be the
attachment’s library name. The aname parameter will be the attachment’s member
name.

When data set attachments are transferred, all data set attributes are cloned by
default. These include label, type, password, encryption, index, and sort information.

EXTERNAL_TEXT or EXTERNAL_BIN
If the attachment is an external file (either binary or text), the ainfo parameter will
be the file specification. It must have a value of either FILENAME or FILEREF. If
ainfo is set to FILENAME, the aname parameter will contain the attachment’s
physical filename. If ainfo is set to FILEREF, the aname parameter will contain the
name of the fileref that defines the external file.

386 QUEUE_ATTOPT 4 Chapter 37

QUEUE_SETATT Example

This example defines three attachments to the queue that is defined by queueId.

/*************************************/
/* Attachment one is the data set */
/* SASUSER.EMPLOYEE. */
/*************************************/

type1 = "DATASET";
lib1 = "SASUSER";
mem1 = "EMPLOYEE";

/*************************************/
/* Attachment two is the external */
/* text file that is defined by the */
/* fileref RLINK. */
/*************************************/

type2 = "EXTERNAL_TEXT";
fspec = "FILEREF";
fref = "RLINK";

/*************************************/
/* Attachment three is an external */
/* binary file. */
/*************************************/

type3 = "EXTERNAL_BIN";
fspec3 = "FILENAME";
fname3 = "/tmp/binary.file";

call queue_setatt(queueId, rc,
type1, lib1, mem1,
type2, fspec, fref,
type3, fspec3, fname3);

QUEUE_ATTOPT

Define additional attachment information.

Syntax
CALL QUEUE_ATTOPT(queueId, optName, optValue, rc <, desc, idx, minorVersion,

majorVersion,
attachVersion>);

Where... Is type... And represents...

queueId N queue identifier

optName C option name

optValue C value of option

CALL Routine Interface to Indirect Messaging 4 QUEUE_ATTOPT 387

Where... Is type... And represents...

rc N return code

desc C user-specified description

idx C index creation override

minorVersion N user-specified minor version

majorVersion N user-specified major version

attachVersion C attachment version

QUEUE_ATTOPT defines additional options that can be used to subset the
attachment data and can also be used to provide useful information to the receiving
side. QUEUE_ATTOPT applies to the last attachment that was defined by means of the
QUEUE_SETATT function.

The optName parameter must be one of the following:

DATASET_OPTIONS
This option indicates that optValue is a character string that represents any valid
data set options. This provides a way to subset the data before the transfer. This
option is only valid when the attachment is a data set.

WHERE
This option indicates that optValue is a character string that represents a valid
WHERE statement. This provides a way to subset the data before the transfer. This
option is only valid when the attachment is a data set.

EXCLUDE
This option indicates that optValue is a character string that represents an
EXCLUDE statement to apply to the catalog. This provides a way to exclude specific
entries so that unnecessary entries are not transferred. OptValue should take the
form of "ENTRY1.ENTRYTYPE ENTRY2.ENTRYTYPE..." for each entry that is to be
excluded. The SELECT and EXCLUDE items are mutually exclusive so you can only
specify one for a given catalog attachment. This option is only valid when the
attachment is a catalog.

SELECT
This option indicates that optValue is a character string that represents a SELECT
statement to apply to the catalog. This provides a way to select specific entries that
are to be included without sending the entire catalog. OptValue should take the form
of ENTRY1.ENTRYTYPE ENTRY2.ENTRYTYPE... for each entry that is to be
selected. The SELECT and EXCLUDE items are mutually exclusive, therefore, you
can only specify one for a given catalog attachment. This option is only valid when
the attachment is a catalog.

If an error occurs, rc is updated and returned as a non-zero value. Use the
SYSMSG() function to print the message that is associated with the non-zero rc.

The remaining parameters are optional and positional. Supported optional
parameters include:

The desc parameter is user-specified descriptive text to accompany the attachment.
This information is surfaced to the user on the receiving side and allows the user to
provide specific information about this attachment. This can be specified for any type of
attachments.

388 QUEUE_ATTOPT 4 Chapter 37

The idx parameter can have a value of NO or N if the user wants to suppress the
transfer of index information. Otherwise, double quotes (" ") may be passed in, to
indicate that the default will not be overridden. By default, the data set’s index is
re-created on the output data set. This parameter allows the default to be overridden so
that index creation does not occur. This parameter is specific to data sets and will be
ignored by all other attachment types. A value of (" ") may be entered to indicate that it
should be ignored.

The minorVersion parameter represents a numeric, user-specified version that can be
presented to the receiver.

The majorVersion parameter represents a numeric, user-specified version that can be
presented to the receiver.

The attachVersion parameter is only valid in Version 7 or later sessions and only
applies to data set and catalog attachments. This parameter allows the user to send the
catalog or data set to the queue so that a Version 6 client can read the attachments. If
a Version 8 application sends a Version 8 data set or catalog to a queue, a Version 6
application cannot accept that attachment. However, the Version 8 application can
specify the value of VERSION_612 for this parameter. This forces the catalog or data
set to be sent in Version 6 format so that both Version 6 and Version 8 applications can
accept them.

QUEUE_ATTOPT Example

This example defines four attachments to the queue defined by queueId.

/*************************************/
/* Attachment one is the data set */
/* SASUSER.EMPLOYEE. */
/*************************************/

type1 = "DATASET";
lib1 = "SASUSER";
mem1 = "EMPLOYEE";
call queue_setatt(queueId, rc, type1,

lib1, mem1);

/*************************************/
/* Define data set options and */
/* indicate indexes should not be */
/* created on output data set. */
/*************************************/

opt = "DATASET_OPTIONS";
optval = "KEEP=SMITH";
desc ="";
idx ="NO";
call queue_attopt(queueId, opt, optval,

rc, desc, idx);

/*************************************/
/* Attachment two is an external */
/* binary file. */
/*************************************/

type2 = "EXTERNAL_BIN";
fspec2 = "FILENAME";

CALL Routine Interface to Indirect Messaging 4 QUEUE_ATTOPT 389

fname2 = "/tmp/binary.file";

call queue_setatt(queueId, rc, type2,
lib2, mem2);

/*************************************/
/* no options to define for this */
/* attachment */
/*************************************/

/*************************************/
/* Attachment three is the catalog */
/* SASHELP.CONNECT. */
/*************************************/

type3 = "CATALOG";
lib3 = "SASHELP";
mem3 = "CONNECT";
call queue_setatt(queueId, rc, type3,

lib3, mem3);

/*************************************/
/* Specify SELECT statement to subset*/
/* transfer of connect catalog. */
/*************************************/

opt = "SELECT";
optval = "QUEUE.CLASS STATION.CLASS";
desc = ’Queue and station classes’;
idx=""
minor=1;
call queue_attopt(queueId, opt, optval,

rc, desc, idx, minor);

/*************************************/
/* Attachment four is the data set */
/* SASUSER.SALARY. */
/*************************************/

type4 = "DATASET";
lib4 = "SASUSER";
mem4 = "SALARY";
call queue_setatt(queueId, rc, type4,

lib4, mem4);

/*************************************/
/* Define data set options for */
/* SASUSER.SALARY. */
/*************************************/

opt = "DATASET_OPTIONS";
optval = "WHERE=(INCOME>50000)

KEEP=(FNAME LNAME INCOME)";
call queue_attopt(queueId, opt, optval, rc);

390 QUEUE_SEND 4 Chapter 37

QUEUE_SEND

Send message to a queue.

Syntax
CALL QUEUE_SEND(queueId, msgtype, rc);

Where... Is type... And represents...

queueId N queue identifier

msgtype N user-specified message type

rc N return code

When QUEUE_SEND is invoked:
� All the parameters that are defined by using QUEUE_SETPARM are sent as a

message to be stored in the queue.
� All attachments that are defined by using QUEUE_SETATT are sent along with

the message to the queue. If an error occurs while transferring any of the
attachments, neither the message nor the attachments are delivered to the queue.

� The delivery header information that was defined by using QUEUE_SETHDR is
sent with the message so that it can be surfaced to the receiver.

The msgtype parameter is set by the user when the message is sent and is surfaced
on the receiving side upon return from the query. When surfaced by the query on the
receiving side, the message type can be used to determine how many and what type of
parameters should be used in receiving the actual message from the QUEUE_RECV
CALL routine.

If an error or a warning condition is encountered during the send, a non-zero return
code is returned in the rc parameter. Use the SYSMSG() function to print the message
that is associated with the non-zero rc.

QUEUE_SEND Example

This example causes the string "SAS Institute Inc." and the data set attachment
SASUSER.A to be sent to the queue that is identified by queueId.

company="SAS Institute Inc.";
call queue_setparm(queueId, rc, company);

lib="SASUSER";
mem="A";
type="DATASET";
call queue_setatt(queueId, rc, type,

lib, mem);

/*************************************/
/* Set message type so that receiving */

CALL Routine Interface to Indirect Messaging 4 QUEUE_QUERY 391

/* side knows how many and what types */
/* of parameters to receive. */
/*************************************/

msgtype = 22;

/*************************************/
/* Sent message and attachment to */
/* queue. */
/*************************************/

call queue_send(queueId, msgtype, rc);

QUEUE_QUERY

Query on a message queue.

Syntax
CALL QUEUE_QUERY(queueId, etype, msgtype,

attachFlag, rc <, deliveryKey>);

Where... Is type... And represents...

queueId N queue identifier

etype C event type of received message

msgtype N message type of received message

attachFlag N attachment flag

rc N return code

deliveryKey N (optional) delivery key

The QUEUE_QUERY CALL routine queries the queue for a message. If the queue
was opened with the POLL attribute and there are no messages on the queue, the
query will return immediately and set the event type to NO_MESSAGE. If the queue
was not opened with the POLL attribute and there is no message on the queue, the
query will block until an event is received on the queue.

Etype is the event type and the variable that is passed in should have a length of at
least 17, so that it can be updated with any of the supported event types. Upon return,
etype will have one of the following values:

DELIVERY
Message received.

NO_MESSAGE
No message on the queue.

ERROR
Queue has been closed or deleted.

392 QUEUE_QUERY 4 Chapter 37

END_OF_QUEUE
End of queue has been reached.

Anytime a DELIVERY entry type is returned, the user is required to call
QUEUE_GETHDR to retrieve the header information before any subsequent sends or
queries will be allowed for this particular queue. It should be noted that this behavior
differs from the SCL interface because the SCL interface returns the header
information on the query call itself.

The msgtype parameter is (optionally) set by the user when the message is sent and
is surfaced on the query. When surfaced by the query, the message type can be used to
determine how many and what type of parameters should be used in receiving the
actual message from the QUEUE_RECV CALL routine.

The attachFlag parameter is updated upon return from the query. If the event type
is DELIVERY, attachFlag indicates whether any attachments were included with the
message. If attachments were included with the message, attachFlag is set to 1.
Otherwise, it will be set to 0. If attachments were included with the message, the
CALL routine QUEUE_COMPLETE must be called at some point to indicate that the
attachment receipt is complete. Subsequent queries will be prohibited until it is called.
QUEUE_COMPLETE must be called even if no attachments were actually accepted.

If an error or a warning condition is encountered during the query, a non-zero return
code is returned in the rc parameter. Use the SYSMSG() function to print the message
that is associated with the non-zero rc.

If the NOTICE queue attribute is in effect, the deliveryKey parameter is required on
the query. Set deliveryKey to 0 and call QUEUE_QUERY followed by
QUEUE_GETHDR to retrieve the header information of the next message on the
queue. If there is a message on the queue, the event type will be set to DELIVERY and
the header information will be returned, including msgtype. In addition, deliveryKey
will be updated. This key can be used at a later time to retrieve this message from the
queue. To retrieve the actual message, QUEUE_QUERY should be called again, this
time specifying the deliveryKey parameter that was returned on the initial query.

If the queue was opened without the NOTICE attribute, the deliveryKey parameter
should not be specified.

QUEUE_QUERY Example 1

This example queries a Queue where the queue was opened in FETCH mode that
has the POLL attribute set.

call queue_query(queueId, etype, msgtype,
attachFlag, rc);

if (etype = "DELIVERY") then do;

/**********************************/
/* gethdr required if DELIVERY */
/**********************************/

desc = "";
resp = "";
dt = 0;
corr = 0;
origin = "";
security = "";

CALL Routine Interface to Indirect Messaging 4 QUEUE_GETHDR 393

call queue_gethdr(queueId, desc, resp,
dt, origin, security,
corr, rc);

if (msgtype = 1) then do;
/**********************************/
/* receive parameters */
/**********************************/

end;
end;

/*************************************/
/* no message */
/*************************************/

else if (etype = "NO_MESSAGE") then do;
end;

QUEUE_QUERY Example 2

This example queries on a Queue where the queue was opened with the NOTICE
attribute. If the message type is 4, then call query again to retrieve the actual message
on the queue.

key = 0;
call queue_query(queueId, etype, msgtype,

attachFlag, rc, key);

call queue_gethdr(queueId, desc, resp,
dt, origin, security,
corr, rc);

if (etype eq "DELIVERY") then do;
if (msgtype eq 4) then do;

/*******************************/
/* specify key value returned */
/* by the initial query */
/*******************************/

call queue_query(queueId, etype, msgtype,
attachFlag, rc, key);

end;
end;

QUEUE_GETHDR

Obtain queue header information.

Syntax
CALL QUEUE_GETHDR(queueId, desc, respQ, datetime, origin, security, corr, rc);

394 QUEUE_GETHDR 4 Chapter 37

Where... Is type... And represents...

queueId N queue identifier

desc C user-specified description

respQ C response queue name

datetime N queued date-time stamp (currently unsupported,
value will be ignored)

origin C originator’s name

security C security name of originator

corr N correlator

rc N return code

When the query CALL routine returns an event type of DELIVERY,
QUEUE_GETHDR must be invoked before any subsequent queries or sends are allowed
on this queue.

QUEUE_GETHDR retrieves the queue header information specific to the specified
queue. If the user-supplied fields were set on the sending side using QUEUE_SETHDR
, those values will be surfaced here. Additional fields will also be surfaced. These
include the queue date/time stamp and the originator’s name and security name.

The queueId parameter identifies the queue.

The desc parameter is user-supplied, descriptive text. This text will be surfaced if it
was set on the sending side.

The respQ parameter is the user-supplied response queue name. This parameter will
be surfaced if it was set on the sending side.

The datetime parameter is the queued date-time stamp, which indicates when the
message was queued. At this time, this parameter is not supported, and any value will
be ignored.

The origin parameter is the originator’s name.

The security parameter is the originator’s security name.

The corr parameter is the correlator value.

If an error occurs, rc is updated and returned as a non-zero value. Use the
SYSMSG() function to print the message that is associated with the non-zero rc.

QUEUE_GETHDR Example

This example obtains the header information of the queue identified by queueId.

desc = "";
resp = "";
dt = 0;
corr = 0;
origin = "";
security = "";
call queue_gethdr(queueId, desc, resp,

CALL Routine Interface to Indirect Messaging 4 QUEUE_RECV 395

dt, origin, security,
corr, rc);

QUEUE_RECV

Receive message into variables.

Syntax
CALL QUEUE_RECV(queueId, rc <, parm1,...,parmn>);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

parm1,...parmn N or C parameters in which to receive the message
surfaced by the query; consists of 0 or more
numerics or characters

When a message is surfaced by a query, it must be received into either data set
variables or macro variables, depending on whether it is invoked with a DATA step or
as a macro. QUEUE_RECV supports the receipt of both numerics and characters.
QUEUE_RECV must be called with the correct parameter types. For example, if a
character and a numeric variable were sent to the queue, QUEUE_RECV must be
called with a numeric and a character variable in the correct order.

If an error or a warning condition is encountered during the receive, a non-zero
return code is returned in the rc parameter. Use the SYSMSG() function to print the
message that is associated with the non-zero rc.

If an unexpected message is received, QUEUE_RECV can be called with no receive
parameters in order to throw away the message. A truncation warning is returned, but
the message will have successfully been thrown away.

QUEUE_RECV Example 1

This example queries on a fetch queue, and based on the msgtype that is returned,
receives the message into the appropriate variables.

call queue_query(queueId, etype, msgtype,
attachFlag, rc);

if (etype = "DELIVERY") then do;

/**********************************/
/* will have some meaning to user */
/**********************************/

if (msgtype = 1) then do;

396 QUEUE_GETFLD 4 Chapter 37

name = ’’;
age = 0;
race = ’’;

/*******************************/
/* receive 3 parameters */
/*******************************/

call queue_recv(queueId, rc, name,
age, race);

end;
else if (msgtype = 5) then do;

/*******************************/
/* receive 1 parameter */
/*******************************/

task = 0;
call queue_recv(queueId, rc, task);

end;
else do;

/**********************************/
/* unknown message type; throw out*/
/* message by forcing truncation */
/**********************************/
call queue_recv(queueId, rc);

end;
end;

QUEUE_RECV Example 2

This example throws the message away by forcing truncation.

call queue_recv(queueId, rc);

QUEUE_GETFLD

Receive one or more parameters at a time.

Syntax
CALL QUEUE_GETFLD(queueId, status, rc,

parm1 <, parm2,...,parmn>);

Where... Is type... And represents...

queueId N queue identifier

status N status of parameter receipt

CALL Routine Interface to Indirect Messaging 4 QUEUE_GETATT 397

Where... Is type... And represents...

rc N return code

parm1,...parmn N or C parameters in which to receive the message;
consists of 1 or more numeric or character
variables

When a message is surfaced by a query, it needs to be received into variables.
QUEUE_GETFLD behaves like QUEUE_RECV in that it receives the message into
variables. The two CALL routines differ in that QUEUE_RECV requires that you
receive the entire message at one time, while QUEUE_GETFLD allows each parameter
to be received separately. QUEUE_GETFLD supports the receipt of numeric and
character parameters.

The status parameter will have a value of 1 if this is the last parameter to receive.
Otherwise, it will have a value of 0.

If an error or warning condition is encountered during the receive, a non-zero return
code is returned in the rc parameter. Use the SYSMSG() function to print the message
that is associated with the non-zero rc.

QUEUE_GETFLD Example

This example receives one parameter, then two parameters, then the last one.

name1 = ’’;
name2 = ’’;
name3 = ’’;
name4 = ’’;
status = 0;
call queue_getfld(queueId, status, rc,

name1);

if (status ne 1) and (rc eq 0) then
call queue_getfld(queueId, status, rc,

name2, name3);

if (status ne 1) and (rc eq 0) then
call queue_getfld(queueId, status, rc

name4);

/**/
/* STATUS should be set to 1 if this is */
/* the last parameter to be received. */
/**/

QUEUE_GETATT

Obtain attachment information.

398 QUEUE_GETATT 4 Chapter 37

Syntax
CALL QUEUE_GETATT(queueId, status, attachId, atype, ainfo, aname, rc <, desc,

minorVersion, majorVersion>);

Where... Is type... And represents...

queueId N queue identifier

status N status of parameter receipt

attachId N attachment identifier

atype C type of attachment

ainfo C library name or file specification

aname C member name or filename

rc N return code

desc C optional user-specified descriptive text

minorVersion N optional minor version

majorVersion N optional major version

When a message is surfaced by a query, the QUEUE_QUERY CALL routine returns
a flag that indicates whether attachments were included with the message. If
attachments were included with the message, QUEUE_GETATT can be invoked to
obtain specific attachment information. QUEUE_GETATT returns information for one
specific attachment.

The status parameter will have a value of 1 if this is the last attachment that was
included with the message. Otherwise, it will have a value of 0.

The attachId parameter is returned and is the identifier that is used to uniquely
identify each specific attachment. It can be used at a later time to indicate what
attachments to actually accept.

The atype parameter specifies the attachment type. The ainfo and aname parameters
will be set differently based on the attachment type.

DATASET or CATALOG
If the attachment is a catalog or a data set, the ainfo parameter will be the library
name of the attachment. The aname parameter is the member name of the
attachment.

EXTERNAL_TEXT or EXTERNAL_BIN
If the attachment is an external file (either binary or text), the ainfo parameter will
be the file specification. It will have a value of either FILENAME or FILEREF. If
ainfo is set to FILENAME, then the aname parameter will contain the attachment’s
physical filename. If ainfo is set to FILEREF, then the aname parameter contains
the name of the fileref that defines the external file.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

CALL Routine Interface to Indirect Messaging 4 QUEUE_ACCEPT 399

If the sender specified an attachment description, it is returned in the desc parameter.

If the sender specified a user-specifiable minor version number, it is returned in the
minorVersion parameter.

If the sender specified a user-specifiable major version number, it is returned in the
majorVersion parameter.

QUEUE_GETATT Example

This example obtains attachment information. Notice the use of the optional
parameters on the second and third QUEUE_GETATT invocations.

call queue_query(queueId, etype, msgtype,
attachFlag, rc);

if (etype = "DELIVERY") and
(attachFlag = 1) then do;

status = 0;
attachId = 0;
desc=’’;
call queue_getatt(queueId, status,

attachId, type,
info, mem, rc);

/**********************************/
/* more attachment info to obtain */
/**********************************/

if (status = 0) then
call queue_getatt(queueId, status,

attachId, type,
info, mem, rc, desc);

/**********************************/
/* more attachment info to obtain */
/**********************************/

if (status = 0) then
call queue_getatt(queueId, status,

attachId, type,
info, mem, rc, desc,
minor);

end;

QUEUE_ACCEPT

Accept attachment.

400 QUEUE_ACCEPT 4 Chapter 37

Syntax
CALL QUEUE_ACCEPT(queueId, attachId, ainfo, aname, rc);

Where... Is type... And represents...

queueId N queue identifier

attachId N attachment identifier

ainfo C library name or file specification

aname C member name or filename

rc N return code

When a message is surfaced by a query, the QUEUE_QUERY CALL routine returns
a flag that indicates whether attachments were included with the message. If
attachments were included with the message, QUEUE_GETATT can be invoked to
obtain specific attachment information. QUEUE_GETATT returns information for one
specific attachment and it identifies that attachment by the attachment identifier. The
attachment identifier returned by QUEUE_GETATT should be specified in the attachId
parameter to identify which attachment you are accepting. QUEUE_ACCEPT accepts
the attachment; that is, the attachment is transferred and written out to the file that is
specified by the ainfo and aname parameters.

If the attachment that is being accepted is a catalog or a data set, the ainfo
parameter should specify the output library name. The aname parameter should
specify the output member name.

If the attachment is an external file (either binary or text), the ainfo parameter
should indicate the file specification. It must have a value of either FILENAME or
FILEREF. If ainfo is set to FILENAME, the aname parameter should specify the output
file’s physical filename. If ainfo is set to FILEREF, then the aname parameter should
indicate the name of the fileref that defines the output external file.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

QUEUE_ACCEPT Example

This example accepts the attachment that is identified by attachId into the data set
SASUSER.CENSUS.

lib = "SASUSER";
mem = "CENSUS";
call queue_accept(queueId, attachId,

lib, mem, rc);

CALL Routine Interface to Indirect Messaging 4 QUEUE_GETAGENT 401

QUEUE_COMPLETE

Indicate attachment receipt completion.

Syntax
CALL QUEUE_COMPLETE(queueId, rc);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

When a message is surfaced by a query, the QUEUE_QUERY CALL routine returns
a flag that indicates whether attachments were included with the message. If the query
returns the attachment flag set to 1, indicating that attachments were included with
the message, QUEUE_COMPLETE must be called at some point to indicate that
attachment receipt is complete. If attachments are to be accepted, the
QUEUE_ACCEPT calls should be made before the call to QUEUE_COMPLETE.
However, the CALL routine must be called at some point whether or not any
attachments were actually accepted. Subsequent queries will be prohibited until
QUEUE_COMPLETE is called.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

QUEUE_COMPLETE Example

This example uses QUEUE_COMPLETE to indicate that the attachment receipt is
complete.

call queue_complete(queueId, rc);

QUEUE_GETAGENT

Retreives agent header information.

Syntax
CALL QUEUE_GETAGENT(queueId, agentName, runKey, dateTime, completionCode,

rc);

402 QUEUE_GETAGENT 4 Chapter 37

Where... Is type... And represents...

queueId N queue identifier

agentName C name of defined agent

runKey N run instance key

dateTime N date and time agent was run

completionCode N agent run completion code

rc N return code

The QUEUE_GETAGENT routine retrieves the agent header information from the
specified queue. When the agent runs, you have the ability to define a notification
queue. If a notification queue is defined, a completion message is sent to this queue
with a message type of 65539.

The agentName parameter is the name of an agent that has already been defined
using the SCL _defineAgent.

The header information that is returned includes runkey, dateTime, and
completionCode.

The runKey parameter is used in the SCL interface to retrieve the agent run
information.

The dateTime parameter indicates the date and time that the agent was run.

The completionCode parameter indicates whether the agent was successfully
invoked. A value of zero indicates the agent was invoked successfully.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

QUEUE_GETAGENT Example

This example queries for a message and displays agent information if agent
completed successfully.

msgtype = 0;
aflag = 0;
put ’ ’;
call queue_query(qid, etype, msgtype, aflag, rc);

if rc = 0 and (etype = DELIVERY) then do;
put ’Query successful’;
put ’Etype is ’ etype;
put ’Msgtype is ’ msgtype;

/* agent completion message received, */
/* get agent info */

if (msgtype = 65539) then do;
retrieved = retrieved + 1;
agentName = ’’;
dt = 0;

CALL Routine Interface to Indirect Messaging 4 QUEUE_GETPROP 403

cc = 0;
runkey = 0;
put ’ ’;
call queue_getagent(qid, agentName, runkey,

dt, cc, rc);

if rc = 0 then do;
put ’ ’;
put ’ ’;
put ’GetAgent successful’;
put ’Agent name is ’ agentName;
put ’Runkey is ’ runkey;
put ’Datetime is ’ dt;
put ’Completion code is ’ cc;

end;
else do;

msg = sysmsg();
put msg;

end;
corr = 0;
put ’ ’;
put ’Calling queue_gethdr’;
call queue_gethdr(qid, desc, respQ, dt,

origin, security, corr, rc);

if rc = 0 then do;
put ’Gethdr successful’;
put ’Desc is ’ desc;
end;

else do;
msg = sysmsg();
put msg;

end;
end; /* if msgtype is 65539 */

QUEUE_GETPROP

Get queue properties.

Syntax
CALL QUEUE_GETPROP(queueId, rc, type, def, msgpsist, dlvrmode, crdt, depth,

maxdepth, maxmsgl);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

404 QUEUE_GETPROP 4 Chapter 37

Where... Is type... And represents...

type C indicates what happens to a queue after the
queue is closed

def C defines how the queue was created

msgpsist C message persistence enablement

dlvrmode C message delivery mode

crdt N queue creation date/time stamp

depth N queue current depth

maxdepth N queue maximum depth allowed

maxmsgl N queue maximum message length allowed

The QUEUE_GETPROP routine is used to retrieve the properties that are
associated with a queue.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

The type parameter indicates if the queue is defined to be temporary or permanent.

TEMPORARY
The queue is deleted after it is closed.

PERMANENT
The queue continues to exist after it is closed.

The def parameter is used to specify if the queue is defined by using pre-defined
attributes or dynamic creation attributes.

PREDEFINED
DYNAMIC

The msgpsist parameter indicates whether messages delivered to this queue will
persist on the queue indefinitely or until they are explicitly fetched from the queue or
until the queue is closed.

YES Messages will persist.

NO Messages will not persist.

The dlvrmode parameter indicates the queue’s message delivery mode:

DEFAULT
A query on the queue retrieves the message header information as well as the actual
message.

NOTICE
A query on the queue retrieves the message header information only.

The crdt parameter is the date and time when the queue was created.

The depth parameter indicates the current number of messages on the queue (depth
of the queue).

CALL Routine Interface to Indirect Messaging 4 QUEUE_SETPROP 405

The maxdepth parameter indicates the maximum number of messages that can be
held by the queue (-1 is unlimited).

The maxmsgl parameter indicates the maximum length of a message for the queue
(-1 is unlimited).

QUEUE_GETPROP Example

This example prints the information that is obtained about a queue.

length type def msgpsist dlvrmode $20;
length crdt depth maxdepth maxmsgl 8;

call queue_getprop(qid, rc, type, def, msgpsist,
dlvrmode, crdt, depth, maxdepth, maxmsgl);

if rc = 0 then do;
put ’Queue properties:’;
put ’type = ’ type;
put ’definition = ’ def;
put ’msgpsist = ’ msgpsist;
put ’dlvrmode = ’ dlvrmode;
put ’creation date/time = ’ crdt datetime.;
put ’depth = ’ depth;
put ’maxdepth = ’ maxdepth;
put ’maxmsgl = ’ maxmsgl;

end;
else do;

msg = sysmsg();
put msg;

end;

QUEUE_SETPROP

Set queue properties.

Syntax

CALL QUEUE_SETPROP(queueId, rc, dlvrmode, maxdepth, maxmsgl);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

dlvrmode C message delivery mode

406 QUEUE_GETSEC 4 Chapter 37

Where... Is type... And represents...

maxdepth N queue maximum depth allowed

maxmsgl N queue maximum message length allowed

The QUEUE_SETPROP routine allows you to set certain queue properties. In
particular, you may set message delivery mode if there are no active (open) fetch or
browse queue instances. You may also set the maximum queue depth as well as the
maximum message length.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

The dlvrmode parameter indicates the queue’s message delivery mode:

DEFAULT
A query on the queue retrieves the message header information as well as the actual
message.

NOTICE
A query on the queue retrieves the message header information only.

The maxdepth parameter indicates the maximum number of messages that can be
held by the queue (-1 is unlimited).

The maxmsgl parameter indicates the maximum length of a message for the queue
(-1 is unlimited).

QUEUE_SETPROP Example

This example re-sets the message delivery mode to NOTICE as well as sets the
maximum depth and maximum message length. If you do not want to set a particular
queue property, set its value to an empty string if its type is character, or set its value
to missing if its type is numeric.

length dlvrmode $20;
length maxdepth maxmsgl 8;

dlvrmode="notice";
maxdepth=50;
maxmsgl=4096;
call queue_setprop(qid, rc, dlvrmode,

missing, missing);

if rc ^= 0 then do;
msg = sysmsg();
put msg;

end;
else put ’Setprop was successful’;

QUEUE_GETSEC
Set queue security.

CALL Routine Interface to Indirect Messaging 4 QUEUE_GETSEC 407

Syntax
CALL QUEUE_GETSEC(queueId, rc, security);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

security C security permissions string

The QUEUE_GETSEC routine allows you to obtain information about the
permissions or privileges that are associated with a particular queue.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

The security parameter is the access control list for the queue. This parameter is
returned in the form

’user1:permissions,user2:permissions,...’

where permissions is one or more of the following separated by a plus sign (+):

DELIVER|D
Deliver privileges.

FETCH|F
Fetch privileges.

BROWSE|B
Browse privileges.

GETPROP|GP
Get properties privileges.

SETPROP|SP
Set properties privileges.

GETSEC|GS
Get security privileges.

SETSEC|SS
Set security privileges.

ALL
Full privileges.

QUEUE_GETSEC Example

This example obtains a list of user privileges for a specific queue.

length security $200;
security="";

408 QUEUE_SETSEC 4 Chapter 37

call queue_getsec(qid, rc, security);

if rc ne 0 then do;
msg = sysmsg();
put msg;

end;
else do;

put ’User Access Rights:’;
put security;

end;

QUEUE_SETSEC

Set queue security.

Syntax
CALL QUEUE_SETSEC(queueId, rc, security);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

security C security permissions string

The QUEUE_SETSEC routine allows you to set the permissions or privileges that
are associated with a specific queue.

If an error or a warning condition is encountered, a non-zero return code is returned
in the rc parameter. Use the SYSMSG() function to print the message that is associated
with the non-zero rc.

The security parameter is the access control list for the queue. This parameter is
sent in the form of

’user1:permissions,user2:permissions,...’

where permissions is one or more of the following separated by a plus sign (+):

DELIVER|D
Deliver privileges.

FETCH|F
Fetch privileges.

BROWSE|B
Browse privileges.

CALL Routine Interface to Indirect Messaging 4 QUEUE_CLOSE 409

GETPROP|GP
Get properties privileges.

SETPROP|SP
Set properties privileges.

GETSEC|GS
Get security privileges.

SETSEC|SS
Set security privileges.

ALL
Full privileges.

QUEUE_SETSEC Example

This example sets two user privileges for a specific queue. The first user (USER1) is
defined to have all or full privileges. Full privileges consist of the following: deliver,
fetch, browse, get properties, set properties, get security, and set security. The second
user (USER2) is defined to have only browse, get properties, and get security privileges.

length security $200;
security="user1:all,user2:b+gp+gs";
call queue_setsec(qid, rc, security);

if rc ne 0 then do;
msg = sysmsg();
put msg;

end;
else put ’SetSec was successful’;

QUEUE_CLOSE

Closes a queue.

Syntax
CALL QUEUE_CLOSE(queueId, rc<, attribs>);

Where... Is type... And represents...

queueId N queue identifier

rc N return code

attribs C (optional) attributes

When invoked on a queueId, QUEUE_CLOSE closes the queue. The queueId is no
longer open and no subsequent messaging can occur on this queueId.

410 QUEUE_CLOSE 4 Chapter 37

If an error or a warning condition is encountered during the close, a non-zero return
code is returned in the rc parameter. Use the SYSMSG() function to print the message
that is associated with the non-zero rc.

The following optional attribs may be specified on the close:

SURVIVE
This attribute indicates that the queue will not be purged from memory. Its purpose
is to allow temporary queues a way to survive an initial close, thereby preserving the
queue for the life of the DOMAIN server without having to back messages to disk.

DELETE
This attribute causes a permanent dynamic queue to be deleted if no messages reside
on the queue. If messages still exist on the queue, the queue is closed, but a warning
is returned to designate that the queue was not deleted as intended. If you use this
attribute to close an administrator pre-defined queue, a warning is returned because
these types of queues can only be deleted by an administrator using PROC ADMIN.
This attribute is ignored when closing temporary queues because they are
automatically deleted when the creating instance closes it.

DELETE_PURGE
This attribute behaves exactly as the DELETE attribute does but there is one
difference. DELETE_PURGE causes a permanent dynamic queue to be deleted even
if messages remain on the queue.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

