
433

C H A P T E R

41
SAS Component Language (SCL)
Interface to Agent Services

Introduction 433
Agent Services Methods 433

Dictionary 434

Introduction
Agent services are provided by the AGENT class.

PARENT:
SASHELP.FSP.OBJECT.CLASS

CLASS:
SASHELP.CONNECT.AGENT.CLASS

Agent Services Methods
The following is a summary of the methods specific to the AGENT class:

_setDomainInfo
Initialize target DOMAIN server context information.

_defineAgent
Define an agent to the DOMAIN server.

_getAgentProperties
Retrieve properties about one or more agents.

_runAgent
Run an agent defined to the DOMAIN server.

_abortAgentRun
Abort an agent run instance.

_retrieveAgentRunInfo
Retrieve the spool for a given agent run instance.

_storeAgentRunInfo
Retrieves and stores the spool for a given agent run instance in an external file or
catalog entry.

_purgeAgentRunInfo
Purge the run instance spool for an agent.



434 Dictionary 4 Chapter 41

_deleteAgent
Delete an agent defined to the DOMAIN server.

The notation that is used to explain the parameter types is

C Character Type

N Numeric Type

L SCL List Type.

Dictionary

_setDomainInfo

Initialize target DOMAIN server context information.

Syntax
CALL SEND(agentInst, ’_setDomainInfo ’, domainName, collectionName, rc <,

securityInfo, stationInst>);

Syntax Description

Where... Is type... And represents...

domainName C target DOMAIN server location string

collectionName C domain logical application partition

rc N return code

securityInfo C security string (optional)

stationInst N previously opened Station instance (optional)

_setDomainInfo method
When invoked on an Agent instance, _setDomainInfo initializes the target DOMAIN
server context information. The DOMAIN server information specified here will be
used for all subsequent agent class methods that are invoked.

domainName
is the target DOMAIN server location string. It identifies the node and service where
the DOMAIN server is executing. For example, the following specification indicates
that the DOMAIN server is running on the node MYNODE.XYZ.COM that has a
service of DOMSVR:

//mynode.xyz.com/domsvr



SAS Component Language (SCL) Interface to Agent Services 4 _defineAgent 435

collectionName
is the application collection name. It is a logical partition name (namespace
partitions) that allows segregation within a domain. For example, a site may utilize
a collection-per-department scheme.

rc
is the return code.

securityInfo
is optional. It is the security string in the form of USERID.PASSWORD. It must be
an appropriate userid and password for a login to the system that executes the
DOMAIN server. securityInfo is needed if the target DOMAIN Server is executing in
a secured session.

stationInst
is optional. If it is specified, it should be a previously opened instance. In this case,
the domain, the collection, and the security parameters that are specified on the
station OPEN are used, and they will take precedence over those same parameters
that are specified here.

_defineAgent

Define an agent to the DOMAIN server.

Syntax

CALL SEND(agentInst, ’_defineAgent ’, agentName, rc
<, descriptor, runLoc, securityInfo, scheduling, notifQueue, notifType, notifDisp>);

Syntax Description

Where... Is type... And represents...

agentName C user-specified name to be assigned to agent

rc N return code

descriptor C optional text description

runLoc C optional host location to run agent

securityInfo C optional security information

scheduling L optional repetitive run scheduling parameters

notifQueue C optional asynchronous notification queue name

notifType C optional run notification form

notifDisp C optional notification spool disp



436 _defineAgent 4 Chapter 41

_defineAgent method
defines an agent to the DOMAIN server. Any SAS statements currently in the
preview buffer are collected and defined to the agent, so that when it runs, the
collected statements will execute.

agentName
is a user-specified agent name that uniquely identifies the agent. It must be unique
within the application collection.

rc
identifies whether the agent was successfully defined to the DOMAIN server.

All parameters that follow the rc parameter are optional and positional. They are
defined as follows:

descriptor
is a user-specified text description of the agent.

runLoc
identifies the host and spawner on which the agent should actually run when it
executes. The agent may be defined to the DOMAIN server that exists on host A, but
the agent may actually be defined to execute on host B. For example, the following
specification indicates the spawner is running on the node HOSTB.XYZ.COM and
has a service name of SPAWNSRV:

//hostb.xyz.com/spawnsrv

Note: Windows and OS/2 hosts do not require the service name. All other hosts
require both the node name and service name. 4

securityInfo
is the USERID.PASSWORD specification needed when the agent actually runs
(executes) on a given host. This may be different from the USERID.PASSWORD that
is specified on the _setDomainInfo method. In that case, userid.password is used to
communicate with the DOMAIN server when running secured. In this case,
userid.password is used to launch the agent on the specified host.

scheduling
is an SCL list that contains scheduling information. If no list is specified, the agent
is defined to the DOMAIN server but is not scheduled to run. In this situation, the
_runAgent method has to be invoked to execute the agent.

The scheduling parms list can be specified to identify times and dates on which the
agent should run. The bold items that are listed below are supported named-items that
can be specified in the list.

Note: Day-of-Week and Month-and-Day scheduling parms are mutually exclusive.
Use one form or the other, but not both. 4

Day-of-Week Schedule

RUN_DOW
the value 1 represents Sunday and 7 represents Saturday. A single day must be
specified by using a single number. Multiple days must be specified by using



SAS Component Language (SCL) Interface to Agent Services 4 _defineAgent 437

comma delimiters (2,4,6 for Monday, Wednesday, Friday). A range must be
specified by using a hyphen delimiter (1-7).

Month-and-Day Schedule

RUN_MONTH
the value 1 represents January and 12 represents December. Single, multiple, and
range specifications (similar to RUN_DOW) are supported.

RUN_DAY
values range between 1 and 31 to represent the day of the month the agent is
scheduled to run. For the agent to execute, the day of the month must be valid.

Time Schedule

RUN_HOUR
indicates hour portion of the agent run launch time (per 24-hour time, 1:00 PM is
13:00).

RUN_MINUTE
indicates minute portion of the agent run launch time.

NotifQueue
identifies the name of the queue in which to send a message when the agent has
successfully run. If the queue does not exist, it will be dynamically created. This
queue can then be checked periodically by querying the queue to see if there is a
message. A message TYPE value of 65539 is reserved and indicates that this
message was sent as a result of an agent run completion. The header parameter from
the query can then be evaluated. The header will contain the following named items:

AGENT_NAME
identifies the name of the agent that ran.

AGENT_RUN_COMPLETION_STATUS
is used to determine whether the agent run was successful.

AGENT_RUN_KEY
is used to retrieve the spool from the run instance.

AGENT_RUN_DATETIME
is the date and time the agent was run.

DESCRIPTOR
is a user-specified text description of the agent.

notifType
indicates the form of the agent run completion notification message. The following
values are supported:

COMPLETE
indicates that only completion notification occurs

FULL
indicates that along with completion notification, the run log and listing output
spool are included with the notification.

LOG
indicates that along with completion notification, the run log spool is included with
the notification.



438 _getAgentProperties 4 Chapter 41

LIST
indicates that along with completion notification, the listing output spool is
included with the notification.

notifDisp
indicates whether the run spool is or is not retained. The following values are
supported:

RETAIN
indicates that the run spool is retained after run completion notification. The user
must execute the _purgeAgentRunInfo method to delete the spool.

PURGE
indicates that the run spool is deleted subsequent to notification.

Example 1

This program sets a schedule list to run on July 4, at 8:10 p.m.

rc = setnitemn(schedule, 7, -1, "RUN_MONTH");
rc = setnitemn(schedule, 4, -1, "RUN_DAY");
rc = setnitemn(schedule, 20, -1, "RUN_HOUR");
rc = setnitemn(schedule, 10, -1, "RUN_MINUTE");

Example 2

This program sets a schedule list so that it runs every Monday at 7:30 a.m.

rc = setnitemn(schedule, 2, -1, "RUN_DOW");
rc = setnitemn(schedule, 7, -1, "RUN_HOUR");
rc = setnitemn(schedule, 30, -1, "RUN_MINUTE");

_getAgentProperties

Retrieve properties about one or more agents.

Syntax
CALL SEND(agentInst, ’_getAgentProperties ’, agentList, rList, rc);

Syntax Description

Where... Is type... And represents...

agentList L list of agents

rList L resulting properties list

rc N return code



SAS Component Language (SCL) Interface to Agent Services 4 _getAgentProperties 439

_getAgentProperties method
retrieves agent properties for a specific agent or multiple agents with the use of the
wildcard character (*).

agentList
indicates the targeted agents. This is an SCL list that must contain the named items
AGENT_NAME and COLLECTION_NAME. The values of these named items must
be character strings that indicate which agent and collections are to be used. You can
specify an asterisk (*) as a wildcard character in order to retrieve information about
more than one agent. The wildcard character can be specified by itself (*), at the
beginning of the value (*value), or at the end of the value (value*).

Note: In addition, the named item USER_NAME can optionally be specified to
further subset the request by only returning those agents that are owned by the
specified user name. The wildcard character can also be used for the user name
specification. 4

rList
is the agent(s) properties list returned from the method call. This parameter should
be initialized as an empty SCL list. Upon completion of the _getAgentProperties
method, rList contains a list for each agent that matches the specified criteria. Each
list within rList contains the following named items:

� AGENT_NAME
� COLLECTION_NAME
� OWNER_NAME
In addition, each list may contain one or more of the following named items,

depending on how the agent was defined. Only defined properties are returned. For
example, if the agent is defined without a description, the named item DESCRIPTOR
will not exist.

� DESCRIPTOR
� RUN_LOCATION
� RUN_COMPLETION_QUEUE
� SCHEDULED_TIME
� SCHEDULED_DATE
� RUN_MINUTE
� RUN_HOUR
� RUN_DAY
� RUN_MONTH
� RUN_DOW
� START_DAY
� START_MONTH
� START_YEAR
� STOP_DAY
� STOP_MONTH
� STOP_YEAR

rc
identifies whether the properties of the agent were returned successfully.

Example 1

The following example retrieves properties for all agents in all collections.



440 _runAgent 4 Chapter 41

rc = setnitemc(alist, ’*’, ’AGENT_NAME’);
rc = setnitemc(alist, ’*’, ’COLLECTION_NAME’);
call send(agent, ’_getAgentProperties’,

alist, rlist, rc);

Example 2

The following example retrieves properties for all agents named EMPLOYEE in all
collections that end in TEXAS.

rc = setnitemc(alist, ’Employee’, ’AGENT_NAME’);
rc = setnitemc(alist, ’*texas’, ’COLLECTION_NAME’);
call send(agent, ’_getAgentProperties’,

alist, rlist, rc);

Example 3

The following example retrieves properties for all agents that start with PROD that
are in the CARY collection.

rc = setnitemc(alist, ’Prod*’, ’AGENT_NAME’);
rc = setnitemc(alist, ’Cary’, ’COLLECTION_NAME’);
call send(agent, ’_getAgentProperties’,

alist, rlist, rc);

Example 4

The following example retrieves properties for all agents that are owned by the user
USER3.

rc = setnitemc(alist, ’*’, ’AGENT_NAME’);
rc = setnitemc(alist, ’*’, ’COLLECTION_NAME’);
rc = setnitemc(alist, ’USER3’, ’USER_NAME’);
call send(agent, ’_getAgentProperties’,

alist, rlist, rc);

_runAgent

Run an agent defined to the DOMAIN Server.

Syntax

CALL SEND(agentInst, ’_runAgent ’, agentName, runKey, rc <, descriptor, runLoc,
securityInfo, notifQueue, notifType, notifDisp>);

Syntax Description



SAS Component Language (SCL) Interface to Agent Services 4 _runAgent 441

Where... Is type... And represents...

agentName C name of agent to run

runKey N run instance key

rc N return code

descriptor C optional text description

runLoc C optional host location to run agent

securityInfo C optional security information

notifQueue C optional asynchronous notification queue name

notifType C optional run notification form

notifDisp C optional notification spool disp

_runAgent method
runs an agent that is defined to the DOMAIN server. If the preview buffer is empty
when _runAgent is invoked, the agent must have already been defined by using the
_defineAgent method. Otherwise, the SAS statements within the preview buffer are
collected and executed when the agent runs.

agentName
is an agent that has been defined to the DOMAIN server using the _defineAgent
method.

runKey
is returned from the _runAgent method and can be used to retrieve the run
information for this particular run.

rc
parameter identifies whether the launch of the agent run was successful.

All parameters that follow the rc parameter are optional and positional. These
parameters are

descriptor
is a user-specified text description of the agent.

runLoc
identifies the host and spawner on which the agent should actually run when it
executes. The agent may be defined to the DOMAIN server that exists on host A, but
the agent may actually be defined to execute on host B. For example, the following
specification indicates the spawner is running on the node HOSTB.XYZ.COM and
has a service name of SPAWNSRV:

//hostb.xyz.com/spawnsrv

Note: Windows and OS/2 hosts do not require the service name. All other hosts
require both the node name and service name. 4

securityInfo
is the userid.password specification that is needed when the agent actually runs
(executes) on a given host. This may be different from the userid and password that
are specified in the _setDomainInfo method. In that case, userid.password



442 _abortAgentRun 4 Chapter 41

communicates with the DOMAIN server when it runs secured. In this case,
userid.password launches the agent on the specified host by using runLoc.

notifQueue
identifies the name of the queue in which to send a message when the agent has
successfully executed. This queue can then be checked periodically by querying the
queue to see if there is a message. A message TYPE value of 65539 is reserved and
indicates that this message was sent as a result of an agent run completion. The
header parameter from the query can then be evaluated. The header will contain the
following named items:

AGENT_NAME
identifies the name of the agent that ran.

AGENT_RUN_COMPLETION_STATUS
can be used to determine whether the agent run was successful.

AGENT_RUN_KEY
can be used to retrieve the spool from the run instance.

AGENT_RUN_DATETIME
is the date and time the agent was run.

DESCRIPTOR
is a user-specified text description of the agent run.

notifType
indicates the form of the agent run-completion notification message. The following
values are supported:

COMPLETE
indicates that only completion notification occurs.

FULL
indicates that along with completion notification, the run log and listing output
spool are included with the notification.

LOG
indicates that along with completion notification, the run log spool is included with
the notification.

LIST
indicates that along with completion notification, the run listing output spool is
included with the notification.

notifDisp
indicates whether the run spool is retained. The following values are supported:

RETAIN
indicates that the run spool is retained after run-completion notification. The user
must execute the _purgeAgentRunInfo method to delete the spool.

PURGE
indicates that the run spool is deleted subsequent to notification.

_abortAgentRun

Abort an agent run instance.



SAS Component Language (SCL) Interface to Agent Services 4 _retrieveAgentRunInfo 443

Syntax
CALL SEND(agentInst, ’_abortAgentRun ’, agentName, runKey, rc);

Syntax Description

Where... Is type... And represents...

agentName C name of agent to delete

runKey N run instance key

rc N return code

_abortAgentRun method
aborts a specific run instance that is executing.

The agentName and runkey parameters identify the specific run instance of the
agent to abort.

agentName
is an agent that has been defined to the DOMAIN server by using the _defineAgent
method.

runKey
is returned from the _runAgent method and is used to retrieve the run information
for this particular run.

rc
indicates the success or failure of the abort.

_retrieveAgentRunInfo
Retrieves the spool for a given agent run instance.

Syntax
CALL SEND(agentInst, ’_retrieveAgentRunInfo ’,

agentName, runKey, dateTime, cc, rc
<, logSpool, listSpool>);

Syntax Description

Where... Is type... And represents...

agentName C name of agent

runKey N run instance key

dateTime N date-time stamp



444 _retrieveAgentRunInfo 4 Chapter 41

Where... Is type... And represents...

cc N completion code

rc N return code

logSpool N optional log spool model object id

listSpool N optional list spool model object id

_retrieveAgentRunInfo method
retrieves the log and output spool for a given agent run, which is identified by the
agentName and runKey parameters. The output can be displayed in a FRAME text
viewer.

agentName
is an agent that has been defined to the DOMAIN server using the _defineAgent
method.

runKey
is returned from the _runAgent method and can be used to retrieve the run
information for this particular run.

dateTime
is a return parameter that holds the date/time stamp for the run instance.

cc
is a return parameter that holds the completion code; if cc is 0, the agent run
executed successfully.

rc
parameter indicates whether the _retrieveAgentRunInfo method was invoked
successfully.

All parameters after rc are optional and positional. These parameters are

logSpool
is the log spool model object id that identifies the model in which to display the log
spool that is retrieved. The SASHELP.CONNECT.RUNSPOOL class can be used to
present the run instance log spool.

listSpool
is the listing output spool model object id that identifies the model in which to display
the listing output spool that is retrieved. The SASHELP.CONNECT.RUNSPOOL
class can be used to present the run instance listing output spool.

Note: Both log and listing output may be directed to the same spool instance or to
different run spools. Either or both may be omitted as well. The run spool instances
may be displayed with the FRAME text viewer. 4

Example

This example retrieves the agent run information and displays the log and listing
output run spool in a FRAME text viewer instance named VIEWER_I.

model_c = loadclass(’sashelp.connect.runspool.class’);
model_i = instance(model_c);

call send(agentInst, ’_retrieveAgentRunInfo’,



SAS Component Language (SCL) Interface to Agent Services 4 _storeAgentRunInfo 445

agent_name, runkey, rundt, runcc, rc,
model_i, model_i);

call notify(’viewer_i’, ’_ATTACH_’, model_i);

_storeAgentRunInfo

Retrieves and stores the spool for a given agent run instance in an external file or catalog entry.

Syntax
CALL SEND(agentInst, ’_storeAgentRunInfo ’,

agentName, runKey, dateTime, cc, type, logSpec,
listSpec, rc);

Syntax Description

Where... Is type... And represents...

agentName C name of agent

runKey N run instance key

dateTime N date/time stamp

cc N completion code

type C type of storage file

logSpec C external file or catalog in which to store the log

listSpec C external file or catalog in which to store the listing
output

rc N return code

_storeAgentRunInfo method
retrieves the log and listing output spool for a given agent run which is identified by
the agentName and runKey parameters and stores it in either an external file or
catalog entry.

agentName
is an agent that has been defined to the DOMAIN server using the _defineAgent
method.

runKey
is returned from the _runAgent method and is used to retrieve the run information
for this particular run.

dateTime
is a return parameter that holds the date/time stamp for the run instance.



446 _purgeAgentRunInfo 4 Chapter 41

cc
is a return parameter that holds the completion code. If 0, the agent run executed
successfully.

type
parameter indicates the type of file in which the agent run information will be
stored. This parameter must have a value of either CATALOG or EXTERNAL.

logSpec
listSpec

parameters indicate the file(s) in which to store the log and listing output from the
agent run. These parameters will vary based on the value of type:

� If type is CATALOG, logSpec and listSpec must be a valid catalog names that
represent the catalog entry. It must be in the form of

libname.memname.entryname

entrytype does not have to be specified because the log information is stored
in an entrytype of AGENTLOG and the output is stored in an entrytype of
AGENTOUT.

� If type is EXTERNAL, logSpec and listSpec must be valid filerefs. When an
external file is used, the user has the flexibility to decide whether to store the
log and listing output in the same file or in separate files. If they are identical,
the log and listing output are stored in the same file. If not, the log and listing
output are stored separately.

rc
indicates whether the _storeAgentRunInfo method was invoked successfully.

Example

This example stores the agent run info in the external file EXTREF, which is defined
by the fileref.

ftype = ’EXTERNAL’;
fref = ’extref’;
rc = filename(’extref’, ’/tmp/agent.txt’);
call send(agentInst, ’_storeAgentRunInfo’,

agent_name, runkey, rundt, runcc,
ftype, fref, rc);

_purgeAgentRunInfo
Purge the run instance spool of the agent.

Syntax
CALL SEND(agentInst, ’_purgeAgentRunInfo ’,

agentName, runKey, rc);

Syntax Description



SAS Component Language (SCL) Interface to Agent Services 4 _deleteAgent 447

Where... Is type... And represents...

agentName C name of agent to purge

runKey N run instance key

rc N return code

_purgeAgentRunInfo method
purges the spool from a specific run instance that is identified by the agentName and
the runKey parameters.

agentName
is an agent that has been defined to the DOMAIN server by using the _defineAgent
method.

runKey
is returned from the _runAgent method and is used to retrieve the run information
for this particular run.

rc
indicates the success or failure of the purge.

_deleteAgent

Delete an agent defined to the DOMAIN Server.

Syntax
CALL SEND(agentInst, ’_deleteAgent ’, agentName, rc);

Syntax Description

Where... Is type... And represents...

agentName C name of agent to delete

rc N return code

_deleteAgent method
deletes an agent defined to a particular DOMAIN server

agentName
is an agent that has been defined to the DOMAIN server by using the _defineAgent
method.

rc
indicates the success or failure of the deletion.



448 _deleteAgent 4 Chapter 41



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


