
63

C H A P T E R

6
ACCESS Procedure Reference

Introduction 63
ACCESS Procedure Syntax 64

Description 65

PROC ACCESS Statement Options 65

Options 65

SAS System Passwords for SAS/ACCESS Descriptors 66
Assigning Passwords 67

ACCESS Procedure Method 67

DATASETS Procedure Method 67

Procedure Statements 68

Dictionary 70

WHERE Clause in a View Descriptor 91
View WHERE Clause Syntax 92

View WHERE Clause Examples 93

Expressions 93

Specifying Values in WHERE Clauses 94

Character Fields 94
Date Values 94

$HEX. Format Fields 94

Values That Do Not Fit the Field Picture 95

Masking Values 95

Multi-Field Keys 96
Guidelines 96

SORT Clause in a View Descriptor 97

View SORT Clause Syntax 97

SORT Clause Example 98

Guidelines 98

Creating and Using View Descriptors Efficiently 98
ACCESS Procedure Data Conversions 99

Introduction
The ACCESS procedure enables you to create and edit the descriptor files used by

the SAS/ACCESS interface to CA-DATACOM/DB. This chapter provides reference
information for the ACCESS procedure statements, including procedure syntax and
statement options.

Additionally, the following sections provide information to help you optimize use of
the interface:

64 ACCESS Procedure Syntax 4 Chapter 6

� “Creating and Using View Descriptors Efficiently” on page 98 presents several
efficiency considerations for using the SAS/ACCESS interface to
CA-DATACOM/DB.

� “ACCESS Procedure Data Conversions” on page 99 summarizes how the SAS/
ACCESS interface converts each type of CA-DATACOM/DB data into its SAS
column format and informat equivalents.

For examples of how to use PROC ACCESS, refer to Chapter 3, “Defining SAS/ACCESS
Descriptor Files,” on page 15. If you need help with SAS data sets and data libraries,
their naming conventions, or any terms used in the ACCESS procedure, refer to the SAS
Language Reference: Dictionary and the SAS Companion for the OS/390 Environment.

Remember that help is available from within the ACCESS procedure by issuing the
HELP command on any command line.

ACCESS Procedure Syntax
PROC ACCESS <options>;

Creating and Updating Statements
CREATE libref.member-name.ACCESS | VIEW;
UPDATE libref.member-name.ACCESS|VIEW <password-level=SAS-password>;

Database-Description Statements
DATABASE | DB<=> <">Datacom-database-name<">;
DBSTAT< => <">PROD<"> | <">TEST<"> | <">test-version<">;
PASSWORD | PASS | PW<=> <">Datacom-password<">;
TABLE<=> <">Datacom-table-name<">;
TBLSTAT<=> <">PROD<"> | <">TEST<"> | <">test-version<">;
URT<=> <">User-Requirements-Table-name<">;
USER<=> <">authorized-Datacom-userid<">;

Editing Statements
ASSIGN | AN<=> YES | NO | Y | N;
CONTENT <">column-identifier-1<"> <=> SAS-date-format | length

<...<">column-identifier-n<"> <=> SAS-date-format | length>;
DROP <">column-identifier-1<"> <...<">column-identifier-n<">>;
EXTEND ALL | VIEW | <">column-identifier-1<">

<...<">column-identifier-n<">>;
FORMAT | FMT <">column-identifier-1<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;
INFORMAT | INFMT <">column-identifier-1<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;
KEY<=> <">Datacom-short-name<">;
LIST ALL | VIEW | <">column-identifier-1<"> <...<">column-identifier-n<">;>
LISTINFO ALL | VIEW | <">column-identifier-1<">

<...<">column-identifier-n<">>;

ACCESS Procedure Reference 4 PROC ACCESS Statement Options 65

LISTOCC <">column-identifier-1<"> <...<">column-identifier-n<">>;
OCCURS <">column-identifier<">

CONTENT occurrence-1 <=> SAS-format-name
<...occurrence-n <=> SAS-format-name>;
|
DROP occurrence-1 <TO> occurrence-n;
|
FORMAT <">occurrence-1<"> <=> SAS-format-name
<...<">occurrence-n<"> <=> SAS-format-name>;
|
INFORMAT <">occurrence-1<"> <=>SAS-format-name
<...<">occurrence-n<"> <=> SAS-format-name>;
|
RENAME <">occurrence-1<"> <=> SAS-name
<...<">occurrence-n<"> <=> SAS-name>;
|
RESET occurrence-1 <TO> occurrence-n;
|
SELECT occurrence-1 <TO> occurrence-n;

RENAME <">column-identifier-1<"> <=> SAS-name
<...<">column-identifier-n<"> <=>SAS-name>;

RESET ALL | <">column-identifier-1<"> <...<">column-identifier-n<">>;
SELECT ALL | <">column-identifier-1<"> <...<">column-identifier-n<">>;
SUBSET selection-criteria;
QUIT | EXIT;

Description
You use the ACCESS procedure to create and edit access descriptors and view

descriptors, and to create SAS data files. Descriptor files describe DBMS data so that
you can read, update, or extract the DBMS data directly from within a SAS session or
in a SAS program.

The ACCESS procedure can run in batch or interactive line modes.
The following sections provide complete information on PROC ACCESS options and

statements.

PROC ACCESS Statement Options
The ACCESS procedure statement takes the following options:

PROC ACCESS options;

Depending on which options you use, the ACCESS procedure statement performs
several tasks.

You use the PROC ACCESS statement with database-description statements and
certain procedure statements to create descriptors or SAS data files from DBMS data.
See “Procedure Statements” on page 68 for information on which procedure statements
to use for each task. The following sections describe PROC ACCESS options in greater
detail.

Options
This section describes the options that you use to create and edit access descriptors

and view descriptors.

66 SAS System Passwords for SAS/ACCESS Descriptors 4 Chapter 6

ACCDESC=libref.access-descriptor
specifies an access descriptor. ACCDESC= is used with the DBMS= option to
create a view descriptor that is based on the specified access descriptor. You
specify the view descriptor’s name in the CREATE statement. You can also use a
SAS data set option on the ACCDESC= option to specify any passwords that have
been assigned to the access descriptor.

The ACCDESC= option has two aliases: AD= and ACCESS=.

DBMS=DATACOM
specifies the database management system you want to the descriptor(s) to access.
Specify DBMS=DATACOM since you are using the SAS/ACCESS interface to
CA-DATACOM/DB.

OUT=<libref.>member-name
specifies the SAS data file to which DBMS data are written. OUT= is used only
with the VIEWDESC= option.

VIEWDESC=<libref.>view-descriptor
specifies a view-descriptor that accesses the CA-DATACOM/DB data.
VIEWDESC= is used only with the OUT= option.

For example:

proc access dbms=Datacom viewdesc=vlib.invq4
out=dlib.invq4;

run;

The VIEWDESC= option has two aliases: VD= and VIEW=.

SAS System Passwords for SAS/ACCESS Descriptors
The SAS System enables you to control access to SAS data sets and access

descriptors by associating one or more SAS System passwords with them.
Table 6.1 on page 66 summarizes the levels of protection that SAS System passwords

have and their effects on access descriptors and view descriptors.

Table 6.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor
from being read or
edited

view descriptor protects DBMS data
from being read or
updated

protects DBMS data
from being updated

protects descriptor
from being read or
edited

For detailed information on the levels of protection and the types of passwords you
can use, refer to the SAS Language Reference: Dictionary. The following section
describes how you assign SAS System passwords to descriptors.

ACCESS Procedure Reference 4 Assigning Passwords 67

Assigning Passwords
You can assign a SAS password when you define a descriptor in the ACCESS

procedure or after the descriptor file has been created by using PROC DATASETS.
Four password levels are available: READ=, WRITE=, ALTER=, or PW=. PW=

assigns read, write, and alter privileges to a descriptor.
You can assign multiple levels of protection to a descriptor. However, for more than

one level of protection (that is, both READ and ALTER), be sure to use a different
password for each level. If you use the same password for each level, a user to whom
you grant READ privileges only (in order to read the DBMS data) would also have
privileges to alter your descriptor (which you do not want to allow).

ACCESS Procedure Method
To assign a password in the ACCESS procedure, specify the password level and

password as a data set option in the CREATE statement. The following example
creates and assigns passwords to an access descriptor and a view descriptor in the same
procedure execution.

proc access dbms=Datacom;
create work.emps.access (alter=rouge);
table=employees;
user=demo;

create work.emp.view (alter=ego);
select 1 2 3 4;

run;

Users will have to specify the ALTER password EGO to browse or edit the view
descriptor and the ALTER password ROUGE to browse, edit, or define additional view
descriptors from this access descriptor.

When creating a view descriptor from a password-protected access descriptor, specify
the access descriptor password as a data set option after the ACCDESC= option. The
following example specifies two data set options. The first specifies the access descriptor
password and the second assigns a password to the view descriptor.

proc access dbms=Datacom ad=work.emps.access (alter=rouge);
create work.emp2.view (alter=dumb);
select 5 6 7 8;

run;

DATASETS Procedure Method
You assign a SAS password to an existing descriptor by using the DATASETS

procedure. The DATASETS procedure MODIFY statement allows you to assign, change,
and delete SAS passwords.

Here is the basic syntax for using PROC DATASETS to assign a password to an
access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;
MODIFY member-name (password-level =
password-modification);

RUN;

68 Procedure Statements 4 Chapter 6

In this syntax statement, the password-level argument can have one or more of the
following values: READ=, WRITE=, ALTER=, or PW=. The password-modification
argument enables you to assign a new password or to change or delete an existing
password.

For example, this PROC DATASETS statement assigns the password MONEY with
the ALTER level of protection to the access descriptor MYLIB.EMPLOYEE.

proc datasets library=mylib memtype=access;
modify employee (alter=money);

run;

In this case, users are prompted for a password whenever they try to browse or edit the
access descriptor or create view descriptors that are based on access descriptor
MYLIB.EMPLOYEE.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to view descriptor
VLIB.CUSPHON:

proc datasets library=vlib memtype=view;
modify cusphon (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read or
update the DBMS data, or try to browse or edit the view descriptor VLIB.CUSPHON
itself. You need both levels to protect the data and descriptor. Assign a WRITE level of
protection to prevent data updates.

To delete a password on a descriptor file or any SAS data set, put a slash after the
password:

proc datasets library=vlib memtype=view;
modify cusphon (read=mypw/ alter=mydept/);

run;

Refer to the SAS Language Reference: Dictionary for more examples of assigning,
changing, deleting, and using SAS System passwords with PROC DATASETS.

Procedure Statements
To invoke the ACCESS procedure you use the options described in “PROC ACCESS

Statement Options” on page 65 and certain procedure statements. The options and
statements that you choose are determined by your task.

� To create an access descriptor:

PROC ACCESS DBMS=DATACOM;
CREATE libref.member-name.ACCESS;

database-description statements;
optional editing statements;

RUN;

� To create an access descriptor and a view descriptor:

PROC ACCESS DBMS=DATACOM;
CREATE libref.member-name.ACCESS;

database-description statements;
optional editing statements;

ACCESS Procedure Reference 4 Procedure Statements 69

CREATE libref.member-name.VIEW;
SELECT item-list;
optional editing statements;

RUN;

� To create a view descriptor from an existing access descriptor:

PROC ACCESS DBMS=DATACOM ACCDESC=libref.access-descriptor;
CREATE libref.member-name.VIEW;

SELECT item-list;
optional editing statements;

RUN;

� To update an access descriptor:

PROC ACCESS DBMS=DATACOM;
UPDATE libref.member-name.ACCESS;

procedure statements;

RUN;

� To update a view descriptor:

PROC ACCESS DBMS=DATACOM;
UPDATE libref.member-name.VIEW;

procedure statements;

RUN;

CAUTION:
Updating access descriptors does not automatically update view descriptors. When you
update an access descriptor (for example, drop another field from the display), the
view descriptors based on this access descriptor are not updated automatically. You
must re-create or modify any view descriptors that you want to reflect the changes
made to the access descriptor. The view descriptors would still be valid, but they
would no longer match the access descriptor. However, in some situations the view
descriptors would no longer be valid (for example, if you re-create an access
descriptor with the same name but base it on a different CA-DATACOM/DB table). 4

CAUTION:
Altering CA-DATACOM/DB tables can affect descriptor files. Altering a CA-DATACOM/DB
table that has descriptor files defined on it may cause these descriptors to be
out-of-date or invalid. For example, if you add a field to a table and an existing
access descriptor is defined on that table, the access descriptor does not reflect the
new field, but it remains valid. However, if you delete a field or delete a table on
which the view descriptor is based, the view descriptor fails when executed.
Therefore, you must change the descriptor files manually when changes to
CA-DATADICTIONARY invalidate them.

1 When you change CA-DATADICTIONARY, you must recreate the access
descriptor(s) with PROC ACCESS, using the same name(s).

70 Dictionary 4 Chapter 6

2 Then you must edit each view descriptor with PROC ACCESS. You will get a
message if the view descriptor differs from its access descriptor. Change the
view descriptor as needed.

4

The SAS/ACCESS interface view engine does a rudimentary validation of a view
descriptor upon opening it. For example, the engine checks the data type information.
If a problem is found, the engine writes a message to the log and stops.

For more information on the effects of changing a CA-DATACOM/DB table on
existing view descriptors, see Appendix 1, “Information for the Database
Administrator,” on page 105.

Dictionary

ASSIGN

Specifies whether view descriptors created from an access descriptor will inherit or select their
own SAS column names and formats.

Optional statement

Applies to: access descriptor

Syntax
ASSIGN | AN <=> YES | NO | Y | N;

Details The ASSIGN statement specifies whether view descriptors will inherit the
SAS column names and formats assigned in the parent access descriptor at the time
that the access descriptor was created, or whether the column names and formats can
be selected in the view descriptor.

If you specify ASSIGN=YES, then default SAS column names and formats are
generated for all CA-DATACOM/DB field names and these names and formats will be
used in all derived view descriptors. You can edit the default column names and
formats in the access descriptor with the RENAME, FORMAT, INFORMAT, and
CONTENT statements, but you cannot edit them in the view descriptor.

If ASSIGN=NO, the default value, default names are not generated and any SAS
column names assigned in the access descriptor can be edited in the view descriptor. If
you do not specify any column names in the access descriptor, then fields selected in the
view descriptor will use default SAS column names and formats, unless you edit them
with the RENAME, FORMAT, INFORMAT, and CONTENT statements.

Default SAS column names follow these rules:

� If the CA-DATACOM/DB field name is longer than eight characters, the SAS
System uses only the first eight characters. If truncating would result in duplicate
names, numbers are appended to the end of the name. For example, the
CA-DATACOM/DB field names CUSTOMERNAME and CUSTOMERNUMBER
would become the SAS column names CUSTOMER and CUSTOME1.

ACCESS Procedure Reference 4 CONTENT 71

� If the CA-DATACOM/DB field name contains invalid SAS name characters, such
as a hyphen (-), the SAS System replaces them with underscores (_). For example,
the CA-DATACOM/DB field name FUNC-INT becomes the SAS name FUNC_INT.

� For a key, the five-character DATACOM-NAME is used, if there is one. If that is
missing, the first eight nonblank characters of the entity-occurrence name are used.

� For repeating fields, the system generates unique SAS names by suffixing or
overlaying the occurrence number on the last position(s) of the SAS name. For
example, the third occurrence of PHONE is PHONE3, the ninth occurrence of
LASTNAME is LASTNAM9, and the eleventh occurrence of ADDRESS is
ADDRES11. In some cases, this feature causes different fields to have SAS names
that differ only in the suffixed number. For example, if you select
BRANCH-NUMBER, BRANCH-PHONE, and BRANCH-ADDRESS and each
repeats four times, the SAS names generated by default would be: BRANCH_1,
BRANCH_2, BRANCH_3, BRANCH_4, BRANCH_5, BRANCH_6, BRANCH_7,
BRANCH_8, BRANCH_9, BRANCH10, BRANCH11, and BRANCH12.

The generated names are not listed in the LIST statement output.
� The SAS name for a compound field contains *GROUP*. To see the fully expanded

repeating structure, use the LISTOCC statement. To see the field composition, use
the LISTINFO statement.

� You can set different default names with a user exit, which is described in
Appendix 2, “Advanced User Topics,” on page 117.

CONTENT

Specifies a SAS date format or length.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
CONTENT <">column-identifier-1<"> <=> SAS-date-format | length

<...<">column-identifier-n<"> <=> SAS-date-format | length>;

Details The CONTENT statement enables you to specify a SAS date format or
column length. A date format means that the CA-DATACOM/DB data have the
specified representation. The column length determines the number of characters to be
accessed. The SAS System stores datetime values as the number of days and seconds
before and after Jan. 1, 1960. Entering a SAS date format or column length
automatically changes the default values for SAS formats and informats. However, if
you have previously changed any format or informat values, specifying a CONTENT
value does not change those values.

CA-DATACOM/DB does not have a date type; therefore, the CONTENT statement
enables you to specify a date format for SAS processing. Four date formats are allowed:

� YYMMDDw. where w is 6 for two-digit years or 8 for four-digit years
� MMDDYYw. where w is 6 for two-digit years or 8 for four-digit years
� DDMMYYw. where w is 6 for two-digit years or 8 for four-digit years

72 CREATE 4 Chapter 6

� JULIANw. where w is 5 for two-digit years or 7 for four-digit years.

The column-identifier argument can be either the CA-DATACOM/DB field name or
the positional equivalent from the LIST statement, which is the number that represents
the column’s place in the access descriptor. If the column contains special characters or
national characters, enclose the name in quotes.

If you specified ASSIGN=YES when creating an access descriptor, you cannot change
the value for this statement when you later create a view descriptor based on that
access descriptor.

You do not have to issue a SELECT statement for DBMS columns named in the
CONTENT statement.

CREATE

Creates a SAS/ACCESS descriptor file.

Required statement
Applies to: access descriptor or view descriptor

Syntax
CREATE libref.member-name.ACCESS | VIEW;

Details The CREATE statement identifies the access descriptor or view descriptor
that you want to create. This statement is required for creating a descriptor file.

To create a descriptor, use a three-level name. The first level identifies the libref of
the SAS data library where you will store the descriptor. You can store the descriptor in
a temporary (WORK) or permanent SAS data library. The second level is the
descriptor’s name. The third level is the type of SAS file: specify ACCESS for an access
descriptor or VIEW for a view descriptor.

You can use the CREATE statement as many times as necessary in one procedure
execution. That is, you can create multiple access descriptors and view descriptors
based on those access descriptors, within the same execution of the ACCESS procedure.
Or, you can create access descriptors and view descriptors in separate executions of the
procedure.

Access descriptors When you create an access descriptor, you must place statements
or groups of statements in a certain order after the PROC ACCESS statement and its
options, as listed below:

1 The CREATE statement for the access descriptor must directly follow the PROC
ACCESS statement.

2 Database-description statements must follow the CREATE statement: TABLE,
TBLSTAT, USER, PASSWORD, DATABASE, DBSTAT, and URT. The order of the
database-description statements does not matter.

3 The editing statements must follow the database-description statements: ASSIGN,
CONTENT, DROP, EXTEND, FORMAT, INFORMAT, KEY, LIST, LISTINFO,
LISTOCC, OCCURS, QUIT, RENAME, and RESET. The SELECT and SUBSET
statements are used only when creating view descriptors. QUIT is an editing
statement but it terminates PROC ACCESS without creating your descriptor.

ACCESS Procedure Reference 4 DATABASE 73

4 The RUN statement is used to signal the end of the ACCESS procedure.

Information from database-description statements is stored in the access descriptor;
therefore, you do not need to repeat this information when you create view descriptors.
However, if no security values were entered in the access descriptor, then you can use
the database-description statements in a view descriptor to supply them.

View descriptors When you create a view descriptor for an existing access descriptor,
you must use the ACCDESC= option with the ACCESS procedure.

When you create view descriptors and access descriptors in the same procedure
execution, you must place the statements or groups of statements in the following order:

1 You must create an access descriptor before creating a view descriptor based on
that access descriptor.

2 You should omit the RUN statement from the access descriptor specification.
3 Any database-description statements, such as PASSWORD, must precede the

editing statements.
4 Among the editing statements, RENAME, CONTENT, FORMAT, and INFORMAT,

can be specified only when ASSIGN=NO is specified in the access descriptor
referenced by the view descriptor. The order of the statements within this group
usually do not matter; see the individual statement descriptions for any
restrictions.

5 The RUN statement is used to signal the end of the ACCESS procedure.

If you create only one descriptor in a PROC step, the CREATE statement and its
accompanying statements are checked for errors when you submit PROC ACCESS for
processing. If you create multiple descriptors in the same PROC step, each CREATE
statement (and its accompanying statements) is checked for errors as it is processed.

If no errors are found, each descriptor is saved when a new descriptor is created or
when the RUN statement is processed. If errors are found, error messages are written
to the SAS log and processing is terminated. After you correct the errors, resubmit your
statements.

For examples of how to create access descriptors and view descriptors, see Chapter 3,
“Defining SAS/ACCESS Descriptor Files,” on page 15.

DATABASE

Identifies the CA-DATACOM/DB database to use.

Optional statement
Applies to: access descriptor

Syntax
DATABASE | DB<=> <">Datacom-database-name<">;

Details The DATABASE statement allows you to specify the name of the
CA-DATACOM/DB database that contains the CA-DATACOM/DB table you want to
access. In CA-DATACOM/DB, Database is a 32-character field that names an
entity-occurrence of type DATABASE in CA-DATADICTIONARY.

74 DBSTAT 4 Chapter 6

The database name is required only if the table specified in the TABLE statement is
not unique in the dictionary. If the name contains special characters or national
characters, enclose it in quotes.

DB is the alias for the DATABASE statement.

DBSTAT

Indicates the status or version of the specified CA-DATACOM/DB database.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
DBSTAT<=> <">PROD<"> | <">TEST<"> | <">test-version<">;

Details The DBSTAT statement allows you to indicate the CA-DATADICTIONARY
status and version of the CA-DATACOM/DB database that you want to access. The
DBSTAT statement is required only if the database you want to use is not the one in
production status.

The DBSTAT statement can take one of the following arguments:

PROD indicates the database that is currently in production. This is the
default.

TEST indicates the database that is currently in test.

T plus a 3–digit
number

indicates a specific test version of the database.

Other status values, such as HIST, are not allowed.

DROP

Drops a DBMS column so that it cannot be selected in a view descriptor.

Optional statement
Applies to: access descriptor

Syntax
DROP <">column-identifier-1<"> <... <">column-identifier-n<">>;

Details The DROP statement drops the specified DBMS column from an access
descriptor. The column therefore cannot be selected by a view descriptor that is based

ACCESS Procedure Reference 4 EXTEND 75

on the access descriptor. However, the specified column in the DBMS table remains
unaffected by this statement.

The column-identifier argument can be either the CA-DATACOM/DB field name or
the positional equivalent from the LIST statement, which is the number that represents
the column’s place in the access descriptor. For example, to drop the third and fifth
columns, submit the following statement:

drop 3 5;

If the column name contains special characters or national characters, enclose the
name in quotes. You can drop as many columns as you want in one DROP statement.

To display a column that was previously dropped, specify the column name in the
RESET statement. However, doing so also resets all of the column’s attributes (such as
SAS column name, format, and so on) to their default values.

EXTEND

Lists columns in the descriptor and gives information about them.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
EXTEND ALL | VIEW | <">column-identifier-1<"> <...<">column-identifier-n<">>;

Details The EXTEND statement lists information about the DBMS columns in a
descriptor. The word *GROUP* is displayed to indicate the existence of a group.

You can use the EXTEND statement when creating an access or a view descriptor.
The EXTEND information is written to your SAS log.

You can specify EXTEND as many times as you wish while creating a descriptor;
specify EXTEND last in your PROC ACCESS code to see the completed descriptor
information. Or, if you are creating multiple descriptors, specify EXTEND before the
next CREATE statement to list all the information about the descriptor you are creating.

The EXTEND statement can take one of the following arguments:

ALL
lists all of the DBMS columns in the file, the positional equivalents, the SAS
names, the SAS informats, the database contents, the number of occurrences, and
the DBMS column types (Alpha or Zoned). When you are creating an access
descriptor, *NON-DISPLAY* appears next to the column description for any column
that has been dropped. When you are creating a view descriptor, *SELECTED*
appears next to the column description for columns that you have selected for the
view.

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their SAS names and informats, the database
contents, number of occurrences, DBMS column types, any subsetting clauses, and
the word *SELECTED*. Any DBMS columns that are dropped in the access
descriptor are not displayed. The VIEW argument is valid only for a view
descriptor.

76 FORMAT 4 Chapter 6

column-identifier
lists the specified DBMS column’s SAS name, its positional equivalent, its SAS
informat, the database content, number of occurrences, DBMS column type, and
whether the column has been selected or dropped. If the column name contains
special characters or national characters, enclose the name in quotes.

The column-identifier argument can be either the CA-DATACOM/DB field name,
the positional equivalent from the LIST statement, which is the number that
represents the column’s place in the descriptor, or a list of names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

extend 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

extend 5 6 8;

If the column contains special characters or national characters, enclose the
name in quotes.

FORMAT
Changes the SAS format for a DBMS column.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
FORMAT <">column-identifier-1<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;

Details The FORMAT statement changes a SAS column format from its default
format; the default SAS column format is based on the data type of the DBMS column.
(See “ACCESS Procedure Data Conversions” on page 99 for information about the
default formats that the ACCESS procedure assigns to your DBMS data types.)

The column-identifier argument can be either the CA-DATACOM/DB field name or
the positional equivalent from the LIST statement, which is the number that represents
the column’s place in the access descriptor. For example, to associate the DATE9.
format with the BIRTHDATE column and with the second column in the access
descriptor, submit the following statement:

format 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS format is specified on the
right of the expression. The equal sign (=) is optional. If the CA-DATACOM/DB field
name contains special characters or national characters, enclose the name in quotes.
You can enter formats for as many columns as you want in one FORMAT statement.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

ACCESS Procedure Reference 4 KEY 77

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the FORMAT statement. The FORMAT statement selects the
columns. When you use the FORMAT statement in access descriptors, the FORMAT
statement reselects columns that were previously dropped with the DROP statement. 4

FMT is the alias for the FORMAT statement.

INFORMAT
Changes a SAS informat for a DBMS column.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
INFORMAT <">column-identifier<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;

Details The INFORMAT statement changes a SAS column informat from its default
informat; the default column informat is based on the data type of the DBMS column.
(See “ACCESS Procedure Data Conversions” on page 99 for information about the
default informats that the ACCESS procedure assigns to your DBMS data types.)

The column-identifier argument can be either the CA-DATACOM/DB field name or
the positional equivalent from the LIST statement, which is the number that represents
the column’s place in the access descriptor. For example, to associate the DATE9.
informat with the BIRTHDATE column and with the second column in the access
descriptor, submit the following statement:

informat 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS informat is specified on the
right of the expression. The equal sign (=) is optional. If the DBMS column name
contains special characters or national characters, enclose the name in quotes. You can
enter informats for as many columns as you want in one INFORMAT statement.

You can use the INFORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the INFORMAT statement. The INFORMAT statement selects the
columns. When you use the INFORMAT statement with access descriptors, the
INFORMAT statement reselects columns that were previously dropped with the DROP
statement. 4

INFMT is the alias for the INFORMAT statement.

KEY
Specifies a key field that governs the order that records are read.

78 LIST 4 Chapter 6

Optional statement

Applies to: access descriptor or view descriptor

Syntax
KEY<=> <">Datacom-short-name<">;

Details The KEY statement specifies the CA-DATACOM/DB short name for a Default
Key in the CA-DATACOM/DB table. The Default Key value governs the order in which
records are read. The Default Key is an optional key that defaults to the Native Key.
The Native Key governs how records are stored and maintained.

You can specify another key as the Default Key if you want the records processed in
a certain order but you do not want to specify a SORT clause to achieve that result. You
can also specify a Default Key with the DDBKEY= data set option when you execute a
SAS procedure.

If the CA-DATACOM/DB short name contains special characters or national
characters, enclose the name in quotes.

LIST

Lists columns in the descriptor and gives information about them.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
LIST ALL | VIEW |<">column-identifier-1<">

<... <">column-identifier-n<">>;

Details The LIST statement lists the columns in the descriptor along with
information about the columns. The LIST statement can be used when creating an
access descriptor or a view descriptor. The LIST information is written to your SAS log.

You can specify LIST as many times as you want while creating a descriptor; specify
LIST last in your PROC ACCESS code to see the completed descriptor information. Or,
if you are creating multiple descriptors, specify LIST before the next CREATE
statement to list all the information about the descriptor you are creating.

The LIST statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the positional equivalents, the SAS column
names, and the SAS formats that are available for the access descriptor. When
you are creating an access descriptor, *NON-DISPLAY* appears next to the column
description for any column that has been dropped. When you are creating a view
descriptor, *SELECTED* appears next to the column description for columns that
you have selected for the view.

ACCESS Procedure Reference 4 LISTINFO 79

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their SAS column names and formats, any subsetting
clauses, and the word *SELECTED*. Any columns that were dropped in the access
descriptor are not displayed. The VIEW argument is valid only for a view
descriptor.

column-identifier
lists the specified DBMS column name, its positional equivalent, its SAS column
name and format, and whether the column has been selected or dropped. If the
column name contains special characters or national characters, enclose the name
in quotes.

The column-identifier argument can be either the CA-DATACOM/DB field name
or the positional equivalent from the LIST statement, which is the number that
represents the column’s place in the descriptor. For example, to list information
about the fifth and eighth columns in the descriptor, submit the following
statement:

list 5 8;

LISTINFO

Shows additional data field information.

Optional statement

Applies to: access descriptor or view descriptor

Syntax

LISTINFO ALL | VIEW |<">column-identifier-1<">
<...<">column-identifier-n<">>;

Details The LISTINFO statement shows additional data field information for one or
more DBMS columns in the descriptor. The LISTINFO statement can be used when
creating an access or a view descriptor. The LISTINFO information is written to your
SAS log.

The LISTINFO statement is especially helpful for key fields. It shows the
CA-DATACOM/DB short name as well as all the columns and levels that make up the
key.

The LISTINFO statement can take one of the following arguments:

ALL
lists the field composition of all the DBMS columns in the file.

VIEW
lists the field composition of the DBMS columns selected for the view descriptor.
Any columns that are dropped in the access descriptor are not displayed. The
VIEW argument is valid only for a view descriptor.

80 LISTOCC 4 Chapter 6

column-identifier
lists the field composition of the specified DBMS columns. If the column name
contains special characters or national characters, enclose the name in quotes.

The column-identifier argument can be either the CA-DATACOM/DB field name,
the positional equivalent from the LIST statement, which is the number that
represents the column’s place in the descriptor, or a list of names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

listinfo 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

listinfo 5 6 8;

LISTOCC
Lists occurrences for repeating data fields.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
LISTOCC <">column-identifier-1<">

<... <">column-identifier-n<">>;

Details The LISTOCC statement lists all the occurrences for the specified repeating
fields along with information such as the CA-DATACOM/DB level, the SAS column
name, the occurrence number, the SAS column format and informat, the DB content,
and whether the occurrence has been selected or dropped. The LISTOCC statement can
be used when creating an access descriptor or a view descriptor. The LISTOCC
information is written to your SAS log.

The LISTOCC statement takes the following argument:

column-identifier
The column-identifier argument can be either the CA-DATACOM/DB field name or
the positional equivalent from the LIST statement, which is the number that
represents the column’s place in the descriptor. For example, to list occurrences for
the fifth column in the descriptor, submit the following statement:

listocc 5;

If the DBMS column name contains special characters or national characters, enclose
the name in quotes. The column-identifier must be a repeating field.

OCCURS
Modifies the occurrences of a repeating data field.

ACCESS Procedure Reference 4 OCCURS 81

Optional statement

Applies to: access descriptor or view descriptor

Syntax
OCCURS <">column-identifier<">

CONTENT <">occurrence-1<"> <=> SAS-date-format | length
<... <">occurrence-n<"><=> SAS-date-format| length>;
|
DROP occurrence <<TO> ... occurrence-n>;
|
FORMAT <">occurrence-1<"> <=> SAS-format-name
<… <">occurrence-n<"> <=> SAS-format-name>;
|
INFORMAT <">occurrence-1<"> <=> SAS-format-name
<… <">occurrence-n<"> <=> SAS-format-name>;
|
RENAME <">occurrence-1<"> <=> SAS-name
< ... <">occurrence-n<"> <=> SAS-name>;
|
RESET occurrence-1 <<TO> ... occurrence-n>;
|
SELECT occurrence <<TO> … occurrence-n>;

Details You use the OCCURS statement to modify values for occurrences of a
repeating data field. The OCCURS statement can be used when creating an access
descriptor or a view descriptor.

The OCCURS statement allows you to

� select individual occurrences or a range of occurrences

� drop individual occurrences or a range of occurrences

� reset individual occurrences or a range of occurrences

� change the format value for one or more occurrences

� change the informat value for one or more occurrences

� change the database content value for one or more occurrences

� rename the SAS column name for one or more occurrences.

You can see the two-character numeric level of a CA-DATACOM/DB field by using
one of the LIST statements. The LVL column displays the word KEY for keys, the
number 01 for simple fields and top-level compound fields, 02 for secondary fields, and
so on. This listing is for information only and cannot be edited.

The column-identifier must be a repeating field, and can be the CA-DATACOM/DB
field name or the positional equivalent from the LIST statement. The occurrence
argument can be the occurrence name or the occurrence number. If the
CA-DATACOM/DB field name or the occurrence name contains special characters, like
’-’, enclose the name in quotes. The ’=’is optional for all subcommands.

You can use the LISTOCC statement to review your changes.
You do not have to issue a SELECT statement in a view descriptor for occurrences

included in the CONTENT, FORMAT, INFORMAT, and RENAME subcommands. The
subcommands select the columns.

The OCCURS statement can take one of the following subcommands:

82 OCCURS 4 Chapter 6

SELECT
allows you to select individual occurrences to be included in your descriptor. This
subcommand is used only when defining view descriptors.

You can select one or more individual occurrences or a range of occurrences. For
example, if you want to select occurrences one, two, and three of the
BRANCHOFFICE column in the CUSTOMERS table, submit the following
statement:

occurs "BRANCHOFFICE" select 1 2 3;

or

occurs "BRANCHOFFICE" select 1 to 3;

DROP
allows you to drop individual occurrences from your descriptor. If you drop all
occurrences of a column, the column is automatically dropped. This subcommand
is used only when defining access descriptors.

You can drop one or more individual occurrences or a range of occurrences. For
example, if you want to drop occurrences one, two, and three of the
BRANCHOFFICE column in the CUSTOMERS table, submit the following
statement:

occurs "BRANCHOFFICE" drop 1 2 3;

or

occurs "BRANCHOFFICE" drop 1 to 3;

RESET
allows you to reset the attributes of individual occurrences. This subcommand can
be used when creating an access or view descriptor. Specifying the RESET
subcommand for an occurrence has the same effect on occurrence attributes as
specifying the RESET statement for a column. See “RESET” on page 85 for more
information.

You can reset one or more individual occurrences or a range of occurrences. For
example, if you want to reset occurrences one, two, and three of the
BRANCHOFFICE column in the CUSTOMERS table, submit the following
statement:

occurs "BRANCHOFFICE" reset 1 2 3;

or

occurs "BRANCHOFFICE" reset 1 to 3;

FORMAT
allows you to change the format attribute of individual occurrences. This
subcommand can be used when creating access or view descriptors. However, the
format attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the format attribute of one or more occurrences in one FORMAT
subcommand. For example, if you want to change the format attribute for
occurrences nine and ten of the BRANCHOFFICE column in the CUSTOMER
table, submit the following statement:

occurs "BRANCHOFFICE" format 9 $21. 10 = $8.;

ACCESS Procedure Reference 4 PASSWORD 83

INFORMAT
allows you to change the informat attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. However, the
informat attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the informat attribute of one or more occurrences in one
INFORMAT subcommand. For example, if the BRANCHOFFICE column in the
CUSTOMERS table is a repeating field, and you want to change the informat
attribute for occurrences nine and ten, submit the following statement:

occurs "BRANCHOFFICE" informat 9 $21. 10 = $8.;

CONTENT
allows you to change the DB content attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. Changing the
DB content attribute of an occurrence has the same effect on the SAS formats and
informats for CA-DATACOM/DB tables and records as changing the DB content
attribute of a column. See “CONTENT” on page 71 for more information. For
example, if the FIRSTORDERDATE column in the CUSTOMERS table is a
repeating field, and you want to change the DB content attribute for occurrences
nine and ten, submit the following statement:

occurs firstorderdate content 9 yymmdd6. 10 = yymmdd6.;

RENAME
allows you to rename a SAS column name for an individual occurrence. This
subcommand can be used when creating an access or view descriptor. However,
this subcommand has different effects on access and view descriptors based on the
value specified in the ASSIGN statement.

If you set ASSIGN=NO in the access descriptor, the SAS column name can be
renamed. If you set ASSIGN=YES, the SAS column name can be renamed in the
access descriptor but not in the view descriptor.

You can rename the SAS column name for one or more occurrences in one
RENAME subcommand. For example, if you want to rename occurrences nine and
ten of the BRANCH-OFFICE column in the CUSTOMERS table, submit the
following statement:

occurs "BRANCH-OFFICE" rename 9 london 10 = tokyo;

The result of selecting a key that consists of multiple fields is always a SAS
character column. The value of the SAS column is the concatenated values of the
component fields. If any of the component fields are numeric, they are converted to
character representation, with a format and length set by the interface view engine.
The character-only restriction exists so that the key can be used in a WHERE clause.

PASSWORD

Specifies a CA-DATADICTIONARY password.

Optional statement
Applies to: access descriptor

84 QUIT 4 Chapter 6

Syntax
PASSWORD | PASS | PW<=> <">Datacom-password<">;

Details The PASSWORD statement allows you to supply a CA-DATADICTIONARY
password. Not every userid requires a password.

The value is the 12–character PASSWORD attribute of the PERSON
entity-occurrence identified in User Name. If you enter a value, it is saved (in
encrypted form) in the access descriptor and in any view descriptor created from it.

If the password contains any special characters or national characters, enclose it in
quotes.

PASS and PW are aliases for the PASSWORD statement.

QUIT

Terminates the procedure.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
QUIT | EXIT;

Details The QUIT statement terminates the ACCESS procedure without any further
descriptor creation.

EXIT is the alias for the QUIT statement.

RENAME

Modifies the SAS column name.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
RENAME <">column-identifier-1<"> <=> SAS-name

<...<">column-identifier-n<"> <=> SAS-name>;

ACCESS Procedure Reference 4 RESET 85

Details The RENAME statement enters or modifies the SAS column name that is
associated with a DBMS column. The RENAME statement can be used when creating
an access descriptor or a view descriptor. However, the value of the ASSIGN statement
affects when the RENAME statement can be used.

When you create an access descriptor, the default setting for a SAS column name is a
blank. When ASSIGN=YES, default SAS column names are generated and these SAS
column names are used by all of the view descriptors derived from this access
descriptor. You can use the RENAME statement to edit the SAS column names
assigned in the access descriptor and these renamed SAS column will be used by its
view descriptors, unless a RESET statement or another RENAME statement is used in
the access descriptor.

If you omit the ASSIGN statement or specify it with a NO value, you can use the
RENAME statement to assign a SAS column name. In this case, the SAS column
names that you enter in the access descriptor will be retained by any view descriptors
derived from this access descriptor; however, you can edit them in the view descriptor
with the RENAME statement. Column names renamed in the view descriptor apply
only to that view descriptor.

The column-identifier argument can be either the CA-DATACOM/DB field name or
the positional equivalent from the LIST statement, which is the number that represents
the column’s place in the descriptor. For example, to rename the SAS column names
that are associated with the seventh DBMS column and the nine-character
FIRSTNAME DBMS column in a descriptor, submit the following statement:

rename 7 birthdy firstname=fname;

The DBMS column name (or positional equivalent) is specified on the left side of the
expression, with the SAS column name on the right side. The equal sign (=) is optional.
If the CA-DATACOM/DB field name contains special characters or national characters,
enclose the name in quotes. You can rename as many columns as you want in one
RENAME statement.

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS column name
associated with a DBMS column, you do not have to issue a SELECT statement for that
column.

RESET
Resets DBMS columns to their default settings.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
RESET <ALL | <">column-identifier-1<">

<... <">column-identifier-n<">>>;

Details The RESET statement resets either the attributes of all the DBMS columns
or the attributes of the specified DBMS columns to their default values. The RESET
statement can be used when creating an access descriptor or a view descriptor. However,
this statement has different effects on access and view descriptors, as described below.

86 SELECT 4 Chapter 6

Access descriptors When you create an access descriptor, the default setting for a
SAS column name is a blank. However, if you have previously entered or modified any
of the SAS column names, the RESET statement resets the modified names to the
default names that are generated by the ACCESS procedure. How the default SAS
column names are set depends on whether you included the ASSIGN statement. If you
omitted ASSIGN or set it to NO, the default names are blank. If you set ASSIGN=YES,
the default names are the first eight characters of each CA-DATACOM/DB field name.

The current SAS column format and informat are reset to the default SAS format
and informat, which was determined from the DBMS column’s data type. The current
DB content is also reset to the default value. Any columns that were previously
dropped, that are specified in the RESET command, become available; they can be
selected in view descriptors that are based on this access descriptor.

View descriptors When you create a view descriptor, the RESET statement clears
any columns that were included in the SELECT statement (that is, it "de-selects" the
columns).

When creating the view descriptor, if you reset a column and then select it again
within the same procedure execution, the SAS column name, format, informat, and
database content are reset to their default values (the SAS name is generated from the
DBMS column name, and the format and informat values are generated from the data
type). This applies only if you have omitted the ASSIGN statement or set the value to
NO when you created the access descriptor on which the view descriptor is based. If you
specified ASSIGN=YES when you created the access descriptor, the RESET statement
cannot be used to restore the default column names and formats in the view descriptor,
but it will affect the SELECT statement for the view.

The RESET statement can take one of the following arguments:

ALL
for access descriptors, resets all the DBMS columns that have been defined to
their default names and format settings and reselects any dropped columns.

For view descriptors, ALL resets all the columns that have been selected, so
that no columns are selected for the view; you can then use the SELECT
statement to select new columns.

column-identifier
can be either the CA-DATACOM/DB field name or the positional equivalent from
the LIST statement, which is the number that represents the column’s place in the
access descriptor. For example, to reset the third column, submit the following
statement:

reset 3;

If the CA-DATACOM/DB field name contains special characters or national
characters, enclose the name in quotes. You can reset as many columns as you
want in one RESET statement, or use the ALL option to reset all the columns.

SELECT

Selects DBMS columns for the view descriptor.

Required statement

Applies to: view descriptor

ACCESS Procedure Reference 4 SUBSET 87

Syntax
SELECT ALL | <">column-identifier-1<">

<...<">column-identifier-n<">>;

Details The SELECT statement specifies which DBMS columns in the access
descriptor to include in the view descriptor. This is a required statement and is used
only when defining view descriptors.

The SELECT statement can take one of the following arguments:

ALL
includes in the view descriptor all the DBMS columns that were defined in the
access descriptor excluding dropped columns.

column-identifier
can be either the CA-DATACOM/DB field name or the positional equivalent from
the LIST statement, which is the number that represents the column’s place in the
access descriptor on which the view is based. For example, to select the first three
columns, submit the following statement:

select 1 2 3;

If the CA-DATACOM/DB field name contains special characters or national
characters, enclose the name in quotes. You can select as many DBMS columns as
you want in one SELECT statement.

SELECT statements are cumulative within the same view creation. That is, if you
submit the following two SELECT statements, columns 1, 5, and 6 are selected, not just
columns 5 and 6:

select 1;
select 5 6;

To clear all your current selections when creating a view descriptor, use the RESET
ALL statement; you can then use another SELECT statement to select new columns.

SUBSET

Adds or modifies selection criteria for a view descriptor.

Optional statement
Applies to: view descriptor

Syntax
SUBSET <selection-criteria>;

Details You use the SUBSET statement to specify selection criteria when you create
a view descriptor. This statement is optional; if you omit it, the view retrieves all the
data (that is, all the rows) in the DBMS table.

88 TABLE 4 Chapter 6

The selection-criteria argument can be either a WHERE clause or a SORT clause.
For more information on the WHERE clause, see “WHERE Clause in a View
Descriptor” on page 91. For more information on the SORT clause, see “SORT Clause in
a View Descriptor” on page 97. You can use either SAS column names or DBMS column
names in your selection criteria. Specify your WHERE clause and SORT clause by
using the same or separate SUBSET statements. For example, you can submit the
following SUBSET statements:

subset where jobcode = 1204;
subset sort lastname;
subset where jobcode=1204 sort lastname;

The SAS System does not check the SUBSET statement for errors. The statement is
verified and validated only when the view descriptor is used in a SAS program.

To delete the selection criteria, submit a SUBSET statement without any arguments.

TABLE
Indicates the CA-DATACOM/DB table you want to use.

Required statement
Applies to: access descriptor

Syntax
TABLE<=> <">Datacom-table-name<">;

Details The TABLE statement specifies the CA-DATACOM/DB table that you want to
access. Datacom-table-name is the 32-character field that names an entity-occurrence of
type RECORD in the CA-DATADICTIONARY. (For CA-DATACOM/DB R8, the type is
TABLE.)

The TABLE statement is required to create an access descriptor and the table name
must be unique. If the table name is not unique, you can combine the TABLE
statement with the DATABASE, DBSTAT, and TBLSTAT statements until a unique
combination is identified.

If the table name contains special characters or national characters, enclose the
name in quotes.

TBLSTAT
Indicates the status or version of the specified CA-DATACOM/DB table.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
TBLSTAT<=> <">PROD<"> | <">TEST<"> | <">test-version<">;

ACCESS Procedure Reference 4 UPDATE 89

Details The TBLSTAT statement allows you to indicate the CA-DATADICTIONARY
status and version of the CA-DATACOM/DB table you want to access. The TBLSTAT
statement is required only if the database you want to use is not the one in production
status.

The TBLSTAT statement can take one of the following arguments:

PROD indicates the table that is currently in production. This is the
default.

TEST indicates the table that is currently in test.

T plus a 3–digit
number

indicates a specific test version of the table.

Other status values, such as HIST, are not allowed.

UPDATE

Updates a SAS/ACCESS descriptor file.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
UPDATE libref.member-name.ACCESS | VIEW

<password-level=SAS-password>;

Details The UPDATE statement identifies an existing access descriptor or view
descriptor that you want to update (edit). The descriptor can exist in either a
temporary (WORK) or permanent SAS data library. If the descriptor has been protected
with a SAS password that prohibits editing of the ACCESS or VIEW descriptor, then
the password must be specified on the UPDATE statement.

Note: It is recommended that you re-create (or overwrite) your descriptors rather
than update them. SAS does not validate updated descriptors. If you create an error
while updating a descriptor, you will not know of it until you use the descriptor in a
SAS procedure such as PROC PRINT. 4

To update a descriptor, use its three-level name. The first level identifies the libref of
the SAS data library where you stored the descriptor. The second level is the descriptor’s
name (member name). The third level is the type of SAS file: ACCESS or VIEW.

You can use the UPDATE statement as many times as necessary in one procedure
execution. That is, you can update multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can update access descriptors and view descriptors in
separate executions of the procedure.

You can use the CREATE statement and the UPDATE statement in the same
procedure execution.

90 URT 4 Chapter 6

If you update only one descriptor in a procedure execution, the UPDATE statement
must be the first statement after the PROC ACCESS statement (Note: The ACCDESC=
parameter cannot be specified on the PROC ACCESS statement).

The following statements are not supported when using the UPDATE statement:
ASSIGN, RESET, SELECT, and OCCURS subcommands RESET and SELECT.

Note: You cannot create a view descriptor after you have updated a view descriptor
in the same procedure execution. You can create a view descriptor after updating or
creating an access descriptor or after creating a view descriptor. 4

The following example updates the access descriptor MYLIB.ORDERS on the
CA-DATACOM/DB table ORDER. In this example, the SAS column names are changed
and formats are added.

proc access dbms=Datacom;
update mylib.orders.access;
rename ordernum ord_num

fabriccharges fabrics;
format firstorderdate date7.;
informat firstorderdate date7.;
content firstorderdate yymmdd6.;

run;

The following example updates an access descriptor MYLIB.EMPLOYEE on the
CA-DATACOM/DB table EMPLOYEES and then re-creates a view descriptor
VLIB.EMPS, which was based on MYLIB.EMPLOYEE. The original access descriptor
included all of the DBMS columns in the table. Here, the SALARY and BIRTHDATE
columns are dropped from the access descriptor so that users cannot see this data.
Because RESET is not supported when UPDATE is used, the view descriptor
VLIB.EMPS must be re-created in order to omit the SALARY and BIRTHDATE
columns.

proc access dbms=Datacom;
/* update access descriptor */
update mylib.employee.access;
drop salary birthdate;
list all;

/* re-create view descriptor */
create vlib.emps.view;
select empid hiredate dept jobcode sex

lastname firstname middlename phone;
format empid 6.

hiredate date7.;
subset where jobcode=1204;

run;

URT

Identifies the User Requirements Table to use.

Optional statement

Applies to: access descriptor or view descriptor

ACCESS Procedure Reference 4 WHERE Clause in a View Descriptor 91

Syntax

URT<=> <">User-Requirements-Table-name<">;

Details The URT statement identifies the User Requirements Table (URT) to be used
by the interface view engine when it opens a view descriptor. CA-DATACOM/DB
requires a URT to open a table. For more information, see “User Requirements Table
(URT)” on page 112. However, this statement is optional. If you do not specify a URT
when creating an access descriptor or a view descriptor, the engine will create a default
URT. A URT name can also be provided with a data set option (see “Data Set Options”
on page 117).

If you specify a URT when creating an access descriptor, the interface view engine
will use when it opens any view descriptors created from this access descriptor.

If the URT name contains special characters or national characters, enclose the name
in quotes.

USER

Specifies a CA-DATADICTIONARY userid.

Required statement

Applies to: access descriptor

Syntax

USER<=> <">authorized-Datacom-userid<">;

Details The USER statement supplies a required CA-DATADICTIONARY userid.
The userid is a 32–character entity-occurrence name of a PERSON entity in
CA-DATADICTIONARY, which is not necessarily the same as the user’s TSO id.

The value entered in the USER statement is saved in the access descriptor and in
any view descriptor created from the access descriptor. The user name and optional
password must have retrieval authority on six entity-types: DATABASE, FILE,
RECORD, ELEMENT, KEY, and FIELD.

If the userid contains special characters or national characters, enclose it in quotes.

WHERE Clause in a View Descriptor

You can use a WHERE Clause in a view descriptor to select specific records from a
CA-DATACOM/DB table. You can reference any CA-DATACOM/DB field included in the
view descriptor.

92 View WHERE Clause Syntax 4 Chapter 6

View WHERE Clause Syntax
A WHERE clause in a view descriptor consists of the word WHERE followed by one

or more conditions that specify criteria for selecting records from one
CA-DATACOM/DB table. (WITH and WH are valid synonyms for the word WHERE.)

A condition can be one of the following:

field-name<(occurrence)>|key-name operator value
field-name* operator field-name*
field-name<(occurrence)>|key-name range-operator low-value * high-
value

The user-supplied elements of the WHERE clause conditions are described here.

field-name<(occurrence)>|key-name
is the CA-DATACOM/DB name of the field or key for which you are specifying
criteria. The field must be selected in the view descriptor. The interface view
engine assumes that the name in a condition is a SAS name. If it is not, the name
will be treated as a CA-DATACOM/DB name.

If the field is a repeating field, you must specify the occurrence of that field in
parenthesis, where occurrence is one of the following:

n indicates the nth occurrence. For example,

where address(3) contains dallas

selects those records where the third occurrence of
ADDRESS contains DALLAS.

ALL indicates all occurrences selected in the view descriptor. For
example, the WHERE clause below selects those records where
all occurrences of ADDRESS contains DALLAS.

where address(all) contains dallas

ANY indicates any occurrence. An asterisk (*) can be used instead of
ANY. For example,

where address(any) contains dallas

selects those records where any occurrence of ADDRESS
contain DALLAS. You could have used ADDRESS(*) instead.

operator
is one of the following:

= or EQ equal to

> or GT greater than

< or LT less than

!= or = or NE not equal

>= or GE or
GTE

greater than or equal to

<= or LE or LTE less than or equal to

CONTAINS or
CONTAINING

contains

CONTAIN or
CONTAINING

does not contain

ACCESS Procedure Reference 4 Expressions 93

!CONTAIN or
!CONTAINING

does not contain

range-operator
is one of the following:

= or EQ or
SPANS

is within the range (inclusive)

!= or = or NE is outside the range

value, high-value, and low-value
represent valid values for the field or key.

For more information, see “Specifying Values in WHERE Clauses” on page 94.

View WHERE Clause Examples
The asterisk (*) is required when comparing two field-names. For example, the

folowing WHERE clause selects those records where the wages are less than the
commission:

where ytd-wages*<ytd-commission*

This WHERE clause

where ship-quant*=order-quantity*

selects those records where the ship-quantity is equal to the order-quantity.
The asterisk is also required when comparing low and high range values. For

example, the following WHERE clause selects employees with employee numbers
between 2300 and 2400:

where number spans 2300*2400

The WHERE clause

where lastname spans ’A’*’Smith’

selects those employees with last names up to Smith. See “Character Fields” on page
94 for details on the use of quotes.

If the asterisk appears in a value, enclose the value in quotes or use the DDBSPANS
system option to specify another special character. For more information on system
options, see “System Options” on page 115.

Expressions
Conditions can be combined to form expressions. Two conditions can be joined with

OR (|) or AND (&). Since expressions within parentheses are processed before those
outside, use parentheses to have the OR processed before the AND.

where cost=.50 & (type=ansi12 | class=sorry)

Conditions can also be preceded with NOT (X).

where cost=.50 & not (type=ansi12 | class=sorry)

The following WHERE clause selects all records where AVAIL is Y or W:

where avail eq y | avail eq w

The next WHERE clause selects all records where PART is 9846 and ON-HAND is
greater than 2x106:

94 Specifying Values in WHERE Clauses 4 Chapter 6

where part=9846 & on-hand>2.Oe+6

Specifying Values in WHERE Clauses
The next few pages discuss guidelines and considerations that govern how you

specify values in WHERE clause conditions.

Character Fields
For character fields you can use quoted or unquoted strings. Any value entered

within quotes is left as is; all unquoted values are uppercased, and redundant blanks
are removed. For example,

where lastname=Smith

extracts data for SMITH, and the next example extracts data for Smith:

where lastname=’Smith’

If the value is shorter than the field, it is padded on the right with blanks before the
comparison. (No padding is done if you use the CONTAINS operator.) If the value is
longer than the field, it is truncated to the field length before the comparison is done.
The WHERE clause

where name=Anderson

selects all records where NAME is ANDERSON. The WHERE clause

where city=’TRUTH OR CONSEQUENCES’ | stzip=’NM 87901’

selects all records where CITY is TRUTH OR CONSEQUENCES or STZIP is NM
87901. Notice in the first condition that quotes prevent OR from being used as an
operator. In the second condition, they prevent the extra space between NM and 87901
from being removed.

In this example, either of these WHERE clauses

where shop=’Joe’’s Garage’
where shop=’’Joe;s Garage’’

selects all records where SHOP is Joe’s Garage. Because the value is enclosed in
quotes, the two consecutive single quotes are treated as one quote. You can also use
double quotes around a value. Also, two consecutive double quotes become one double
quote if surrounded by double quotes. If two consecutive double quotes are surrounded
by single quotes, they remain two double quotes and vice versa.

Date Values
You can use the DB Content statement to specify a date format. Using this

statement, you can specify the dates according to your SAS informat. Do not use ’d as
you would for SAS software.

$HEX. Format Fields
For fields that are converted to $HEX. format because of their data type or length

(see “ACCESS Procedure Data Conversions” on page 99), the value must be specified in
hexadecimal. A value longer than the field is truncated to the field length before the
comparison is done. A value shorter than the field is padded on the right with binary
zeros before the comparison. For example, if CODE has $HEX4. format,

where code=f1f

ACCESS Procedure Reference 4 Specifying Values in WHERE Clauses 95

extracts the data for CODE equals 10 (F1F0).

Values That Do Not Fit the Field Picture
If you specify a value that does not fit the field’s picture, you may receive an error, or

the value may be adjusted to fit the picture before sending the request to
CA-DATACOM/DB.

The following examples illustrate how various misfit values are handled. Assume
throughout that COST has a database length of 5, with 2 decimals.

In the first set of examples, some misfit values produce errors, some are truncated,
and some cause operators to be changed. Errors occur when the equals operator or not
equals operator is used with a misfit value. Operators are changed when that change
plus truncation means the value will fit the picture and still produce the results you
intended.

Table 6.2

Condition Request Sent to CA-DATACOM/DB

cost=.003 Error (underflow: field has two decimals)

cost>.003 cost>0.00 (truncated)

cost>3.0052 cost>3 (truncated)

cost<.0001 cost ≤ 0.00 (truncated, < changed to ≤)

cost<20.001 cost ≤ 20 (truncated, < changed to ≤)

The next examples show values that exceed the field size. If possible, your values are
replaced with the largest value that can be stored in the field.

Table 6.3

Condition Request Sent to CA-DATACOM/DB

cost<11123 cost ≤ 999.99

cost = 9999 Error (overflow, field cannot store integers > 999)

cost >= -12345 cost ≥ - 999.99

Masking Values
When a condition includes the EQ, NE, CONTAINS, or NOT CONTAINS operator

and the field is in display code, you can mask the value. That is, you can specify that
only certain positions within the value are to be compared to those positions in the field.
A pound sign (#) marks the positions that you do not want to be compared. For example,

where zipcode eq 7#8

selects all records with zip codes that have a 7 in the first position and an 8 in the
third position. The condition

where lastname contains m#n

selects all records with last names such as Mendoza, Harman, and Warminsky.
If you use the EQ or NE operators and you mask a value that is shorter than the

database field, your values are padded on the right with mask characters. (No padding
is done for NOT CONTAINS.) For example,

96 Specifying Values in WHERE Clauses 4 Chapter 6

where lastname eq m#n

would select records with last names such as Mendoza, McNeal, and Monroe. Names
such as Harman or Warminsky would not qualify.

Use the DDBMASK system option to change the default masking character (#). For
more information on system options, see “System Options” on page 115.

Multi-Field Keys
For a condition that specifies a multi-field key, you may need to enclose each value

with delimiters.

Note: You cannot use compound fields in the WHERE clause. 4

For multi-key fields, use a delimiter character* before and after each value if the
value you are entering is not the same length as the multi-field key and you are using
either NOT CONTAINS or the mask character. Values for keys are always in display
code. For example, suppose INIT-ID is a multi-key field. INIT is a character field of
length 3, and ID is a numeric field of length 7. The WHERE clause

where init-id=\jde\27#\

selects all records where the initials are JDE and the ID number starts with 27.
Your value for ID is padded on the right with mask characters, so the entire value is
treated as if you had specified JDE27#####.

You can omit delimiters if you specify the same number of characters as the
multi-field key contains. For example, this WHERE clause

where init-id=jde27#####

also selects all records where the initials are JDE and the ID number starts with 27,
just as in the previous example. No delimiters are required here because JDE27#####
is 10 characters long, which is the same size as the key field.

When you do not include delimiters or masked characters in the value, blanks or
zeros are used for padding. The WHERE clause

where weight-sex=78m

selects all records where weight equals 78 and sex equals M. The value is treated as
if it had been specified as \78\m\.

On the other hand, the WHERE clause

where age-degree=25bs

selects all records where age equals 25 and degree equals BS. The value is treated as
if it had been specified as \25\bs \.

Note: A considerable amount of processing is required when a procedure must
convert an apparently simple condition into a complex request to CA-DATACOM/DB.
For example, if the fields AGE and SEX are not contiguous within the record, the
procedure converts the condition AGE-SEX<25M to SEX<M OR (SEX=M AND AGE<25)
before submitting the request. CA-DATACOM/DB, in turn, processes the request and, if
possible, uses permanent indexes to satisfy it. 4

Guidelines
Consider the following guidelines when you specify a WHERE clause in the view

descriptor:

* Use the DDBDELIM system option to change the default delimiter character (\). For more information on system options,
see “System Options” on page 115.

ACCESS Procedure Reference 4 View SORT Clause Syntax 97

� You can enter a WHERE clause or a SORT clause or both, in either order. But if
you enter both, do not use a terminator between them.

� The keyword WHERE is not required unless the WHERE clause is the second
clause (following the SORT clause). The SORT clause must begin with SORT.

� CA-DATACOM/DB does not have a date data type. However, the selection criteria
will honor a SAS date format if you specify one in the CONTENT and INFORMAT
statements.

� The CA-DATACOM/DB fields must be selected in the view descriptor in order for
you to use them in the WHERE clause.

� All conditions in the WHERE clause must refer to fields in a single table. To join
conditions that pertain to two CA-DATACOM/DB tables, use the SQL procedure.

� If you enter a SAS WHERE clause when you use the view descriptor in a SAS
procedure, the SAS WHERE clause is connected to the WHERE clause in the view
descriptor (if any) with the AND operator.

� The WHERE clause is not parsed (or checked) until the interface view engine tries
to execute it for a procedure.

� Field names in the WHERE clause conditions can be SAS names or
CA-DATACOM/DB names. However, you should use SAS names for repeating
fields or for fields within repeating fields.

� Character literals and values for zoned decimal fields can contain the pound sign
(#) to indicate masking out characters for pattern matching operations.

For more information on specifying WHERE clauses, see “Deciding How to Specify
Selection Criteria” on page 121.

SORT Clause in a View Descriptor

When you define a view descriptor, you can also include a SORT clause to specify
data order. You can reference only the CA-DATACOM/DB fields selected for the view
descriptor.

Without a SORT clause or a SAS BY statement, the data order is determined by the
Native Key for the CA-DATACOM/DB table (or by the Default Key specified in the
access or view descriptor).

A SAS BY statement automatically issues a SORT clause to CA-DATACOM/DB.
However, the SAS BY statement may cause grouping of the output results in some
procedures; this may not be what you want.

If a view descriptor already contains a SORT clause, the BY statement overrides the
SORT clause for that program. An exception is when the SAS procedure includes the
NOTSORTED option. Then, the SAS BY statement is ignored, and the view descriptor
SORT clause is used.

View SORT Clause Syntax
The syntax for the SORT clause is

SORT field-name <ASCENDING|UP|A> <DESCENDING|DOWN|D>
<,field-name...>

The elements of the SORT clause are described here.

98 SORT Clause Example 4 Chapter 6

field-name
is a CA-DATACOM/DB field name or SAS column name of a CA-DATACOM/DB
field included in the view descriptor. Use commas to separate sort keys. You can
also specify either ascending or descending order for each field name.

ASCENDING|UP|A
specifies that you want the data ordered by ascending values of the field-name.
ASCENDING is the default.

DESCENDING|DOWN|D
specifies that you want the data ordered by descending values of the field-name.

If you specify more than one CA-DATACOM/DB field, the values are ordered by the
first named field, then the second, and so on.

SORT Clause Example
The following SORT clause causes the values to be presented in ascending order

based on the values in field STATE, then within states in descending order based on the
values in field CITY:

sort state, city down

Guidelines
Consider the following guidelines when you specify a SORT clause in the view

descriptor:
� You can enter a WHERE clause or a SORT clause or both, in either order. But if

you enter both, do not use a terminator between them.
� The keyword WHERE is not required unless the WHERE clause is the second

clause (following the SORT clause). The SORT clause must begin with SORT.
� If you specify a SAS BY clause when you execute a procedure, it replaces the

SORT clause in the view descriptor. However, if the SAS procedure includes the
NOTSORTED option, the SAS BY clause is ignored and the SORT clause in the
view descriptor is used. A message is written to the LOG window when the
NOTSORTED option causes a SORT clause to be ignored.

� The CA-DATACOM/DB fields must be selected in the view descriptor in order for
you to use them in the SORT clause.

� In the SORT clause, you can specify multiple fields, separated by commas.
� The SORT clause is not parsed (or checked) until the interface view engine tries to

execute it for a procedure.
� Field names in the SORT clause conditions can be SAS names or

CA-DATACOM/DB names. However, you should use SAS names for repeating
fields or for fields within repeating fields.

Creating and Using View Descriptors Efficiently
When creating or using view descriptors, follow these guidelines to minimize the use

of CA-DATACOM/DB and your operating system resources and to reduce the time
CA-DATACOM/DB takes to access data.

� Select only the fields your program needs. Selecting unnecessary fields adds extra
processing time.

ACCESS Procedure Reference 4 ACCESS Procedure Data Conversions 99

� Specify the order in which records are presented to the SAS System (with a SORT
clause or a SAS BY statement) only if the SAS System needs the data in a
particular order for subsequent processing.

The SAS BY statement issues an ordering clause to CA-DATACOM/DB so that
CA-DATACOM/DB does the sorting using its system resources. This SORT clause
overrides any existing SORT clause for the view descriptor. If you decide to use a
SORT clause or a SAS BY statement, order by a key, which is indexed, when
possible. (For help in determining which fields in a table are indexed, see your
DBA or the table’s creator.)

As an alternative to using a SORT clause, which consumes CPU time each time
you access the CA-DATACOM/DB table, you could use the SORT procedure with
the OUT= option to create a sorted SAS data file. This is a better approach for
data you want to use many times.

� If a view descriptor describes a large CA-DATACOM/DB table and you will use the
view descriptor often, it may be more efficient to extract the data and place them
in a SAS data file. (Even though the extracted data file will be very large, you will
need to create it only once. Also, the extracted data will not reflect any subsequent
updates to the table.) See “Performance Considerations” on page 43 for more
information on when it is best to extract data.

� Specify selection criteria to retrieve a subset of the records CA-DATACOM/DB
software returns to the SAS System, where possible.

� If you use a Default Key, the interface view engine will use an index read instead
of a sort if it can. Index reads are faster, but not always possible. For example, an
index read is not possible if you specify multiple sort keys, multiple WHERE
clause conditions, or a WHERE clause condition with a column that is not a key.

� Omit the KEY statement if you do not need a certain order and you want to
retrieve the data sequentially. Otherwise, you may cause an unnecessary sort.
PROC FSBROWSE, FSEDIT, and FSVIEW automatically use random access and
require a value in the Default Key field.

� You can provide your own URT that is fine-tuned for your applications.

ACCESS Procedure Data Conversions

The following table shows the default formats that the SAS System assigns to each
CA-DATACOM/DB data type. The default formats also become the default informats.

Table 6.4 Default SAS System Column Formats for CA-DATACOM/DB Data Types

Field Type Field Description Default SAS Format

C character $len.

B binary:

for length ≤ 8, unsigned (2xlen+1).dec*

for length 8, signed (2xlen+2).dec*

for length > 8 $HEX(2xlen).

D packed decimal:

for length ≤16, unsigned (2xlen+1).dec*

100 ACCESS Procedure Data Conversions 4 Chapter 6

Field Type Field Description Default SAS Format

for length 16, signed (2xlen+2).dec*

for length > 16 $HEX(2xlen).

E extended floating-point $HEX(2xlen).

G graphics data $HEX(2xlen).

H hex character $len.

K Kanji (same as Y) $HEX(2xlen).

L long floating-point E24.

N numeric (zoned decimal):

for length 16, unsigned len.dec

for length 16, signed (len+1).dec

for length > 16 $HEX(2xlen).

S short floating-point E14.

T PL/I bit representation $HEX(2xlen).

Y double byte character set (DBCS) $HEX(2xlen).

Z mixed DBCS and single byte $HEX(2xlen).

2 halfword binary (aligned), unsigned 5.dec

2 halfword binary (aligned), signed 6.dec

4 fullword binary (aligned), unsigned 9.dec

4 fullword binary (aligned), signed 10.dec

8 doubleword binary (aligned), unsigned 17.0

* len is the value of the LENGTH attribute of the CA-DATACOM/DB field. dec is the value of the
DECIMALS attribute of the CA-DATACOM/DB field.

Note that CA-DATACOM/DB numeric fields are copied into SAS character columns
with a $HEX. format if they are too long to fit in a SAS numeric column. For example,
a CA-DATACOM/DB field of type B with a length of 30 is copied into a SAS column
with $HEX60. format. A field of type B with a length of 5 and dec of 2 is copied into a
SAS column with 11.2 format. An error message appears if any precision is lost.

The maximum SAS format width is 200, so the SAS software uses 200 for
CA-DATACOM/DB fields whose length exceeds 200.

You may want to change the default format whenever it does not seem appropriate
for the values stored in the table. For example, a packed decimal field of length 4 and 2
decimal places would have a default SAS format of 7.2. A very large negative number
with a decimal (such as -99,999.99) might not fit.

If SAS software discovers the output format is too small, it issues the following
warning message to the error log: AT LEAST ONE W.D FORMAT WAS TOO SMALL
FOR THE NUMBER TO BE PRINTED. THE DECIMAL POINT MAY BE SHIFTED
BY THE BEST FORMAT. The message can occur, for example, when you invoke the
PRINT procedure. If this message appears, you should specify a larger width.

The format determines how values in the SAS column are displayed; it does not
affect how those values are stored. Their storage is determined by their
CA-DATACOM/DB type and length. Therefore, you cannot replace a character format
with a numeric format or vice versa.

ACCESS Procedure Reference 4 ACCESS Procedure Data Conversions 101

If numeric values in the table are a lot smaller than their length implies, space on
the output print line can be conserved by specifying smaller w. or w.d formats.

Each key is converted to one SAS character column, even if the key is numeric or has
more than one component field. The length of a key becomes its default format width.
You cannot change the format for a key.

If you assign a date format to a numeric field, be sure that you also specify the SAS
date format in the DB Content field to indicate you are storing dates in your table.

102 ACCESS Procedure Data Conversions 4 Chapter 6

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
ACCESS Interface to CA-DATACOM/DB Software: Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999. pp. 170.

SAS/ACCESS Interface to CA-DATACOM/DB Software: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–545–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

