411

CHAPTER

38

The DOMAIN Server

Introduction 411
Collection Manager 412
Queue Management 412
Example 413
DOMAIN Registry 413
Registry Syntax 413
USER Directive - defines users and their identifiers. 413
GROUP Directive - defines a group of users. 413
QUEUE Directive - defines message queue and its attributes. 414
ADMIN Directive - defines queue administrative privileges for a specific user or a
group. 415
Agent Scheduling 416
Protocol Gateway 417
System Requirements 417
Using the Protocol Gateway 418
Example 418

Introduction

The DOMAIN server technology delivers protocol-independent messaging and
eliminates the requirement for licensing, configuring, and supporting multiple protocol
stacks in a given environment.

The DOMAIN server manages intercommunications in SAS/CONNECT by providing
four services:

Collection Management
separates queues into collections and is responsible for starting the queue
manager for processing individual messages.

Queue management
allocates the queues, maintains access information for each queue, and
administers the messages that belong to each queue.

Agent scheduling
is a client/server-based implementation of a periodic job scheduler and can also
provide on-demand execution.

Protocol gateway
allows message exchange between SAS sessions that run in a network
environment and use different network access methods. A network is made up of
one or more logical domains. A logical domain maps a topological area according to
the communications protocol or access method that it supports.

412 Collection Manager A Chapter 38

Collection Manager

The DOMAIN server is used to initialize the collection manager by using PROC
DOMAIN with the COLLECTION option. The collection manager manages the
grouping of queues into collections in addition to starting the queue manager for
processing individual messages.

The collection manager must be initialized before applications can use the
indirect-messaging facility. The following figure illustrates the basic structure of the
SAS indirect-messaging facility. In this figure, the dashed represents the DOMAIN
server in which the collection manager and the queue managers execute.

Figure 38.1 Basic Structure of Indirect-Messaging

Platform A Platform B
Program 1 Program 2
DOMAIN Server

Collection Manager

Queue Manager Queue Manager
Queuel| | Queue?2 Queue 1
Collection 1 Collection 2

Queue Management

The queue manager is responsible for allocating the queues, maintaining access
information for each of the queues, and administering the messages that belong to each
queue.

Queues can be designated as permanent or temporary. Permanent queues remain
until they are explicitly deleted. Temporary queues are implicitly deleted when they are
closed.

Messages within permanent queues may be persistent or non-persistent. Persistent
messages remain indefinitely until they are fetched, even if the DOMAIN server process
is shutdown. Non-persistent messages are purged when a queue is closed.

The queue manager is solely responsible for maintaining the queues and for ensuring
that the messages in the queues reach their destination when requested and are not
lost. The queue manager is also responsible for establishing the information that is
needed by the network protocols that are being used to transmit the messages to and
from the queues.

The DOMAIN Server A DOMAIN Registry 413

Example

The COLLECTION option must be specified in the PROC DOMAIN statement, in
order to use indirect messaging. An example follows:

libname domain ".";
proc domain collection id=/shr9;
run;

After it is started, the collection manager continues to run until the PROC ADMIN
statement is used to terminate it.

DOMAIN Registry

Administrator capabilities are an important part of message queueing functionality.
Allowing an administrator to register queues provides centralized control of queue
definition (how the queue functions as well as who can access it).

All queues are registered or defined, either dynamically or explicitly, through a
registration process. A queue that is explicitly registered is known as an administrator
pre-defined queue. This type of queue is a permanent queue. It can only be deleted by
an administrator who uses the Administrator Procedure Interface. This section
discusses how to define such a queue. Refer to either Chapter 35, “SAS Component
Language (SCL) Interface to Indirect Messaging,” on page 327 or Chapter 37, “CALL
Routine Interface to Indirect Messaging,” on page 375 for information about how to
dynamically create a queue.

An administrator pre-defined queue can be registered during the PROC DOMAIN
collection initialization if proper steps are taken. If a registration file has been created
and a fileref of REGISTRY exists that references this file, the DOMAIN server will
parse, interpret, and process this registry information.

Registry Syntax

Comments (/* ... */) can be included anywhere within the file. Queue definition as
well as administrator privilege registration can be accomplished from four types of
directives: USER, GROUP, QUEUE, and ADMIN.

USER Directive - defines users and their identifiers.
Syntax Notes:

username
is a descriptive name for the userid. This name may be a maximum of 32
characters in length. It is only significant to the administrator of this file.

userid
identifies connecting users and may be a maximum of 20 characters in length.

USER username userid;
USER username userid;
USER username userid;

GROUP Directive - defines a group of users.
Syntax Notes:

groupname
identifies a group of users and may be a maximum of 32 characters in length.

414 DOMAIN Registry A Chapter 38

username
identifies a previously defined user name from a USER directive.

GROUP groupname
username
username
username;

QUEUE Directive - defines message queue and its attributes.
Syntax Notes:

gueue_name
identifies the name of the queue and may be a maximum of 32 characters in length.

collection_name
identifies the collection that the queue belongs to. It can be a maximum of 32
characters in length.

msgpsist
identifies whether messages on this queue are persistent. Persistent messages
remain on the queue across queue open-and-close boundaries as well as DOMAIN
server start-and-stop boundaries. Valid values for this attribute are yes or no.
The default is no, which means that messages do not persist.

msgdlvmode
identifies the type of delivery mode operation that is used to fetch or to browse
messages from this queue. Valid values for this attribute are default (fetch-mode
operation) or notice (notice-mode operation). The default is default, which
specifies the fetch-mode operation.

maxdepth
identifies the maximum depth restriction imposed on this queue. Valid queue
depth values are in the range -1<=maxdepth<=maxint. The default is -1, which
indicates unlimited depth.

maxmsgl
identifies the maximum message length for messages that are delivered to this
gueue. This maximum length must account for additional internal bytes that are
needed to represent the data within each message. Attachment lengths are not
taken into consideration, only the length of the actual message itself. Valid values
are in the range -1<=maxmsgl<=maxint. The default is -1, which indicates
unlimited message length.

username_or_groupname
identifies a previously defined user name from a USER directive, a previously
defined group name from a GROUP directive, or the special name ANONYMOUS,
which can be used to grant privileges to all users.

permissions
are specified by using the following values (an abbreviated form of these values is
also acceptable):

DELIVER | D
Deliver privileges.

FETCH | F
Fetch privileges.

BROWSE | B
Browse privileges.

The DOMAIN Server A DOMAIN Registry 415

GETPROP | GP
Get property privileges.

SETPROP | SP
Set property privileges.

GETSEC | GS
Get security privileges.

SETSEC | SS
Set security privileges.

ALL
Full privileges.
Combinations of the above are also acceptable by separating values with either
a plus sign (+) or a comma (,). For example, you could give DELIVER and
BROWSE privileges to a user by specifying one of the following:

o DELIVER,BROWSE
o D+B (abbreviated form).

replace
identifies the action to take if queue already exists. Valid values for this action are:

no
indicates to continue without replacement (definition is ignored). This is the

default.

yes
indicates to replace queue with new definition and refresh the queue by

deleting any old messages.

prompt
specifies that you are prompted for the action to take.

QUEUE queue_name COLLECTION|C(collection_pame)

MSGPSIST (msgpsist)

MSGDLVMODE (msgdlvmode)

MAXDEPTH (maxdepth)

MAXMSGL (maxmsgl)

PRIVILEGES (username_or groupname=permissions
username_oOr groupname=permissions
username_Or groupname=permissions)

REPLACE (replace)

ADMIN Directive - defines queue administrative privileges for a specific
user or a group.

Syntax Notes:

username_or_groupname
identifies a previously defined user name from a USER directive, a previously
defined group name from a GROUP directive, or the special name ANONYMOUS,
which can be used to grant privileges to all users.

permissions
are specified with the following values (an abbreviated form of these values is also

acceptable):

416 Agent Scheduling A Chapter 38

UNLIMITED | U
unlimited privileges; user can issue any administrator command.

DISPLAY | D
display privileges; user can only issue the display command. They cannot
issue any destructive commands.

replace
identifies the action to take if administrator privileges already exist. Valid values
for this action are:

no
indicates to continue without replacement (new privileges are ignored). This
is the default.

yes
indicates you should replace existing privileges with new ones.

prompt
specifies that you are prompted for the action to take.

ADMIN
PRIVILEGES (username_oOr groupname=permissions
username_oOr groupname=permissions
username_Or groupname=permissions)
REPLACE (replace)

Agent Scheduling

Agent services is used with compute services and messaging services to provide client/
server based task management for the nodes across your network. An agent is simply
SAS source code that is launched by the DOMAIN server to support the execution of a
task on a remote node. After the task has finished executing, an agent may be designed
to send a completion notification to a message queue for the client application, or the
client can check the DOMAIN server to see if the agent has completed execution.

The source that composes an agent may be pre-defined and stored with the DOMAIN
server, or the source may be defined dynamically with the request for the agent to
execute.

Client/server-based agents provide the following types of services:

o distributed agent processing
O periodic agent processing

o conditional agent processing
o parallel agents processing.

These services can be used together to maximize the flexibility and functionality of a
client/server application. For example, using agent services, an application can be
designed to execute autonomously on a periodic basis. The application can make
conditional decisions to satisfy its goals, including submitting other processes for
execution on various hosts on the network. See Chapter 40, “Using Agent Services,” on
page 429 for more information.

The AGENT option must be specified in the PROC DOMAIN statement, in order to
use agent services. An example follows:

The DOMAIN Server A System Requirements 417

libname domain ".";
proc domain agent;
run;

For more information about configuring and using the DOMAIN server, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE Software.

Protocol Gateway

The protocol gateway service connects two SAS sessions that do not use a common
communications access method in a networked environment. A network comprises one
or more logical domains, each of which maps a topological area according to the
communications protocol or access method that it supports.

A SAS session can communicate with any other SAS session that runs in the same
logical domain because both sessions use the same access method. Furthermore, SAS
sessions from different logical domains can communicate by means of the DOMAIN
server if at least one domain supports multiple access methods (one of which must be
used in both domains). The DOMAIN server eliminates the need to configure multiple
protocols in a given domain.

The DOMAIN server provides the gateway that allows communication between SAS
sessions that are running in different logical domains, as illustrated in the following
figure.

Figure 38.2 Protocol Gateway Service with DOMAIN Server

NetBIOS Domain APPC Domain
DOMAIN Server
0S/390 1
Protocol Gateway
APPC
NetBIOS NetBIOS | APPC
PC 2 PC3 0S/390 2
NetBIOS NetBIOS APPC

All sessions in both domains can intercommunicate by using the DOMAIN server’s
set of common access methods. A message flows over the originator’s native access
method to the DOMAIN server. This access method is called the inbound access
method. The server re-directs a message to the cross-domain destination by using the
destination’s native access method. Conversely, the outbound access method is the
access method that is used on the target host side of the protocol gateway.

System Requirements

The DOMAIN server requires a dedicated SAS session that runs in an OS/2 or in a
Windows NT environment.

418

Using the Protocol Gateway A Chapter 38

Using the Protocol Gateway

To connect two SAS sessions when using the protocol gateway of the DOMAIN
server, you must initialize the DOMAIN server and specify the inbound and outbound
communication access methods for the DOMAIN server. For the TCP/IP outbound
access method, sign-on scripts must be specified for the DOMAIN server.

Note: If you use the TCP/IP access method, you may need to configure the DOMAIN
server in the SERVICES file. a

In addition, you must set macro variables at the SAS/ICONNECT local host or at the
SAS/SHARE client to identify the DOMAIN server node name and the server identifier
and to provide DOMAIN server security for connecting local hosts or clients. The macro
variables that are set are based on the inbound access method that is used.

You must also specify the remote host that you are connecting to, the local host, and
the security environment variables that will be used for the userid and password of the
target host. The DOMAIN server supplies the specified value to the outbound access
method, which negotiates security with the target host.

For more information about configuring and using the DOMAIN server, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE Software.

Example

The PROTOCOL option in the PROC DOMAIN statement is used to create the
DOMAIN server DOMSVR using the TCP/IP access method. The COMAMID,
COMAUX1 and COMAUX2 options should be specified on the command line or in your
configuration file.

The macro variable GWHOST stores the fully qualified TCP/IP node name of the
DOMAIN server STAR.XYZ.ABC and has the userid BASS and the password TIME2GO.

proc domain protocol serverid=domsrv;
Submit the following statements from the SAS/CONNECT local host:

%let GWHOST=STAR.XYZ.ABC;
%let TCPGW=GWHOST.DOMSRV;
%let TCPSEC=bass.time2go;

options comamid=tcp remote=RMTNODE;
signon;

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-477-2

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM®, AIX® , DB2®, 0S/2® , 0S/390%® , RS/6000® , System/370TM, and System/390° are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE?® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

