
23

C H A P T E R

4
Using CA-DATACOM/DB Data in
SAS Programs

Introduction 23
Reviewing Columns 24

Printing Data 25

Charting Data 26

Calculating Statistics 28

Using the FREQ Procedure 28
Using the MEANS Procedure 28

Using the RANK Procedure 31

Selecting and Combining Data 31

Using the WHERE Statement 32

Using the SAS System SQL Procedure 33

Combining Data from Various Sources 33
Creating New Fields with the PROC SQL GROUP BY Clause 38

Updating a SAS Data File with CA-DATACOM/DB Data 39

Updating a Version 6 Data File 39

Updating a Version 8 Data File 42

Performance Considerations 43

Introduction
An advantage of the SAS/ACCESS interface to CA-DATACOM/DB is that it enables

the SAS System to read and write CA-DATACOM/DB data directly using SAS
programs. This chapter presents examples using CA-DATACOM/DB data described by
view descriptors in SAS programs. For information on the views and sample data, see
Appendix 3, “Data and Descriptors for the Examples,” on page 125.

Throughout the examples, the SAS terms column and row are used instead of
comparable CA-DATACOM/DB terms, because this chapter illustrates using SAS
System procedures and the DATA step. The examples include printing and charting
data, using the SQL procedure to combine data from various sources, and updating
Version 6 and Version 8 SAS data sets with data from CA-DATACOM/DB. For more
information on the SAS language and procedures used in the examples, refer to the
books listed at the end of each section.

At the end of this chapter, “Performance Considerations” on page 43 presents some
techniques for using view descriptors efficiently in SAS programs.



24 Reviewing Columns 4 Chapter 4

Reviewing Columns
If you want to use CA-DATACOM/DB data described by a view descriptor in your

SAS program but cannot remember the SAS column names or formats and informats,
you can use the CONTENTS or DATASETS procedure to display this information.

The following example uses the DATASETS procedure to give you information on the
view descriptor VLIB.CUSPHON, which is based on the CA-DATACOM/DB table
CUSTOMERS.

proc datasets library=vlib memtype=view;
contents data=cusphon;

run;

Output 4.1 on page 24 shows the information for this example. The data described by
VLIB.CUSPHON are shown in Output 4.9 on page 34.

Output 4.1 Using the DATASETS Procedure with a View Descriptor

The SAS System 1
DATASETS PROCEDURE

Data Set Name: VLIB.CUSPHON Observations: 22
Member Type: VIEW Variables: 3
Engine: SASIODDB Indexes: 0
Created: 11:19 Friday, October 12, 1990 Observation Length: 80
Last Modified: 12:03 Friday, October 12, 1990 Deleted Observations: 0
Data Set Type: Compressed: NO
Label:

-----Engine/Host Dependent Information-----

-----Alphabetic List of Variables and Attributes-----

# Variable Type Len Pos Format Informat Label
----------------------------------------------------------------------
1 CUSTNUM Char 8 0 $8. $8. CUSTOMER
3 NAME Char 60 20 $60. $60. NAME
2 PHONE Char 12 8 $12. $12. TELEPHONE

Note the following points about this output:
� You cannot change a view descriptor’s column labels using the DATASETS

procedure. The labels are generated as the complete CA-DATACOM/DB field name
when the view descriptor is created, and they cannot be overridden.

� The Created date is when the access descriptor for this view descriptor was created.
� The Last Modified date is the last time the view descriptor was updated or created.
� The Observations number shown is the number of records in the

CA-DATACOM/DB table.

For more information on the DATASETS procedure, see the SAS Language Reference:
Dictionary and the SAS Procedures Guide.



Using CA-DATACOM/DB Data in SAS Programs 4 Printing Data 25

Printing Data

Printing CA-DATACOM/DB data described by a view descriptor is exactly like
printing a SAS data file, as shown by the following example:

proc print data=vlib.empinfo;
title2 ’Brief Employee Information’;

run;

VLIB.EMPINFO derives its data from the EMPLOYEES table. Output 4.2 on page
25 shows the first page of output for this example.

Output 4.2 Results of the PRINT Procedure

Brief Employee Information 1
OBS EMPID DEPT LASTNAME

1 119012 CSR010 WOLF-PROVENZA
2 120591 SHP002 HAMMERSTEIN
3 123456 VARGAS
4 127845 ACC024 MEDER
5 129540 SHP002 CHOULAI
6 135673 ACC013 HEMESLY
7 212916 CSR010 WACHBERGER
8 216382 SHP013 PURINTON
9 234967 CSR004 SMITH

10 237642 SHP013 BATTERSBY
11 239185 ACC024 DOS REMEDIOS
12 254896 CSR011 TAYLOR-HUNYADI
13 321783 CSR011 GONZALES
14 328140 ACC043 MEDINA-SIDONIA
15 346917 SHP013 SHIEKELESLAM
16 356134 ACC013 DUNNETT
17 423286 ACC024 MIFUNE
18 456910 CSR010 ARDIS
19 456921 SHP002 KRAUSE
20 457232 ACC013 LOVELL
21 459287 SHP024 RODRIGUES
22 677890 CSR010 NISHIMATSU-LYNCH

When you use the PRINT procedure, you may want to use the OBS= option, which
enables you to specify the last row to be processed. This is especially useful when the
view descriptor describes large amounts of data or when you just want to see an
example of the output. The following example uses the OBS= option to print the first
five rows described by the view descriptor VLIB.CUSORDR:

proc print data=vlib.cusordr (obs=5);
title ’First Five Data Records Described by VLIB.CUSORDR’;

run;

VLIB.CUSORDR accesses data from the table ORDER. Output 4.3 on page 26 shows
the result of this example.



26 Charting Data 4 Chapter 4

Output 4.3 Results of Using the OBS= Option

First Five Data Records Described by VLIB.CUSORDR 1
OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482

In addition to the OBS= option, the FIRSTOBS= option also works with view
descriptors, but the FIRSTOBS= option does not improve performance significantly
because each record must still be read and its position calculated.

For more information on the PRINT procedure, see the SAS Procedures Guide. For
more information on the OBS= and FIRSTOBS= options, see the SAS Language
Reference: Dictionary.

Charting Data
CHART procedure programs work with data described by view descriptors just as

they do with SAS data files. The following example uses the view descriptor
VLIB.ALLORDR to create a vertical bar chart of the number of orders per product:

proc chart data=vlib.allordr;
vbar stocknum;
title ’Data Described by VLIB.ALLORDR’;

run;

VLIB.ALLORDR accesses data from the table ORDER. Output 4.4 on page 27 shows
the information for this example. STOCKNUM represents each product. The number of
orders for each product is represented by the height of the bar.



Using CA-DATACOM/DB Data in SAS Programs 4 Charting Data 27

Output 4.4 Vertical Bar Chart Showing Number of Orders per Product

Data Described by VLIB.ALLORDR 1
Frequency

8 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

7 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

6 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

5 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

4 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

3 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

2 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****

1 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
----------------------------------------------------------------------------

750 2250 3750 5250 6750 8250 9750

STOCKNUM

For more information on the CHART procedure, see the SAS Procedures Guide.
If you have SAS/GRAPH software, you can create colored block charts, plots, and

other graphics based on CA-DATACOM/DB data. See the SAS/GRAPH Software:
Reference for more information on the kinds of graphics you can produce with this SAS
software product.



28 Calculating Statistics 4 Chapter 4

Calculating Statistics
You can also use statistical procedures with CA-DATACOM/DB data. This section

shows simple examples using the FREQ and MEANS procedures.

Using the FREQ Procedure
Suppose you want to find what percentage of your invoices went to each country so

that you can decide where to increase your overseas marketing. The following example
calculates the percentage of invoices for each country appearing in the
CA-DATACOM/DB table INVOICE using the view descriptor VLIB.INV:

proc freq data=vlib.inv;
tables country;
title ’Data Described by VLIB.INV’;

run;

Output 4.5 on page 28 shows the one-way frequency table this example generates.

Output 4.5 Frequency Table for Field COUNTRY described by View Descriptor VLIB.INV

Data Described by VLIB.INV 1
COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent
--------------------------------------------------------------
Argentina 2 11.8 2 11.8
Australia 1 5.9 3 17.6
Brazil 4 23.5 7 41.2
USA 10 58.8 17 100.0

For more information on the FREQ procedure, see the SAS Procedures Guide.

Using the MEANS Procedure
Still analyzing recent orders, suppose you want to determine some statistics for each

USA customer. The view descriptor VLIB.USAORDR accesses records from the ORDER
table that have a SHIPTO value beginning with a 1, indicating a USA customer.

The following example generates the mean and sum of the length of material ordered
and the fabric charges for each USA customer. Also included are the number of rows
(N) and the number of missing values (NMISS).

proc means data=vlib.usaordr mean sum n nmiss maxdec=0;
by shipto;
var length fabricch;



Using CA-DATACOM/DB Data in SAS Programs 4 Using the MEANS Procedure 29

title ’Data Described by VLIB.USAORDR’;
run;

The BY statement causes the interface view engine to generate ordering criteria so that
the data are sorted. Output 4.6 on page 30 shows some of the information produced by
this example.



30 Using the MEANS Procedure 4 Chapter 4

Output 4.6 Statistics on Fabric Length and Charges for Each USA Customer

Data Described by VLIB.USAORDR 1
-------------------------------- SHIPTO=14324742 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 4 0 1095 4380
FABRICCH FABRICCHARGES 2 2 1934460 3868920
--------------------------------------------------------------

-------------------------------- SHIPTO=14898029 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 2 0 2500 5000
FABRICCH FABRICCHARGES 2 0 1400825 2801650
--------------------------------------------------------------

-------------------------------- SHIPTO=15432147 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 4 0 725 2900
FABRICCH FABRICCHARGES 2 2 252149 504297
--------------------------------------------------------------

-------------------------------- SHIPTO=18543489 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 6 0 303 1820
FABRICCH FABRICCHARGES 4 2 11063836 44255344
--------------------------------------------------------------

-------------------------------- SHIPTO=19783482 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 4 0 450 1800
FABRICCH FABRICCHARGES 4 0 252149 1008594
--------------------------------------------------------------

-------------------------------- SHIPTO=19876078 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 2 0 690 1380
FABRICCH FABRICCHARGES 0 2 . .
--------------------------------------------------------------

For more information on the MEANS procedure, see the SAS Procedures Guide.



Using CA-DATACOM/DB Data in SAS Programs 4 Selecting and Combining Data 31

Using the RANK Procedure
You can also use more advanced statistics procedures with CA-DATACOM/DB data.

The following example uses the RANK procedure with data described by the view
descriptor VLIB.EMPS to calculate the order of birthdays for a set of employees. This
example creates a SAS data file MYDATA.RANKEX from the view descriptor
VLIB.EMPS. It assigns the column name DATERANK to the new field created by the
procedure. (The VLIB.EMPS view descriptor includes a WHERE clause to select only
the employees whose job code is 602.)

proc rank data=vlib.emps out=vlib.rankexam;
var birthdat;
ranks daterank;

run;
proc print data=vlib.rankexam;

title ’Order of Employee Birthdays’;
run;

VLIB.EMPS is based on the CA-DATACOM/DB table EMPLOYEES. Output 4.7 on
page 31 shows the result of this example.

Output 4.7 Ranking of Employee Birthdays

Order of Employee Birthdays 1
OBS EMPID JOBCODE BIRTHDAT LASTNAME DATERANK

1 456910 602 24SEP53 ARDIS 5
2 237642 602 13MAR54 BATTERSBY 6
3 239185 602 28AUG59 DOS REMEDIOS 7
4 321783 602 03JUN35 GONZALES 2
5 120591 602 12FEB46 HAMMERSTEIN 4
6 135673 602 21MAR61 HEMESLY 8
7 456921 602 12MAY62 KRAUSE 9
8 457232 602 15OCT63 LOVELL 11
9 423286 602 31OCT64 MIFUNE 12

10 216382 602 24JUL63 PURINTON 10
11 234967 602 21DEC67 SMITH 13
12 212916 602 29MAY28 WACHBERGER 1
13 119012 602 05JAN46 WOLF-PROVENZA 3

For more information on the RANK procedure and other advanced statistics
procedures, see the SAS Procedures Guide.

Selecting and Combining Data
Many SAS programs select and combine data from various sources. The method you

use depends on the configuration of the data. The next examples show you how to select



32 Using the WHERE Statement 4 Chapter 4

and combine data using two different methods. When choosing between these methods,
consider the issues described in “Performance Considerations” on page 43.

Using the WHERE Statement
Suppose you have two view descriptors, VLIB.USINV and VLIB.FORINV, that list

the invoices for the USA and foreign countries, respectively. You could use the SET
statement to concatenate these files into a single SAS data file. The WHERE statement
specifies that you want a data file containing information on customers who have not
paid their bills and whose bills amount to at least $300,000.

data notpaid(keep=invoicen billedto amtbille billedon);
set vlib.usainv vlib.forinv;
where paidon is missing and amtbille>=300000.00;

run;

proc print;
title ’High Bills--Not Paid’;

run;

In the SAS WHERE statement, be sure to use the SAS column names, not the
CA-DATACOM/DB field names. Both VLIB.USAINV and VLIB.FORINV are based on
the CA-DATACOM/DB table INVOICE. Output 4.8 on page 32 shows the result of the
new temporary data file, WORK.NOTPAID.

Output 4.8 NOTPAID Data File Created with a SAS WHERE Statement

High Bills--Not Paid 1
OBS INVOICEN BILLEDTO AMTBILLE BILLEDON

1 12102 18543489 11063836.00 17NOV88
2 11286 43459747 12679156.00 10OCT88
3 12051 39045213 1340738760.90 02NOV88
4 12471 39045213 1340738760.90 27DEC88
5 12476 38763919 34891210.20 24DEC88

The first line of the DATA step uses the KEEP= data set option. This data set option
works with SAS/ACCESS views just as it works with other SAS data sets. That is, the
KEEP= option specifies that you want only the listed columns included in the new data
file, NOTPAID, although you can use the other columns within the DATA step.

Notice that the WHERE statement includes two conditions to be met. First, it selects
only rows that have a missing value for the field PAIDON. As you can see, it is
important to know how the CA-DATACOM/DB data are configured before you use these
data in a SAS program. The field PAIDON contains values that translate to missing
values in the SAS System. (Also, each of the two view descriptors has its own WHERE
clause.)

Second, the WHERE statement requires that the amount in each bill be higher than
a certain figure. Again, you should be familiar with the CA-DATACOM/DB data so that
you can determine a reasonable figure for this expression.



Using CA-DATACOM/DB Data in SAS Programs 4 Using the SAS System SQL Procedure 33

When referencing a view descriptor in a SAS procedure or DATA step, it is more
efficient to use a WHERE statement than a subsetting IF statement. A DATA step or
SAS procedure passes the SAS WHERE statement as a WHERE clause to the interface
view engine, which adds it (using a Boolean AND) to any WHERE clause defined in the
view descriptor’s selection criteria. The selection criteria are then passed to
CA-DATACOM/DB for processing. Processing CA-DATACOM/DB data using a WHERE
clause may reduce the number of records read from the database and therefore often
improves performance.

For more information on the SAS WHERE statement, refer to the SAS Language
Reference: Dictionary.

Using the SAS System SQL Procedure
This section provides two examples of using the SAS System SQL procedure with

CA-DATACOM/DB data. PROC SQL implements the Structured Query Language (SQL)
and is included in base SAS software. The first example illustrates using PROC SQL to
combine data from three sources. The second example shows how to use the PROC SQL
GROUP BY clause to create a new column from data described by a view descriptor.

Combining Data from Various Sources
The SQL procedure provides another way to select and combine data from one or

more database products. For example, suppose you have view descriptors
VLIB.CUSPHON and VLIB.CUSORDR based on the CA-DATACOM/DB tables
CUSTOMERS and ORDER, respectively, and a SAS data file, MYDATA.OUTOFSTK,
which contains product names and numbers that are out of stock. You can use the SQL
procedure to join all these sources of data to form a single output file. A WHERE
statement or a subsetting IF statement would not be appropriate in this case because
you want to compare column values from several sources rather than simply merge or
concatenate the data.

Output 4.9 on page 34, Output 4.10 on page 35, and Output 4.11 on page 36 on the
following pages show the results of the PRINT procedure performed on the data
described by the VLIB.CUSPHON and VLIB.CUSORDR view descriptors and on the
MYDATA.OUTOFSTK SAS data file.

proc print data=vlib.cusphon;
title ’Data Described by VLIB.CUSPHON’;

run;
proc print data=vlib.cusordr;

title ’Data Described by VLIB.CUSORDR’;
run;

proc print data=mydata.outofstk;
title ’SAS Data File MYDATA.OUTOFSTK’;

run;



34 Using the SAS System SQL Procedure 4 Chapter 4

Output 4.9 Data Described by the View Descriptor VLIB.CUSPHON

Data Described by VLIB.CUSPHON 1

OBS CUSTNUM PHONE

1 12345678 919/489-5682
2 14324742 408/629-0589
3 14569877 919/489-6792
4 14898029 301/760-2541
5 15432147 616/582-3906
6 18543489 512/478-0788
7 19783482 703/714-2900
8 19876078 209/686-3953
9 24589689 (012)736-202

10 26422096 4268-54-72
11 26984578 43-57-04
12 27654351 02/215-37-32
13 28710427 (021)570517
14 29834248 (0552)715311
15 31548901 406/422-3413
16 38763919 244-6324
17 39045213 012/302-1021
18 43290587 (02)933-3212
19 43459747 03/734-5111
20 46543295 (03)022-2332
21 46783280 3762855
22 48345514 213445

OBS NAME

1 DURHAM SCIENTIFIC SUPPLY COMPANY
2 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS
3 PRECISION PRODUCTS
4 UNIVERSITY BIOMEDICAL MATERIALS
5 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
6 LONE STAR STATE RESEARCH SUPPLIERS
7 TWENTY-FIRST CENTURY MATERIALS
8 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC.
9 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA

10 SOCIETE DE RECHERCHES POUR DE CHIRURGIE ORTHOPEDIQUE
11 INSTITUT FUR TEXTIL-FORSCHUNGS
12 INSTITUT DE RECHERCHE SCIENTIFIQUE MEDICALE
13 ANTONIE VAN LEEUWENHOEK VERENIGING VOOR MICROBIOLOGIE
14 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
15 NATIONAL COUNCIL FOR MATERIALS RESEARCH
16 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR
17 LABORATORIO DE PESQUISAS VETERNINARIAS DESIDERIO FINAMOR
18 HASSEI SAIBO GAKKAI
19 RESEARCH OUTFITTERS
20 WESTERN TECHNOLOGICAL SUPPLY
21 NGEE TECHNOLOGICAL INSTITUTE
22 GULF SCIENTIFIC SUPPLIES



Using CA-DATACOM/DB Data in SAS Programs 4 Using the SAS System SQL Procedure 35

Output 4.10 Data Described by the View Descriptor VLIB.CUSORDR

Data Described by VLIB.CUSORDR 1
OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482
6 4789 15432147
7 3478 29834248
8 1279 14324742
9 8934 31548901

10 2567 14898029
11 9870 48345514
12 1279 39045213
13 8934 18543489
14 2567 19783482
15 9870 18543489
16 3478 24589689
17 1279 38763919
18 8934 43459747
19 2567 15432147
20 9870 14324742
21 9870 19876078
22 1279 39045213
23 8934 18543489
24 3478 29834248
25 2567 19783482
26 4789 15432147
27 3478 29834248
28 1279 14324742
29 8934 31548901
30 2567 14898029
31 9870 48345514
32 1279 39045213
33 8934 18543489
34 2567 19783482
35 9870 18543489
36 3478 24589689
37 1279 38763919
38 8934 43459747
39 2567 15432147
40 9870 14324742



36 Using the SAS System SQL Procedure 4 Chapter 4

Output 4.11 Data in the SAS Data File Data File MYDATA.OUTOFSTK

SAS Data File MYDATA.OUTOFSTK 1

OBS FIBERNAM FIBERNUM

1 olefin 3478
2 gold 8934
3 dacron 4789

The following SAS code selects and combines data from these three sources (the two
view descriptors and the SAS data file) to create a view, SQL.BADORDRS*. This view
retrieves customer and product information so that the sales department can notify
customers of products no longer available.

proc sql;
create view sql.badordrs as

select cusphon.custnum, cusphon.name, cusphon.phone,
cusordr.stocknum, outofstk.fibernam as product

from vlib.cusphon, vlib.cusordr, mydata.outofstk
where cusordr.stocknum=outofstk.fibernum and

cusphon.custnum=cusordr.shipto
order by cusphon.custnum, product;

title ’Data Described by SQL.BADORDRS’;
select * from sql.badordrs;

The CREATE VIEW statement incorporates a WHERE clause as part of the SELECT
statement, but it is not the same as the SAS WHERE statement illustrated earlier in
this chapter. The last SELECT statement retrieves and displays the PROC SQL view,
SQL.BADORDRS. To select all fields from the view, an asterisk (*) is used in place of
field names. The fields are displayed in the same order as they were specified in the
first SELECT clause.

Output 4.12 on page 37 shows the data described by the SQL.BADORDRS view. Note
that the SQL procedure uses the DBMS labels in the output by default.

* You may want to store your PROC SQL views in a SAS data library other than the one storing your view descriptors,
because they both have member type view.



Using CA-DATACOM/DB Data in SAS Programs 4 Using the SAS System SQL Procedure 37

Output 4.12 Data Described by the PROC SQL View SQL.BADORDRS

Data Described by SQL.BADORDRS 1

CUSTOMER NAME
TELEPHONE STOCKNUM PRODUCT
----------------------------------------------------------------------
15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

The view SQL.BADORDRS lists entries for all customers who have ordered
out-of-stock products. However, it contains duplicate rows because some companies
have ordered the same product more than once. To make the data more readable for the



38 Using the SAS System SQL Procedure 4 Chapter 4

sales department, you can create a final SAS data file, MYDATA.BADNEWS, using the
SET statement and the special variable FIRST.PRODUCT. This variable identifies the
first row in a particular BY group. You need a customer’s name associated only once to
notify that customer that a product is out of stock, regardless of the number of times
the customer has placed an order for it.

data mydata.badnews;
set sql.badordrs;
by custnum product;
if first.product;

run;

proc print;
title ’MYDATA.BADNEWS Data File’;

run;

The data file MYDATA.BADNEWS contains a row for each unique combination of
customer and out-of-stock product. Output 4.13 on page 38 displays this data file.

Output 4.13 Data in the SAS Data File MYDATA.BADNEWS

MYDATA.BADNEWS Data File 1
OBS CUSTNUM NAME

1 15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
2 18543489 LONE STAR STATE RESEARCH SUPPLIERS
3 24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
4 29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
5 31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
6 43459747 RESEARCH OUTFITTERS

OBS PHONE STOCKNUM PRODUCT
1 616/582-3906 4789 dacron
2 512/478-0788 8934 gold
3 (012)736-202 3478 olefin
4 (0552)715311 3478 olefin
5 406/422-3413 8934 gold
6 03/734-5111 8934 gold

For more information on the special variable FIRST, see “BY Statement” in the SAS
Language Reference: Dictionary.

Creating New Fields with the PROC SQL GROUP BY Clause
It is often useful to create new fields with summary or aggregate functions, such as

AVG or SUM. Although you cannot use the ACCESS procedure to create new fields, you
can easily use the SQL procedure with data described by a view descriptor to display
output containing new fields.

This example uses the SQL procedure to retrieve and manipulate data from the view
descriptor VLIB.ALLEMP, which is based on the CA-DATACOM/DB table
EMPLOYEES. When this query (as a SELECT statement is often called) is submitted,



Using CA-DATACOM/DB Data in SAS Programs 4 Updating a Version 6 Data File 39

it calculates and displays the average salary for each department. The AVG function is
the SQL procedure’s equivalent of the SAS MEAN function.

proc sql;
title ’Average Salary Per Department’;
select distinct dept,

avg(salary) label=’Average Salary’ format=dollar12.2
from vlib.allemp
where dept is not missing
group by dept;

The order of the columns displayed matches the order of the columns specified in the
SELECT list of the query. Output 4.14 on page 39 shows the query’s result.

Output 4.14 Data Retrieved by a PROC SQL Query

Average Salary Per Department 1

Average
DEPT Salary
--------------------
ACC013 $54,591.33
ACC024 $55,370.55
ACC043 $75,000.34
CSR004 $17,000.00
CSR010 $44,324.19
CSR011 $41,966.16
SHP002 $40,111.31
SHP013 $41,068.44
SHP024 $50,000.00

For more information on the SQL procedure, refer to the SAS Procedures Guide.

Updating a SAS Data File with CA-DATACOM/DB Data
You can update a SAS data file with CA-DATACOM/DB data described by a view

descriptor the same way you update a SAS data file with data from another data file:
by using a DATA step UPDATE statement. In this section, the term transaction data
refers to the new data that are to be added to the original file. Because the
SAS/ACCESS interface to CA-DATACOM/DB uses the Version 6 compatibility engine,
the transaction data are from a Version 6 source. The original file can be a Version 6
data file or a Version 8 data file.

Updating a Version 6 Data File
You can update a Version 6 SAS data file with CA-DATACOM/DB data the same way

you did in Version 6 of the SAS System. Suppose you have a Version 6 data file,



40 Updating a Version 6 Data File 4 Chapter 4

LIB6.BIRTHDAY, that contains employee ID numbers, last names, and birthdays. You
want to update this data file with data described by VLIB.EMPS, a view descriptor
based on the CA-DATACOM/DB table EMPLOYEES. To perform the update, enter the
following SAS code:

proc sort data=lib6.birthday;
by lastname;

run;

proc print data=lib6.birthday;
format birthdat date7.;
title ’LIB6.BIRTHDAY Data File’;

run;

proc print data=vlib.emps;
title ’Data Described by VLIB.EMPS’;

run;

data mydata.newbday;
update lib6.birthday vlib.emps;
by lastname;

run;

proc print;
title ’MYDATA.NEWBDAY Data File’;

run;

In this example, the updated SAS data file, MYDATA.NEWBDAY, is a Version 6 data
file. It is stored in the Version 6 SAS data library associated with the libref MYDATA.

When the UPDATE statement references the view descriptor VLIB.EMPS and uses a
BY statement in the DATA step, the BY statement causes the interface view engine to
automatically generate a SORT clause for the column LASTNAME. Thus, the SORT
clause causes the CA-DATACOM/DB data to be presented to the SAS System in a
sorted order so they can be used to update the MYDATA.NEWBDAY data file. The data
file LIB6.BIRTHDAY had to be sorted (by the SAS SORT procedure) before the update,
because the UPDATE statement expects the data to be sorted by the BY column.

Output 4.15 on page 41, Output 4.16 on page 41, and Output 4.17 on page 42 show
the results of the PRINT procedure on the original data file, the transaction data, and
the updated data file.



Using CA-DATACOM/DB Data in SAS Programs 4 Updating a Version 6 Data File 41

Output 4.15 Data File To Be Updated, LIB6.BIRTHDAY

LIB6.BIRTHDAY Data File 1
OBS EMPID BIRTHDAT LASTNAME

1 129540 31JUL60 CHOULAI
2 356134 25OCT60 DUNNETT
3 127845 25DEC43 MEDER
4 677890 24APR65 NISHIMATSU-LYNCH
5 459287 05JAN34 RODRIGUES
6 346917 15MAR50 SHIEKELESLAN
7 254896 06APR49 TAYLOR-HUNYADI

Output 4.16 Data Described by VLIB.EMPS

Data Described by VLIB.EMPS 1
OBS EMPID JOBCODE BIRTHDAT LASTNAME

1 456910 602 24SEP53 ARDIS
2 237642 602 13MAR54 BATTERSBY
3 239185 602 28AUG59 DOS REMEDIOS
4 321783 602 03JUN35 GONZALES
5 120591 602 12FEB46 HAMMERSTEIN
6 135673 602 21MAR61 HEMESLY
7 456921 602 12MAY62 KRAUSE
8 457232 602 15OCT63 LOVELL
9 423286 602 31OCT64 MIFUNE

10 216382 602 24JUL63 PURINTON
11 234967 602 21DEC67 SMITH
12 212916 602 29MAY28 WACHBERGER
13 119012 602 05JAN46 WOLF-PROVENZA



42 Updating a Version 8 Data File 4 Chapter 4

Output 4.17 Updated Data File, MYDATA. NEWBDAY

MYDATA.NEWBDAY Data File 1
OBS EMPID BIRTHDAT LASTNAME JOBCODE

1 456910 24SEP53 ARDIS 602
2 237642 13MAR54 BATTERSBY 602
3 129540 31JUL60 CHOULAI .
4 239185 28AUG59 DOS REMEDIOS 602
5 356134 25OCT60 DUNNETT .
6 321783 03JUN35 GONZALES 602
7 120591 12FEB46 HAMMERSTEIN 602
8 135673 21MAR61 HEMESLY 602
9 456921 12MAY62 KRAUSE 602

10 457232 15OCT63 LOVELL 602
11 127845 25DEC43 MEDER .
12 423286 31OCT64 MIFUNE 602
13 677890 24APR65 NISHIMATSU-LYNCH .
14 216382 24JUL63 PURINTON 602
15 459287 05JAN34 RODRIGUES .
16 346917 15MAR50 SHIEKELESLAN .
17 234967 21DEC67 SMITH 602
18 254896 06APR49 TAYLOR-HUNYADI .
19 212916 29MAY28 WACHBERGER 602
20 119012 05JAN46 WOLF-PROVENZA 602

Updating a Version 8 Data File
Versions 6 and 8 of the SAS System support different naming conventions, therefore,

there could be character-length discrepancies between the columns in the original data
file and the transaction data. You have two choices when updating a Version 8 data file:

� let the compatibility engine truncate names exceeding 8 characters. The truncated
names will be added to the updated data file as new columns.

� rename the columns in the Version 8 data file to match the columns in the
descriptor file.

The following example resolves character-length discrepancies by using the
RENAME DATA step option with the UPDATE statement. A Version 8 data file,
LIB8.BIRTHDAYS, is updated with data described by VLIB.EMPS.

proc sort data=lib8.birthdays;
by last_name;

run;

proc print data=lib8.birthdays;
format birthdate date7.;
title ’LIB8.BIRTHDAYS Data File’;

run;



Using CA-DATACOM/DB Data in SAS Programs 4 Performance Considerations 43

data newdata.v8_birthdays;
update lib8.birthday
(rename= (last_name=lastname

firstname=firstnme
birthdate=birthdat)) vlib.emps;

by lastname firstnme;
run;

proc print data=newdata.v8_birthdays;
title ’NEWDATA.V8_BIRTHDAYS Data File’;

run;

In this example, the updated data file NEWDATA.V8_BIRTHDAYS is a Version 8
data file that is stored in a Version 8 data library associated with the libref NEWDATA.
Version 8 supports member and column names of up to 32 characters. However, the
RENAME= DATA step option is used with the UPDATE statement to change the longer
column names in LIB8.BIRTHDAYS to match the 8–character column names in
VLIB.EMPS. The columns are renamed before the updated data file is created.

Output 4.18 on page 43 shows the results of the PRINT procedure on the original
data file. The updated file looks like Output 4.17 on page 42.

Output 4.18 Data File to be Updated, LIB8.BIRTHDAYS

LIB8.BIRTHDAYS Data File 1

OBS EMPLOYEE_ID BIRTHDATE LAST_NAME
1 129540 31JUL60 CHOULAI
2 356134 25OCT60 DUNNETT
3 127845 25DEC43 MEDER
4 677890 24APR65 NISHIMATSU-LYNCH
5 459287 05JAN34 RODRIGUES
6 346917 15MAR50 SHIEKELESLAN
7 254896 06APR49 TAYLOR-HUNYADI

For more information on the UPDATE statement, see the SAS Language Reference:
Dictionary.

You cannot update a CA-DATACOM/DB table directly using the DATA step, but you
can update a CA-DATACOM/DB table using the following procedures: APPEND,
FSEDIT, FSVIEW, SQL, and SAS/AF applications. See Chapter 5, “Browsing and
Updating CA-DATACOM/DB Data,” on page 45 for more information on updating
CA-DATACOM/DB data.

Performance Considerations
While you can generally treat view descriptors like SAS data files in SAS programs,

there are a few things you should keep in mind:



44 Performance Considerations 4 Chapter 4

� It is sometimes better to extract CA-DATACOM/DB data and place them in a SAS
data file than to read them directly. Here are some circumstances when you
should probably extract:

� If you plan to use the same CA-DATACOM/DB data in several procedures in
the same session, you may improve performance by extracting the
CA-DATACOM/DB data. Placing these data in a SAS data file requires a
certain amount of disk space to store the data and I/O to write the data.
However, SAS data files are organized to provide optimal performance with
PROC and DATA steps. Programs using SAS data files often use less CPU
time than when they read CA-DATACOM/DB data directly.

� If you plan to read large amounts of data from a CA-DATACOM/DB table and
the data are being shared by several users (Multi-User environment), your
direct reading of the data could adversely affect all users’ response times.

� If you are the creator of a table, and you think that directly reading this data
would present a security risk, you may want to extract the data and not
distribute information about either the access descriptor or view descriptor.

� If you intend to use the data in a particular sorted order several times, it is
usually more efficient to run the SORT procedure on the view descriptor, using the
OUT= option than to request the same sort repeatedly (with a SORT clause) on
the CA-DATACOM/DB data. Note that you cannot run the SORT procedure on a
view descriptor unless you use the SORT procedure’s OUT= option.

� Sorting data can be resource-intensive, whether it is done with the SORT
procedure, with a BY statement, or with a SORT clause included in the view
descriptor. When you use a SAS BY statement with a view descriptor, it is most
efficient to use a BY column that is associated with an indexed CA-DATACOM/DB
field. Also, if you do not need a certain order, blank out the Default Key.
Otherwise, you may cause an unnecessary sort.

� If you use a Default Key, the interface view engine will use an index read instead
of a sort if it can. Index reads are faster, but not always possible. For example, an
index read is not possible if you specify multiple sort keys, multiple WHERE
clause conditions, or a WHERE clause condition with a column that is not a key.

� When you are writing a SAS program and referencing a view descriptor, it is more
efficient to use a WHERE statement in the program than it is to use a subsetting
IF statement. The interface view engine passes the WHERE statement as
CA-DATACOM/DB selection criteria to the view descriptor, connecting it (with the
AND operator) to any WHERE clause included in the view descriptor. Applying a
WHERE clause to the CA-DATACOM/DB data may reduce the number of records
processed, which often improves performance.

� You can provide your own URT with options that are fine-tuned for your
applications.

� Refer to “Creating and Using View Descriptors Efficiently” on page 98 for more
details on creating efficient view descriptors.



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS Interface to CA-DATACOM/DB Software: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999. pp. 170.

SAS/ACCESS Interface to CA-DATACOM/DB Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–545–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


