
15

C H A P T E R

3
Defining SAS/ACCESS Descriptor
Files

Introduction 15
Understanding SAS/ACCESS Descriptor Files 15

Creating SAS/ACCESS Descriptor Files 16

The ACCESS Procedure 16

Creating Access Descriptors and View Descriptors in One PROC Step 16

Updating Descriptor Files 20
Using the ACCESS Procedure to Extract CA-DATACOM/DB Data 21

Extracting with the PROC ACCESS Statement Options 21

Introduction
To use the SAS/ACCESS interface to CA-DATACOM/DB, you must define special files

that describe CA-DATACOM/DB tables and data to the SAS System. These files are
called SAS/ACCESS descriptor files. This chapter is a tutorial and uses examples to
illustrate creating and editing these files, as well as using the ACCESS procedure to
extract CA-DATACOM/DB data and place them in a SAS data file. (For complete
reference information on the ACCESS procedure, see Chapter 6, “ACCESS Procedure
Reference,” on page 63.)

The examples in this chapter are based on the CA-DATACOM/DB table named
CUSTOMERS. (See Appendix 3, “Data and Descriptors for the Examples,” on page 125
to review the data in this table.) You will create an access descriptor file named
MYLIB.CUSTS for that table. Then, you will create two view descriptor files,
VLIB.USACUST and VLIB.CUSTADD, based on the access descriptor. The next
sections provide some background on access and view descriptor files.

Understanding SAS/ACCESS Descriptor Files
The SAS System interacts with CA-DATACOM/DB through an interface view engine

that uses SAS/ACCESS descriptor files created with the ACCESS procedure. There are
two types of descriptor files:

� access descriptor files (member type ACCESS)
� view descriptor files (member type VIEW).

An access descriptor contains information about the CA-DATACOM/DB table you
want to use. The information includes the table name, the field names, and their data
types. You use the access descriptor to create view descriptors. Think of an access
descriptor as being a master descriptor file for a single CA-DATACOM/DB table,
because it usually contains a complete description of that table.



16 Creating SAS/ACCESS Descriptor Files 4 Chapter 3

A view descriptor defines a subset of the data described by an access descriptor. You
choose this subset by selecting particular fields in the CA-DATACOM/DB table, and you
can specify selection criteria that the data must meet. For example, you may want to
select two fields, LAST-NAME and CITY-STATE, and specify that the value stored in
field CITY-STATE must be AUSTIN TX. You can also specify a sequence order for the
data. After you create your view descriptor, you can use it in a SAS program to read
data directly from the CA-DATACOM/DB table or to extract the data and place them in
a SAS data file. Typically, for each access descriptor that you define, you have several
view descriptors, each selecting different subsets of data.

Creating SAS/ACCESS Descriptor Files
The examples in this section illustrate creating a permanent access descriptor named

MYLIB.CUSTS and two view descriptors named VLIB.USACUSTS and
VLIB.CUSTADD. Begin by using the SAS LIBNAME statement to associate librefs with
the SAS data libraries in which you want to store the descriptors. (See the SAS
documentation for your operating system for more details on the LIBNAME statement.)

You can have one library for access descriptors and a separate library for view
descriptors, or you can put both access descriptors and view descriptors in the same
library. Having separate libraries for access and view descriptors helps you maintain
data security by enabling you to separately control who can read and update each type
of descriptor.

In this book, the libref MYLIB is used for access descriptors and the libref VLIB is
used for view descriptors.

The ACCESS Procedure
You define descriptor files with the ACCESS procedure. You can define access

descriptor files and view descriptor files in the same procedure execution or in separate
executions. Within an execution, you can define multiple descriptors of the same or
different types.

The following section shows how to define an access descriptor and multiple view
descriptors in a single procedure execution. Examples of how to create the same
descriptor files in separate PROC ACCESS executions are provided in Appendix 3,
“Data and Descriptors for the Examples,” on page 125.

When you use a separate PROC ACCESS execution to create a view descriptor, note
that you must use the ACCDESC= option to specify an existing access descriptor from
which the view descriptor will be created.

Creating Access Descriptors and View Descriptors in One PROC Step
Perhaps the most common way to use the ACCESS procedure statements is to create

an access descriptor and one or more view descriptors based on this access descriptor in
a single PROC ACCESS execution. The following example shows how to do this. First
an access descriptor is created (MYLIB.CUSTS). Then two view descriptors are created
(VLIB.USACUST and VLIB.CUSTADD). Each statement is then explained in the order
that it appears in the example program.

proc access dbms=datacom;
create mylib.custs.access;
user=demo;
table=customers;



Defining SAS/ACCESS Descriptor Files 4 Creating Access Descriptors and View Descriptors in One PROC Step 17

assign = yes;
drop contact;
list all;
extend all;
rename customer = custnum telephone = phone

streetaddress = street;
format firstorderdate = date7.;
informat firstorderdate = date7.;
content firstorderdate = yymmdd6.;
list all;

create vlib.usacust.view;
select customer state zipcode name

firstorderdate;
list view;
extend view;

subset where customer eq 1#;
subset sort firstorderdate;
list view;

create vlib.custadd.view;
select state zipcode country name city;
list view;

list all;

run;

proc access dbms=datacom;
invokes the ACCESS procedure for the SAS/ACCESS interface to
CA-DATACOM/DB.

create mylib.custs.access;
identifies the access descriptor, MYLIB.CUSTS, that you want to create. The
MYLIB libref must be associated with a SAS data library before you can specify
this statement.

user=demo;
specifies a required CA-DATADICTIONARY userid. In this case, the user name is
DEMO for the CA-DATACOM/DB table CUSTOMERS. The name is the
32–character entity-occurrence name of a PERSON entity in
CA-DATADICTIONARY. The value entered is saved in the access descriptor and
any view descriptor created from it. The user name and optional password (not
used here) must have CA-DATADICTIONARY retrieval authority on six
entity-types: DATABASE, FILE, RECORD, ELEMENT, KEY, and FIELD.

table=customers;
indicates the name of the CA-DATACOM/DB table that you want to use. The table
name is required. The table name is a 32–character field that names an
entity-occurrence of type RECORD in CA-DATADICTIONARY. (For
CA-DATACOM/DB R8, the type is TABLE.) The combination of values in the
TABLE statement and optional DATABASE and STATUS statements (not used
here) must be unique.

assign = yes;
generates unique SAS column names based on the first eight non-blank characters
of the CA-DATACOM/DB field names. The column names and attributes can be



18 Creating Access Descriptors and View Descriptors in One PROC Step 4 Chapter 3

changed in this access descriptor but not in any view descriptors created from this
access descriptor.

Note that although the ASSIGN statement assigns names to the columns, it
does not select them for inclusion in any view descriptors created from this access
descriptor. You must select the fields in the view descriptor with the SELECT
statement. Unless fields are dropped, they are automatically included in the
access descriptor.

drop contact;
marks the CA-DATACOM/DB field with the name CONTACT as non-display. The
CONTACT field is a simple field; therefore, it is the only DBMS column that is
dropped. When the DROP statement indicates a compound field, which can consist
of multiple simple and compound fields, all DBMS columns associated with the
compound field are marked as non-display, unless otherwise specified with the
OCCURS statement. Compound fields are identified by the word *GROUP* in
their description in the LIST statement output.

Columns that are dropped also do not appear in any view descriptors created
from this access descriptor.

list all;
lists the access descriptor’s item identifier numbers, the CA-DATACOM/DB field
names, the CA-DATACOM/DB level numbers, the SAS column names, and the
SAS formats. You can use the item identifer as a field identifier in statements that
require you to use the DBMS column name. The list is written to the SAS log.
Any columns that have been dropped from display (using the DROP statement)
have *NON-DISPLAY* next to them.

extend all;
lists information about the SAS columns in the access descriptor, including the
informat, the DB content, and the number of times a field repeats. The list is
written to the SAS log. When you are creating multiple descriptors, you can use
the EXTEND statement before the next CREATE statement to list all the
information about the descriptor you are creating.

rename customer = custnum telephone = phone streetaddress = street;
renames the default SAS column names associated with the CUSTOMER,
TELEPHONE, and STREETADDDRESS fields to CUSTNUM, PHONE, and
STREET, respectively. Specify the CA-DATACOM/DB field name or its positional
equivalent from the LIST statement on the left side of the equal sign (=) and the
new SAS name on the right. Because the ASSIGN=YES statement is specified,
any view descriptors created from this access descriptor will automatically use the
new names.

format firstorderdate = date7.;
changes the FIRSTORD SAS column from its default format to a new SAS format.
The format specifies the way a value will be printed, in this case, as a date format.
Specify the CA-DATACOM/DB field name or its positional equivalent from the
LIST statement on the left side of the equal sign (=) and the new SAS format on
the right. Because the ASSIGN=YES statement is specified, any view descriptors
created from this access descriptor will automatically use the new format for the
FIRSTORD column.

informat firstorderdate = date7.;
changes the FIRSTORD SAS column from its default informat to a new SAS
informat. The informat specifies the way a value will be read, in this case, as a
date informat. Specify the CA-DATACOM/DB field name or its positional
equivalent from the LIST statement on the left side of the equal sign (=) and the
new informat on the right. Because the ASSIGN=YES statement is specified, any



Defining SAS/ACCESS Descriptor Files 4 Creating Access Descriptors and View Descriptors in One PROC Step 19

view descriptors created from this access descriptor will automatically use the new
informat for the FIRSTORD column.

content firstorderdate = yymmdd6.;
specifies the SAS date format to use for the FIRSTORD SAS column. This format
indicates the way date values are represented internally in the CA-DATACOM/DB
table, in this case, yymmdd. Specify the CA-DATACOM/DB field name or its
positional equivalent from the LIST statement on the left side of the equal sign (=)
and the date format on the right. Because the ASSIGN=YES statement is
specified, any view descriptors created from this access descriptor will
automatically use this date format for the FIRSTORD column.

list all;
lists the item identifiers, the CA-DATACOM/DB field names, the SAS column
names, and other SAS information in the access descriptor so you can see the
modifications before proceeding with the next CREATE statement.

create vlib.usacust.view;
writes the access descriptor to the library associated with MYLIB and identifies
the view descriptor, VLIB.USACUST, that you want to create. The VLIB libref
must be associated with a libref before you can specify this statement.

select customer state zipcode name firstorderdate;
selects the CUSTOMER, STATE, ZIPCODE, NAME, and FIRSTORDERDATE
fields for inclusion in the view descriptor. A SELECT statement is required to
create the view, unless a RENAME, FORMAT, INFORMAT, or CONTENT
statement is used.

list view;
lists the item identifiers, the DBMS column names, the SAS column names, and
other SAS information associated with the CA-DATACOM/DB fields selected for
the view. The list is written to the SAS log.

extend view;
lists detail information about the SAS columns in the view, including the informat,
the DB content, and the number of times a field repeats. The list is written to the
SAS log.

subset where customer eq 1#;
specifies you want to include only records with 1 as the first character in the
CUSTOMER DBMS column.

subset sort firstorderdate;
specifies you want to order the records by the value of the FIRSTORDERDATE
DBMS column.

list view;
lists the item identifiers, the DBMS column names, the SAS column names, and
other SAS information associated with the view, to show the modifications.

create vlib.custadd.view;
writes view descriptor VLIB.USACUST to the library associated with VLIB and
identifies a second view descriptor, VLIB.CUSTADD, that you want to create.

select state zipcode country name city;
selects the STATE, ZIPCODE, COUNTRY, NAME, and CITY fields for inclusion in
the view descriptor.

list view;
lists the item identifiers, the DBMS column names, the SAS column names, and
other SAS information associated with the CA-DATACOM/DB fields selected for
the view.



20 Updating Descriptor Files 4 Chapter 3

list all;
lists updated SAS information for the fields in the access descriptor. Fields that
were dropped have *NON-DISPLAY* next to the SAS column description. Fields
selected in the VLIB.CUSTADD view descriptor have *SELECTED* next to them.
Fields selected in VLIB.USACUST will not show as selected in the access
descriptor. Selection information, including status and any selection criteria, are
reset in the access descriptor for each new view descriptor. The list is written to
the SAS log.

run;
writes the view descriptor when the RUN statement is processed.

Updating Descriptor Files

This section describes how to update existing descriptor files. You update access
descriptor and view descriptor files with the UPDATE statement. You can edit the user
and field information in the descriptor files.

When you update an access descriptor, the view descriptors based on this access
descriptor are not updated automatically. You must re-create or update any view
descriptors that you want to reflect the changes made to the access descriptor. That is,
for some updates (such as dropping a field), the view descriptors are still valid, but they
do not reflect the changes made in the access descriptor. In other situations (for
example, if you edited the access descriptor to use a different userid or to add a
password), the view descriptors would no longer be valid. A valid descriptor file can also
be made useless by an update. For example, if an update to an access descriptor drops
two of the four fields defined in a view descriptor, you may want to update or delete the
view descriptor.

The following example updates access descriptor MYLIB.CUSTS to drop additional
fields. The VLIB.USACUSTS and VLIB.CUSTADD view descriptors remain valid,
however, you may want to update them to select new fields to replace those dropped as
a result of the update.

proc access dbms=datacom;
update mylib.custs.access;
drop 3 7;
list all;

run;

The statements are described below.

proc access dbms=datacom;
invokes the ACCESS procedure for the SAS/ACCESS interface to
CA-DATACOM/DB.

update mylib.custs.access;
identifies the access descriptor, MYLIB.CUSTS, that you want to update. The
MYLIB libref must be associated with a SAS data library before you can specify
this statement.

drop 3 7;
marks the CA-DATACOM/DB fields associated with position 3 (STATEZIP) and
position 7 (TELEPHONE) as non-display. STATEZIP is a compound (*GROUP*)
field consisting of STATE and ZIPCODE. Dropping a group effectively drops the
members of the group, so the STATE and ZIPCODE fields (which are selected in
VLIB.USACUST and VLIB.CUSTADD) are marked as non-display as well.



Defining SAS/ACCESS Descriptor Files 4 Extracting with the PROC ACCESS Statement Options 21

list all;
lists updated SAS information for the fields in the access descriptor. Fields that
were dropped have *NON-DISPLAY* next to the SAS column description. The list
is written to the SAS log.

run;
writes the updated access descriptor when the RUN statement is processed.

Altering a CA-DATACOM table that has descriptor files defined can also cause these
files to be out of date or invalid. If you add a field to a table, an access descriptor is still
valid. However, if you delete a field or change its characteristics and that field is used
in a view descriptor, the view will fail when executed. For more information, see “How
Changing the CA-DATADICTIONARY Database Affects Descriptor Files” on page 110.

Using the ACCESS Procedure to Extract CA-DATACOM/DB Data
Although you can access CA-DATACOM/DB data directly in your SAS programs, it is

sometimes better to extract the CA-DATACOM/DB data and place them in a SAS data
file. For example, if you are using the same CA-DATACOM/DB data in several SAS
jobs, it may be less resource-intensive to access extracted data in a SAS data file than
to access a CA-DATACOM/DB table repeatedly. (See “Performance Considerations” on
page 43 for other circumstances in which extracting data is the more efficient method.)

You can extract CA-DATACOM/DB data by using PROC ACCESS statement options.
You can also extract data using the DATA step. (See Chapter 4, “Using CA-DATACOM/
DB Data in SAS Programs,” on page 23 for examples using the SQL procedure to
extract CA-DATACOM/DB data and place them in a SAS data file.) Note that if you
store view descriptors and SAS data files in the same SAS data library, you must give
them unique member names.

Extracting with the PROC ACCESS Statement Options
To extract data using the PROC ACCESS statement options, submit the following

SAS code:

proc access viewdesc=vlib.usacust out=mydata.usaout;
run;

VLIB.USACUST is the two-level name that specifies the libref and member name for
the view descriptor you want to use for extracting data, in this case, USACUST. Note
that VLIB.USACUST must already exist. MYDATA.USAOUT is the two-level name
specifying the libref and member name for the output SAS data file.



22 Extracting with the PROC ACCESS Statement Options 4 Chapter 3



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS Interface to CA-DATACOM/DB Software: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999. pp. 170.

SAS/ACCESS Interface to CA-DATACOM/DB Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–545–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


