
xi

Changes and Enhancements

Introduction
The following section describes the changes and enhancements introduced in Version

7 or Version 8 of SAS/CONNECT Software. Unless otherwise stated, these changes and
enhancements apply to all of the operating environments that SAS/CONNECT supports.

Note: Information about changes and enhancements that were implemented in
Version 8 is preceded by . All other changes and enhancements described in this
section were implemented in Version 7. If your site upgraded directly from Version 6 to
Version 8, then all of the changes and enhancements described here are new to you. If
you upgraded from Version 7 to Version 8, then only the items preceded by are new
to you. 4

Asynchronous Remote Submits
SAS/CONNECT supports both synchronous and asynchronous remote processing. In

Version 6, only synchronous processing was supported. Synchronous processing means
that the processing on the remote host must be complete before you regain control of
your SAS session. Asynchronous processing means that control is returned immediately
so you can continue processing on the local host.

The following new statements are available for checking the status of asynchronous
remote processing and obtaining results from it:

RDISPLAY
creates windows for the log and output from an asynchronous remote submit.

RGET
retrieves the log and output from an asynchronous remote submit and merges
them with the local session.

New options have also been added to the SIGNON, the SIGNOFF and the RSUBMIT
statements to support asynchronous processing. The following options help control
access to and execution on the remote host:

CONNECTREMOTE=
identifies which remote session to connect to.

xii Changes and Enhancements

CONNECTSTATUS=
indicates whether the status window will be displayed during a file transfer.

CONNECTWAIT=
specifies whether a remote submit is processed synchronously or asynchronously.

CMACVAR=
identifies the name of a macro variable to associate with a remote submit.

CSCRIPT=
specifies a script file to use during SIGNON and SIGNOFF.

CSYSRPUTSYNC=
forces the macro variables for an asynchronous remote submit to be defined as
soon as %SYSRPUT executes rather than at a synchronization point.

For information about SIGNON, SIGNOFF, and RSUBMIT, see “SIGNON Command
and Statement” on page 227, “SIGNOFF Command and Statement” on page 233, and
“RSUBMIT Command and RSUBMIT Statement” on page 21.

Output Delivery System (ODS) Support
When using compute services in SAS/CONNECT software, you can use the Output

Delivery System (ODS) to change the format and appearance of SAS output that is
generated on a remote host. You can generate ODS output from a remote host when
using either a synchronous or an asynchronous remote submit. ODS statements and
procedures that support ODS can be used to

� convert each piece of output into an "object" that can be manipulated and viewed
� specify options for different ODS destinations, such as HTML or a SAS data set
� create or select templates to customize the output
� select and exclude output from the ODS object.

For more information about ODS support, see “Output Delivery System” on page 18.

Data Encryption
SAS/CONNECT provides data encryption to guarantee the security of data that is

sent across a network.
For the OS/390, OpenVMS, OS/2, and UNIX platforms, the purchase of a license for

SAS/SECURE is necessary. SAS/SECURE provides access to the encryption services of
the RSA BSAFE Crypto-C Toolkit.

In Version 8, SAS/SECURE introduces support for the RSA BSAFE Crypto-J
Toolkit, which supports Java clients that access SAS servers.

Encryption is specified by the following SAS options:

NETENCRYPTALGORITHM
specifies the encryption algorithm.

NETENCRYPT
specifies the requirement to operate in encryption mode; for example, both the
client and the server sessions must be operating in encryption mode.

NETENCRYPTKEYLEN
specifies the key length, 40-bits or 128-bits, to be used by the encryption algorithm.

Changes and Enhancements xiii

NETMAC
controls the use of Message Authentication Codes (MACs) on network
communications. A MAC is the equivalent of a checksum that is used to ensure
that the original message has not been modified.

For more information about data encryption, see Appendix 2, “Encryption Services,”
on page 487.

Cross-Environment Data Access (CEDA)

SAS software introduces a new cross-environment data access (CEDA) facility. CEDA
allows any SAS data file that is created on a directory-based host to be read by a SAS
session that is running on another directory-based host. The platforms that CEDA
supports are

� Windows NT

� Windows 95

� Windows 98

� OS/2

� Macintosh

� Solaris

� HP-UX

� RS/6000 AIX

� Compaq Tru64 UNIX (formerly Compaq’s DIGITAL UNIX)

� OpenVMS Alpha

� OpenVMS VAX

� OS/390 with UNIX Support Services

For more information about CEDA, see Chapter 13, “Using Cross-Environment Data
Access (CEDA),” on page 93.

The UPLOAD and the DOWNLOAD Procedures

The following sections describe several enhancements that have been made to the
UPLOAD and DOWNLOAD procedures. For more information about PROC UPLOAD
and PROC DOWNLOAD, see Chapter 17, “The UPLOAD Procedure,” on page 107 and
Chapter 18, “The DOWNLOAD Procedure,” on page 129.

Translation Technique
When both the local host and the remote host are running Version 7 or a later

release of SAS/CONNECT software, the translation rules have changed. First, no
translation occurs if both the remote and local hosts have the same machine
representations. This prevents any unnecessary translation from occurring. If
translation is needed, the receiving host translates the data directly into its native
representation. So, when both the local and remote hosts are Version 7 or later, the
data is translated only once when translation is necessary and is not translated when
both hosts have the same machine architecture.

xiv Changes and Enhancements

Using Wildcard Characters When Transferring Files
SAS/CONNECT supports the use of an asterisk (*) as a wildcard character for

transferring external text files or external binary files. The wildcard character may be
used with the INFILE= option to send

� all files in a specific library (*).
� all files with a specific extension (*.extension).
� all files with the same name, but different extensions (name.*).

Transferring SAS Files
The list of member types that can be transferred by using the MEMTYPE= option

has been expanded to include:
� DATA (SAS data files)
� CATALOG|CAT (SAS catalogs)
� VIEWS (SQL views)
� MDDB (multi-dimensional database)
� FDB (financial database)
� DMDB (data mining database)
� _ALL_ (all files in the library).

New Options
For PROC UPLOAD and PROC DOWNLOAD, you can use the following new options

to help identify the files that will be transferred, the translation tables to use, and the
transfer technique.

AFTER=
specifies that files are to be transferred only if they were modified on or after a
specific date.

EXTENDSN=
specifies whether or not to promote the length of short numerics.

TRANIN=
specifies a translation table to be used when transferring a data set that is stored
in a different data representation than that of the local host.

TRANNET=
specifies a translation table to be used when transferring a data set between local
and remote hosts that have different machine architectures.

TRANOUT=
specifies a translation table to be used when you are transferring a data set, and
the OUTREP= data set option indicates a data representation different from the
native data representation of the target host.

V6TRANSPORT
specifies that data should be translated from a local format to a transport format.
(The receiving host then translates the data from the transport format to a local
format.)

Changes and Enhancements xv

Messaging Services

SAS/CONNECT offers the ability to design and develop distributed applications that
communicate by using messages. Messaging services enables the programs that
compose a distributed application to communicate by sending data in the form of a
message. Two forms of messaging services are available: direct messaging and indirect
messaging. Both direct and indirect messaging enable you to include attachments with
messages that are sent between a client and a server portion of an application.

Direct Messaging
SCL programs can use direct messaging to communicate by sending messages

directly between each other. However, both portions of the application must be running
at the same time for the connection to be made.

For more information, see Chapter 29, “Using Direct Messaging,” on page 273.

Indirect Messaging
Indirect messaging enables programs to communicate indirectly by placing messages

on queues. When you use message queues, the programs do not have to be running at
the same time to communicate. SAS/CONNECT provides the following two interfaces
for accessing message queues: an SCL interface, and a CALL routine interface, which is
used with SAS DATA steps or SAS macros.

For more information, see Chapter 31, “Using Indirect Messaging,” on page 281.

Remote Objecting Services

SAS/CONNECT gives SAS/AF developers the ability to distribute selected portions of
their encapsulated object frameworks across remote session boundaries.

For more information, see Chapter 20, “Using Remote Objecting Services,” on page
173.

DOMAIN Server

The DOMAIN server has been enhanced to provide queue management and agent
scheduling in addition to protocol gateway services. A DOMAIN server is created by
using PROC DOMAIN.

For more information, see Chapter 38, “The DOMAIN Server,” on page 411.

Queue Management
The queue manager controls the queues that are used by applications that employ

the indirect-messaging facility.
For more information, see “Queue Management” on page 412.

xvi Changes and Enhancements

Agent Scheduling Services
These services are used as a client/server-based implementation of a periodic job

scheduler, with an extension to support on-demand execution.
For more information, see Chapter 40, “Using Agent Services,” on page 429 and

“Agent Scheduling” on page 416.

Communications Access Methods
Information about communications access methods that was formerly in Version 6

SAS/CONNECT Software: Usage and Reference is now available in a new document,
Communications Access Methods for SAS/CONNECT and SAS/SHARE Software. This
document supports SAS releases from Version 6 to Version 8 and consolidates all
information about communications access methods from SAS/CONNECT
documentation, SAS/SHARE documentation, and various technical reports.

Security Support Provider Interface
SAS software support the Microsoft security support provider interface (SSPI), which

enables a Windows NT user to be transparently authenticated on another Windows NT
machine. This enables SAS/CONNECT users to perform a scriptless signon to a
spawner that resides on a remote Windows NT host without specifying a userid and a
password. A remote SAS session will be created with the same security context as a
local user. To find out more about this capability, see Communications Access Methods
for SAS/CONNECT and SAS/SHARE Software.

Support for General Enhancements
SAS/CONNECT supports these enhancements to base SAS software:
� long names
� concatenated libraries
� concatenated catalogs
� generations
� integrity constraints
� quoted strings
� SAS environment windows.

For more information about these features, see SAS Language Reference: Dictionary
and SAS Language Reference: Concepts.

Version 8 Method to Secure the Remote Host
Version 8 offers a new method to secure a SAS/CONNECT remote host by means

of the USER= and PASSWORD= options to the SAS/CONNECT RSUBMIT and
SIGNON statements.

Changes and Enhancements xvii

These security options can be set on any Version 8 SAS/CONNECT local host
accessing a remote host that runs any version of SAS. The USER= and PASSWORD=
options to these statements are recommended and take precedence over the applicable
security option, which varies by host and access method. SAS/CONNECT security
options are APPCSEC, APPC_SECURE, TCPSEC, and SASUSER and SASPASS.

To establish SAS/CONNECT security in Version 8, you specify the USER= and
PASSWORD= options in the appropriate statement on the local host.

If a Version 7 security option remains set on the local host, the Version 8 specification
of USER= and PASSWORD= in a SAS/CONNECT statement overrides the previously
set security option on the local host. For example, the Version 8 USER= and
PASSWORD= options in the SIGNON statement will override the TCPSEC=
PROMPT option set on a UNIX local host for a non-scripted sign on to a spawner.

If a Version 8 local host does not set USER= and PASSWORD= options, the
communications access method or host security option would remain in effect. If both
the USER= and PASSWORD= options and a security option are specified, then the
USER= and PASSWORD= options would take precedence.

Syntax and definitions are:

USER | USERNAME | USERID | UID= username | _PROMPT_

PASSWORD | PASSWD | PWD | PW= password | _PROMPT_

Specifying these options allows local hosts whose usernames and passwords have
been verified to access the remote host.

Username is a valid userid on the remote host that is being accessed. On Windows
NT only, the username can also include the domain name, which locates the specified
username in a domain.

Password is a valid password on the remote host that is being accessed.
Supplying a userid and password by using the USER= and PASSWORD= options is

more secure than assigning them by means of a security option (such as TCPSEC),
which can be inadvertently publicized in a configuration file or in a log .

PROMPT specifies that the SAS System prompts for userid and password.
Hardcoding a username and password value to the USER= and PASSWORD= options
limits the assignment to a single user whereas prompting permits any user to supply a
username and password that are valid. Specifying only USER=_PROMPT_ implies that
the SAS System will prompt for both a username and a password.

The values supplied for the USER= and PASSWORD= options are valid for the
duration of the remote host connection. Subsequent local host connections to the same
remote host or to a different remote host require you to specify these options again. By
contrast, as an example, the values assigned to TCPSEC in a local host configuration
file endure for subsequent connections to the same remote host and to different remote
hosts.

Here is a Version 8 example:

signon user=joeblack password=born2run;

As a security precaution, PASSWORD= field entries echoed in the local host log are
replaced with Xs.

If _PROMPT_ is specified, when presented with the prompt for password during a
remote host connection, the value entered would not be displayed on the screen.

Version 8 %SYSLPUT Macro Statement

In Version 7, %SYSLPUT (used for creating a macro variable on the remote host) was
released as a sample macro that could be downloaded from the SAS Online Samples.

xviii Changes and Enhancements

In Version 8, %SYSLPUT has been implemented as a full macro statement. For
details about the syntax, see “%SYSLPUT Statement” on page 32.

Version 8 Multi-Process (MP) CONNECT
Version 8 introduces support for parallel (or multi-) processing with Multi-Process

(MP) CONNECT. This facility exploits a local host’s multi-processor capability by
allowing parallel processing of self-contained tasks and the coordination of all the
results into the original SAS session. SAS/CONNECT accomplishes multi-processing by
means of a new SASCMD option, which establishes a connection to one or more
“remote” SAS sessions that run on the local host. MP CONNECT’s “remote” session
actually executes on the local host.

Note: MP CONNECT is available with the TCP/IP access method only. 4

To use MP CONNECT, you specify options in the SIGNON and RSUBMIT
statements in order to identify one or more tasks to be processed by a “remote” SAS
session. The remote host identifier is supplied by the new PROCESS= option, which is
an alias for the existing REMOTE= option. REMOTE= can also be used to specify the
remote host identifier. In this context, the identifier does not identify the remote host
but is an arbitrary name that you associate with a specific task.

MP CONNECT provides the SASCMD= option, which enables signon to the local
host’s processor. The WAITFOR statement allows you to wait for one or more
asynchronously executing tasks before returning control to the local session. The
LISTTASK statement lists all active or completed tasks.

MP CONNECT introduces the PROCESS= option and the SASCMD= option that are
used with the SIGNON and RSUBMIT statements:

PROCESS=remote-session-id
is an alias to the REMOTE= option. The PROCESS= option was added as an alias
to allow you to differentiate between an MP CONNECT signon (PROCESS=) and a
signon to a remote host on a network (REMOTE=). After the remote-session-id has
been specified by either the SIGNON command or as a system option, subsequent
RSUBMIT, SIGNON, or SIGNOFF commands or statements that omit
remote-session-id default to the specified session id.

SASCMD=“SAS-command”
is the command that is used to invoke the remote SAS session on the local host.
SASCMD is also a global SAS system option. If the SASCMD global system option
is already set, a locally set SASCMD= option in the SIGNON command would take
precedence over the globally set option.

Note: If you need to execute additional host commands prior to the SAS
invocation, it is recommended that you write a host-specific script that contains
your host commands and the SAS invocation, and specify this script as the
SASCMD value. 4

Version 8 Autosignon
Starting in Version 8, if an RSUBMIT command or statement is executed and no

connection currently exists, RSUBMIT automatically executes a SIGNON and uses any
global settings of SAS/CONNECT options. RSUBMIT connection options are also
executed to establish a connection to the remote SAS session and then to execute the

Changes and Enhancements xix

RSUBMIT. Therefore, all of the valid SIGNON options are now valid for RSUBMIT. In
addition, the default action is to automatically sign off at the end of the RSUBMIT.

Autosignon introduces the PERSIST= option in the RSUBMIT statement:

PERSIST = YES|NO
specifies whether a signoff is automatically performed from the remote session on
the local host after the RSUBMIT has completed. RSUBMIT provides complete
control over a remote session’s termination.

Version 8 Asynchronous Task Statements

Two new statements enable you to monitor asynchronous tasks that are executed
in an RSUBMIT command or statement.

WAITFOR allows you to wait for any or all of a list of asynchronous tasks that
are provided as arguments to this statement.

LISTTASK lists the active tasks and the completed tasks that were instantiated
by the current SAS session.

xx Changes and Enhancements

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
CONNECT User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 537.

SAS/CONNECT User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–477–2
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX® , DB2® , OS/2® , OS/390® , RS/6000® , System/370

TM

, and System/390® are
registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

